
Secure, Efficient Data Transport and Replica Management for
High-Performance Data-Intensive Computing

_

Bill Allcock 1 Joe Bester1 John Bresnahan1 Ann L. Chervenak2 Ian Foster1,3
Carl Kesselman2 Sam Meder1 Veronika Nefedova1 Darcy Quesnel1 Steven Tuecke1

1 Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, IL 60439

{allcock, bester, foster, nefedova, quesnel, tuecke}@mcs.anl.gov

2 Information Sciences Institute
University of Southern California

Los Angeles, CA 90292
{annc, carl}@isi.edu

3 Department of Computer Science & The Computation Institute

The University of Chicago
Chicago, IL 60637

Abstract

An emerging class of data-intensive applications involve the geographically dispersed
extraction of complex scientific information from very large collections of measured or
computed data. Such applications arise, for example, in experimental physics, where the
data in question is generated by accelerators, and in simulation science, where the data is
generated by supercomputers. So-called Data Grids provide essential infrastructure for
such applications, much as the Internet provides essential services for applications such
as e-mail and the Web. We describe here two services that we believe are fundamental to
any Data Grid: reliable, high-speed transport and replica management. Our high-speed
transport service, GridFTP, extends the popular FTP protocol with new features required
for Data Grid applications, such as striping and partial file access. Our replica
management service integrates a replica catalog with GridFTP transfers to provide for the
creation, registration, location, and management of dataset replicas. We present the
design of both services and also preliminary performance results. Our implementations
exploit security and other services provided by the Globus Toolkit.

1 Introduction

Data-intensive, high-performance computing applications require the efficient
management and transfer of terabytes or petabytes of information in wide-area,
distributed computing environments. Examples of such applications include
experimental analyses and simulations in scientific disciplines such as high-energy
physics, climate modeling, earthquake engineering, and astronomy. In such applications,
massive datasets must be shared by a community of hundreds or thousands of researchers
distributed worldwide. These researchers need to be able to transfer large subsets of
these datasets to local sites or other remote resources for processing. They may create

local copies or replicas to overcome long wide-area data transfer latencies. The data
management environment must provide security services such as authentication of users
and control over who is allowed to access the data. In addition, once multiple copies of
files are distributed at multiple locations, researchers need to be able to locate copies and
determine whether to access an existing copy or create a new one to meet the
performance needs of their applications.

We have argued elsewhere [1] that the requirements of such distributed data intensive
applications are best met by the creation of a Data Grid infrastructure that provides a set
of orthogonal, application-independent services that can then be combined and
specialized in different ways to meet the needs of specific applications. We have argued
further that this Data Grid infrastructure can usefully build on capabilities provided by
the emerging Grid [2], such as resource access, resource discovery, and authentication
services. Our Globus Toolkit [3] provides a widely used instantiation of the lower layers
of this Grid architecture.

In this paper, we focus our attention on what we view as two fundamental Data Grid
services, namely, secure, reliable, efficient data transfer and the ability to register,
locate, and manage multiple copies of datasets. We describe the design, prototype
implementation, and preliminary performance evaluation of our realization of these two
services within the context of the Globus Toolkit. Given these two services, a wide range
of higher-level data management services can be constructed, including reliable creation
of a copy of a large data collection at a new location; selection of the best replica for a
data transfer based on performance estimates provide by information services; and
automatic creation of new replicas in response to application demands. However, we do
not directly address these issues here.

2 Data-Intensive Computing Requirements

We use two application examples to motivate the design of our Data Grid services: high-
energy physics experiments and climate modeling. We characterize each with respect to
parameters such as average file sizes, total data volume, rate of data creation, types of file
access (write-once, write-many), expected access rates, type of storage system (file
system or database), and consistency requirements for multiple copies of data. In both
these applications, as well as others that we have examined, such as earthquake
engineering and astronomy, we see a common requirement for two basic data
management services: efficient access to, and transfer of, large files; and a mechanism for
creating and managing multiple copies of files.

2.1 High-Energy Physics Applications

Experimental physics applications operate on and generate large amounts of data. For
example, beginning in 2005, the Large Hadron Collider (LHC) at the European physics
center CERN will produce several petabytes of raw and derived data per year for
approximately 15 years. The data generated by physics experiments is of two types:
experimental data, or information collected by the experiment; and metadata, or

information about the experiment, such as the number of events, and the results of
analysis.

File sizes and numbers of files are determined to some extent by the type of software
used to store experimental data and metadata. For example, several experiments have
chosen to use the object-oriented Objectivity database. Current file sizes (e.g., within the
BaBar experiment) range from 2 to 10 gigabytes in size, while metadata files are
approximately 2 gigabytes. Objectivity currently limits database federations to 64K files.
However, future versions of Objectivity will support more files, allowing average file
sizes to be reduced.

Access patterns vary for experimental data files and metadata. Experimental data files
typically have a single creator. During an initial production period lasting several weeks,
these files are modified as new objects are added. After data production is complete, files
are not modified. In contrast, metadata files may be created by multiple individuals and
may be modified or augmented over time, even after the initial period of data production.
For example, some experiments continue to modify metadata files to reflect the
increasing number of total events in the database. The volume of metadata is typically
smaller than that of experimental data.

The consumers of experimental physics data and metadata will number in the hundreds or
thousands. These users are distributed at many sites worldwide. Hence, it is often desirable
to make copies or replicas of the data being analyzed to minimize access time and network
load. For example, Figure 1 shows the expected replication scheme for LHC physics datasets.
Files are replicated in a hierarchical manner, with all files stored at a central location (CERN)
and decreasing subsets of the data stored at national and regional data centers [4][5].

Tier 0
CERN

Tier 1
France

Tier 1
Italy

Tier 1
England

Tier 2
Bologna

Tier 2
Pisa

Tier 2
Padova

Figure 1: Scheme for hierarchical replication of Physics data

Replication of physics datasets is complicated by several factors. First, security services
are required to authenticate the user and control access to storage systems. Next, because
datasets are so large, it may be desirable to replicate only “interesting” subsets of the
data. Finally, replication of data subject to modification implies a need for a mechanism
for propagating updates to all replicas. For example, consider the initial period of data
production, during which files are modified for several weeks. During this period, users
want their local replicas to be updated periodically to reflect the experimental data being

produced. Typically, updates are batched and performed every few days. Since metadata
updates take place over an indefinite period, these changes must also be propagated
periodically to all replicas.

In Table 1, we summarize the characteristics of high-energy physics applications.

Table 1: Characteristics of high-energy physics applications
Rate of data generation (starting 2005) Several petabytes per year
Typical experimental database file sizes 2 to 10 gigabytes
Typical metadata database file sizes 2 gigabytes
Maximum number of database files in federation Currently 64K; eventually millions
Period of updates to experimental data Several weeks
Period of updates to metadata Indefinite
Type of storage system Object-oriented database
Number of data consumers Hundreds to thousands

2.2 Climate Modeling Application

Climate modeling research groups generate large (multi-terabyte) reference simulations
at supercomputer centers. These data are typically released in stages to progressively
larger communities: first the research collaboration that generated the data, then perhaps
selected colleagues, and eventually the entire community. To determine which users are
allowed to view the collection at each stage, these applications require access control.

Reference simulation data are typically stored in a file system, often using a structured
data format such as NetCDF, with associated metadata. Files are not updated once
released. However, as in the physics application, climate modeling researchers find it
convenient to create local copies of portions of the data. Therefore, the application has
similar needs for managing copies of datasets at multiple locations, as well as for higher-
level services such as replica selection or automatic replica creation.

3 The Globus Toolkit

The term Grid computing refers to the emerging computational and networking
infrastructure that is designed to provide pervasive, uniform and reliable access to data,
computational, and human resources distributed over wide area environments [6]. Grid
services allow scientists at locations throughout the world to share data collection
instruments such as particle colliders, compute resources such as supercomputers and
clusters of workstations, and community datasets stored on network caches and
hierarchical storage systems.

The Globus Toolkit developed within the Globus project provides middleware services
for Grid computing environments. Major components include the Grid Security
Infrastructure (GSI), which provides public-key-based authentication and authorization
services; resource management services, which provide a language for specifying

application requirements, mechanisms for immediate and advance reservations of Grid
resources, and for remote job management; and information services, which provide for
the distributed publication and retrieval of information about Grid resources.

Data Grid services complement and build on these components. For example, the
GridFTP transfer service and the replica management service described in the rest of this
paper use GSI for authentication and authorization. Higher-level data replication services
can use the information service to locate the “best” replica and the resource management
service to reserve the computational, network, and storage resources required by a data
movement operation.

4 GridFTP: A Secure, Efficient Data Transport Mechanism

The applications that we consider use a variety of storage systems, each designed to
satisfy specific needs and requirements for storing, transferring and accessing large
datasets. These include the Distributed Parallel Storage System (DPSS) and the High
Performance Storage System (HPSS), which provide high-performance access to data
and utilize parallel data transfer and/or striping across multiple servers to improve
performance [7][8], and the Storage Resource Broker (SRB), which connects
heterogeneous data collections, provides a uniform client interface to storage repositories,
and provides a metadata catalog for describing and locating data within the storage
system [9].

Unfortunately, these storage systems typically use incompatible and often unpublished
protocols for accessing data, and therefore each requires the use of its own client. These
incompatible protocols and client libraries effectively partition the datasets available on
the Grid. Applications that require access to data stored in different storage systems must
use multiple access methods.

To overcome these incompatible protocols, we propose a universal Grid data transfer and
access protocol called GridFTP that provides secure, efficient data movement in Grid
environments. This protocol, which extends the standard FTP protocol, provides a
superset of the features offered by the various Grid storage systems currently in use. We
argue that using GridFTP as a common data access protocol would be mutually
advantageous to Grid storage providers and users. Storage providers gain a broader user
base, because their data are available to any client, while storage users gain access to a
broader range of storage systems and data.

We chose to extend the FTP protocol (rather than, for example, WebDAV) because we
observed that FTP is the protocol most commonly used for data transfer on the Internet
and the most likely candidate for meeting the Grid’s needs. FTP is a widely implemented
and well-understood IETF standard protocol with a large base of code and expertise from
which to build. In addition, the FTP protocol provides a well-defined architecture for
protocol extensions and supports dynamic discovery of the extensions supported by a
particular implementation. Third, numerous groups have added extensions through the
IETF, and some of these extensions are particularly useful in the Grid.

4.1 GridFTP Functionality

GridFTP functionality includes some features that are supported by FTP extensions that
have already been standardized (RFC 959) but are seldom implemented in current
systems. Other features are new extensions to FTP.

��Grid Security Infrastructure and Kerberos support: Robust and flexible

authentication, integrity, and confidentiality features are critical when transferring or
accessing files. GridFTP must support GSI and Kerberos authentication, with user
controlled setting of various levels of data integrity and/or confidentiality. GridFTP
immplements the authentication mechanisms defined by RFC 2228, “FTP Security
Extensions”.

��Third-party control of data transfer: To manage large datasets for distributed
communities, we must provide authenticated third-party control of data transfers
between storage servers. A third-party operation allows a user or application at one
site to initiate, monitor and control a data transfer operation between two other sites:
the source and destination for the data transfer. Our implementation adds Generic
Security Services (GSS)-API authentication to the existing third-party transfer
capability defined in the FTP standard.

��Parallel data transfer: On wide-area links, using multiple TCP streams in parallel
(even between the same source and destination) can improve aggregate bandwidth
over using a single TCP stream [10]. GridFTP supports parallel data transfer through
FTP command extensions and data channel extensions.

��Striped data transfer: Data may be striped or interleaved across multiple servers, as
in a DPSS network disk cache [11]. GridFTP includes extensions that initiate striped
transfers, which use multiple TCP streams to transfer data that is partitioned among
multiple servers. Striped transfers provide further bandwidth improvements over
those achieved with parallel transfers. We have defined GridFTP protocol extensions
that support striped data transfers.

��Partial file transfer: Some applications can benefit from transferring portions of
files rather than complete files: for example, high-energy physics analyses that require
access to relatively small subsets of massive, object-oriented physics database files.
The best that the standard FTP protocol allows is transfer of the remainder of a file
starting at a particular offset. GridFTP provides commands to support transfers of
arbitrary subsets or regions of a file.

��Automatic negotiation of TCP buffer/window sizes: Using optimal settings for
TCP buffer/window sizes can dramatically improve data transfer performance.
However, manually setting TCP buffer/window sizes is an error-prone process
(particularly for non-experts) and is often simply not done. GridFTP extends the
standard FTP command set and data channel protocol to support both manual setting
and automatic negotiation of TCP buffer sizes for large files and for large sets of small
files.

��Support for reliable and restartable data transfer: Reliable transfer is important
for many applications that manage data. Fault recovery methods are needed to handle
failures such as transient network and server outages. The FTP standard includes
basic features for restarting failed transfers that are not widely implemented. GridFTP
exploits these features and extends them to cover the new data channel protocol.

4.2 The GridFTP Protocol Implementation

Our implementation of the GridFTP protocol supports partial file transfers, third-party
transfers, parallel transfers and striped transfers. We do not yet support automatic
negotiation of TCP buffer/window sizes. The implementation consists of two principal C
libraries: the globus_ftp_control_library and the globus_ftp_client_library.

The globus_ftp_control_library implements the control channel API. This API
provides routines for managing a GridFTP connection, including authentication, creation
of control and data channels, and reading and writing data over data channels. Having
separate control and data channels, as defined in the FTP protocol standard, greatly
facilitates the support of such features as parallel, striped and third-party data transfers.
For parallel and striped transfers, the control channel is used to specify a put or get
operation; concurrent data transfer occurs over multiple parallel TCP data channels. In a
third-party transfer, the initiator monitors or aborts the operation via the control channel,
while data transfer is performed over one or more data channels between source and
destination sites.

The globus_ftp_client_library implements the GridFTP client API. This API provides
higher-level client features on top of the globus_ftp_control library, including complete
file get and put operations, calls to set the level of parallelism for parallel data transfers,
partial file transfer operations, third-party transfers, and eventually, functions to set TCP
buffer sizes.

4.3 GridFTP Performance

Preliminary performance measurements of our GridFTP prototype demonstrate that we
can indeed obtain high performance and reliable transfers in wide area networks. Further
improvements are expected as a result of tuning and improvements to the
implementation.

Figure 2 shows the performance of GridFTP transfers between two workstations, one at
Argonne National Laboratory in Illinois and the other at Lawrence Berkeley National
Laboratory in California, connected over the ES-Net network (www.es.net). Both
workstations run the Linux operating system and have RAID storage systems with
read/write bandwidth of approximately 60 megabytes per second. Gigabit Ethernet is the
slowest link in the network path. The bottom curve in the graph shows GridFTP
performance as the number of simultaneous TCP streams increases. For comparison, the
top curve in the graph shows the performance of the same number of TCP streams
measured by iperf, a tool for evaluating network performance that performs no disk I/O

and has minimal CPU or protocol overhead [12]. Iperf provides one measurement of the
maximum throughput of the network. Our experiment was run in random order relative
to the number of streams, with the GridFTP measurement for a certain number of streams
followed immediately by the iperf measurement for the same number of streams. For
example, we took GridFTP measurements followed by iperf measurements for 18
simultaneous streams, then we took the two measurements for five simultaneous streams,
etc. This randomization prevents any system or network trends from biasing the results,
but assures that iperf and GridFTP measurements for the same number of streams are run
close together temporally to reflect possible interactions with the number of streams.
Each data point on the graph represents a single measurement. Iperf measurements were
made using a one megabyte window size and ran for 30 seconds. GridFTP measurements
recorded the time to transfer a one gigabyte file.

The graph shows that GridFTP bandwidth increases with the number of parallel TCP
streams between the two workstations, until bandwidth reaches about 200 megabits per
second with seven to ten TCP streams. Differences between iperf and GridFTP
performance can be attributed to overheads including authentication and protocol
operations, reporting performance to the client, and checkpointing data to allow restart.
GridFTP achieves on average approximately 78% of the iperf bandwidth, although there
is a great deal of variability. We speculate that this variability is due to the requirement
that GridFTP wait for any packets that are misrouted or dropped, while iperf simply runs
for its allotted time and stops regardless of whether there are outstanding packets.

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35

o f T C P str eam s

B
a

n
d

w
id

th
 (

M
bs

)

GridFTP iperf

Figure 2: GridFTP performance compared to iperf measurements of network connection
between Argonne National Laboratory and Lawrence Berkeley National Laboratory.

Figure 3 demonstrates GridFTP reliability. We show aggregate parallel bandwidth for a
period of approximately fourteen hours during the SC’00 Conference in Dallas, Texas, on
November 7, 2000. This data corresponds to parallel transfers between two uniprocessor
hosts using varying levels of parallelism, up to a maximum of eight streams. The graph
was produced with the NetLogger system [13]. Bandwidth between the two hosts
reaches approximately 80 megabits per second, somewhat lower than shown for the hosts
in Figure 2, most likely due to disk bandwidth limitations. Figure 3 shows drops in
performance due to various network problems, including a power failure for the SC

network (SCiNet), DNS problems, and backbone problems on the exhibition floor.
Because the GridFTP protocol supports restart of failed transfers, the interrupted transfers
are able to continue as soon as the network is restored. Toward the right side of the
graph, we see several temporary increases in aggregate bandwidth, due to increased
levels of parallelism. The frequent drop in bandwidth to relatively low levels occurs
because our current implementation of GridFTP destroys and rebuilds its TCP
connections between consecutive transfers. To address this problem, our next GridFTP
implementation will support data channel caching. This mechanism allows a client to
indicate that a TCP stream is likely to be re-used soon after the existing transfer is
complete. In response to this hint, we will temporarily keep the TCP channel active and
allow subsequent transfers to use the channel without requiring costly breakdown, restart,
and re-authentication operations.

Figure 3: Bandwidth measured for a series of transfers performed over a 14 hour period,
between Dallas and Chicago

Figure 4 and Table 2 address our achievable peak performance. These data were
obtained during the Network Challenge competition at SC’00 in November 2000. Our
configuration for this competition consisted of eight Linux workstations on the SC’00
exhibition floor in Dallas, Texas, sending data across the wide area network to eight
workstations (four Linux, four Solaris) at Lawrence Berkeley National Laboratory in
California. Figure 4 illustrates the configuration. We used striped transfers during this
competition, with a 2-gigabyte file partitioned across the eight workstations on the
exhibition floor. Each workstation actually had four copies of its file partition. On each
server machine, a new transfer of a copy of the file partition was initiated after 25% of
the previous transfer was complete. Each new transfer creates a new TCP stream. At any
time, there are up to four simultaneous TCP streams transferring data from each server in

the cluster of eight workstations, for a total of up to 32 simultaneous TCP streams. Our
current lack of data channel caching means that there are often fewer than four
simultaneous streams transferring data on each host.

8 Linux workstations
at SC’00 in Dallas

up to 32 total TCP streams

Wide AreaRouting:
2 x GigE to Scinet,
then router, then 1.5
Gb/s via HSCC to
NTON, then OC48
to LBNL

4 Linux and 4 Solaris
workstations at
Lawrence Berkeley
Laboratory

Figure 4: Experimental configuration for Network Challenge competition at SC’00.

Table 2 summarizes the results of our Network Challenge competition entry. We
achieved a peak transfer rate of 1.55 gigabits/second over an interval of 0.1 seconds.
This striped configuration was able to transfer data at a peak rate of 1.03 gigabits/second
over an interval of 5 seconds. Over the hour-long period of our competition entry, we
sustained an average data rate of 512.9 megabits per second. This corresponded to a total
data transfer during that hour of 230.8 gigabytes, or a quarter of a terabyte.

Table 2: Network Challenge configuration and performance results
Striped servers at source location 8
Striped servers at destination location 8
Maximum simultaneous TCP streams per server 4
Maximum simultaneous TCP streams overall 32
Peak transfer rate over 0.1 seconds 1.55 Gbits/sec
Peak transfer rate over 5 seconds 1.03 Gbits/sec
Sustained transfer rate over 1 hour 512.9 Mbits/sec
Total data transferred in 1 hour 230.8 Gbytes

5 Replica Management

We next describe our second fundamental Data Grid service, that is, replica management.
This component is responsible for managing the replication of complete and partial
copies of datasets, defined as collections of files. Replica management services include:

��creating new copies of a complete or partial collection of files

��registering these new copies in a Replica Catalog

��allowing users and applications to query the catalog to find all existing copies
of a particular file or collection of files

��selecting the ``best'' replica for access based on storage and network
performance predictions provided by a Grid information service

The Globus replica management architecture is layered. At the lowest level we have a
Replica Catalog that allows users to register files as logical collections and provides
mappings between logical names for files and collections and the storage system
locations of file replicas. Building on this basic component, we provide a low-level API
that performs catalog manipulation and a higher-level Replica Management API that
combines storage access operations with calls to low-level catalog manipulation
functions. These APIs can be used by higher-level tools that select among replicas based
on network or storage system performance, or that create (or delete) new replicas
automatically at desirable locations.

5.1 The Replica Catalog

As mentioned above, the purpose of the replica catalog is to provide mappings between
logical names for files or collections and one or more copies of those objects on physical
storage systems. The catalog registers three types of entries: logical collections,
locations, and logical files.

A logical collection is a user-defined group of files. We expect that users will often find
it convenient and intuitive to register and manipulate groups of files as a collection, rather
than requiring that every file be registered and manipulated individually. Aggregating
files should reduce both the number of entries in the catalog and the number of catalog
manipulation operations required to manage replicas.

Location entries in the replica catalog contain the information required for mapping a
logical collection to a particular physical instance of that collection. The location entry
may register information about the physical storage system, such as the hostname, port
and protocol. In addition, it contains all information needed to construct a URL that can
be used to access particular files in the collection on the corresponding storage system.
Each location entry represents a complete or partial copy of a logical collection on a
storage system. One location entry corresponds to exactly one physical storage system
location. The location entry explicitly lists all files from the logical collection that are
stored on the specified physical storage system.

Each logical collection may have an arbitrary number of associated location entries, each
of which contains a (possibly overlapping) subset of the files in the collection. Using
multiple location entries, users can easily register logical collections that span multiple
physical storage systems.

Despite the benefits of registering and manipulating collections of files using logical
collection and location objects, users and applications may also want to characterize
individual files. For this purpose, the replica catalog includes optional entries that
describe individual logical files. Logical files are entities with globally unique names
that may have one or more physical instances. The catalog may optionally contain one
logical file entry in the replica catalog for each logical file in a collection.

Figure 5 shows an example replica catalog for a climate modeling application. This
catalog contains two logical collections with CO2 measurements for 1998 and 1999. The

1998 collection has two physical locations, a partial collection on the hos jupiter.isi.edu
and a complete collection on sprite.llnl.gov. The location entries contain attributes that
list all files stored at a particular physical location. They also contain attributes that
provide all information (protocol, hostname, port, path) required to map from logical
names for files to URLs corresponding to file locations on the storage system. The
example catalog also contains logical file entries for each file in the collection. These
entries provide size information for individual files.

Figure 5: A Replica Catalog for a climate modeling application.

5.2 Replica Catalog API and Command Line Tool

We have implemented an API for low-level replica catalog manipulation as a C library
called globus_replica_catalog.c. In addition, a straightforward command-line tool
provides similar functionality. There are three types of operations on replica catalog
entries. First, the API provides functions to create and delete catalog entries, for
example, to register a new collection or location. Second, the API provides functions to
add, list or delete individual attributes of a catalog entry. For example, as an
experimental physics application produces new data files, the collection owner can
register these files with the replica catalog by adding their names as attributes of existing
logical collection and location entries. Third, the API provides functions to list or search
catalog entries, including complex search operations that find all physical locations where
a particular set of logical files is stored.

5.3 Replica Management API

The Replica Management API is a higher-level API that combines storage system
operations with calls to low-level replica catalog API functions. Key concepts include
the following:

��Registration: Registration operations add information about files on a physical

storage system to existing location and logical collection entries. For example, when a
long-running scientific experiment periodically produces new data files, these files are
made available to users by registering them in existing location and collection entries.

��Copying: This operation copies a file between two storage systems that are registered
as locations of the same logical collection and updates the destination’s location entry
to include the new file.

��Publishing: The publishing operation takes a file from a source storage system that is
not represented in the replica catalog, copies the file to a destination storage system
that is represented in the replica catalog, and updates the corresponding location and
logical collection entries.

5.4 Replica Management Architecture Implementation and Performance

In this section, we present preliminary performance results for our prototype
implementation of the Globus replica management architecture. We have implemented
the low-level replica catalog manipulation API in C. The replica catalog itself is
currently implemented as a Lightweight Directory Access Protocol (LDAP) directory,
although future implementations may use relational databases. (The higher-level Replica
Management API has not yet been implemented.) Our experimental replica catalog is a
Netscape Directory Server version 4.12 LDAP directory configured with a cache size
limit of 100 objects and a limit of 100 megabytes for caching database index files. This
LDAP server runs on a 333 MHz Sun Sparc Ultra-5 workstation with 384 megabytes of
memory running the SunOS version 5.7 operating system. The LDAP directory
maintains an index on filename attributes of logical collection and location entries. A
single client submits requests to the LDAP server in our tests.

Create and Delete Times for Logical Collections

Files per logical collection
101 102 103 104 105

M
ea

n
tim

e
fo

r
op

er
at

io
n

(s
ec

on
ds

)

0

5

10

15

20

25

Create logical collection
Delete logical collection

List Collection Times

Files per logical collection
101 102 103 104 105

Li
st

 c
ol

le
ct

io
n

tim
e

(s
ec

on
ds

)

0

5

10

15

20

25

Figure 6: Microbenchmark performance results for low-level replica catalog API

Figure 6 shows microbenchmark performance results for three operations of the low-level
replica catalog manipulation API: creating and deleting a logical collection and listing
the contents of a collection entry. Each is graphed on the same scale as the size of

collections increases from 1 file to 100,000 files. All measurements are run 10 times,
with the graphs indicating mean times for the operations and error bars showing standard
deviation. We include only graphs for operations on logical collections. (Graphs for
operations on location entries show similar behavior.) The graph on the left indicates the
time required to create and delete logical collection entries in the catalog, where each
entry has one attribute per logical file name. As the number of files in a logical collection
approaches 100,000, the create and delete times increases considerably, to approximately
20 seconds. This is due to the large number (tens of thousands) of filename attributes
associated with these large logical collection entries. Although these times are relatively
long, creation and deletion operations should be fairly rare. We also note that our
experimental LDAP server runs on a relatively low-performance workstation.

We expect that list and search operations will be more common than create or delete
operations. The graph on the right of Figure 6 shows the time to list the contents of a
logical collection entry in the catalog. The list operation is much faster than create/delete
operations, with times ranging from well under one second for small collections to
approximately one second for collections with tens of thousands of files. Another
operation expected to occur frequently is a search for all locations of a logical file. We
are currently running experiments to measure search performance. Preliminary results
for collections with one, two, four and eight locations show mean search times of
approximately 1 second regardless of the number of locations per collection. Because we
maintain an index on the filenames in the replica catalog, searches for all locations of a
file appear to be efficient regardless of the number of locations.

6 Conclusions

We have argued that high-performance, distributed data-intensive applications require
two fundamental services: secure, reliable, efficient data transfer and the ability to
register, locate, and manage multiple copies of datasets. These two services can be used
to build a range of higher-level capabilities, including reliable creation of a copy of a data
collection at a new location, selection of the best replica for a data transfer operation
based on performance, and automatic creation of new replicas in response to application
demands.

We have presented our design and implementation of these two services. The GridFTP
protocol implements extensions to FTP that provide GSI security and parallel, striped,
partial, and third-party transfers, while the Globus replica management architecture
supports the management of complete and partial copies of datasets. Performance
studies of both components provide promising results.

These and other Globus Toolkit services are being applied by ourselves and others in a
variety of large-scale application projects, including the Particle Physics Data Grid
(www.ppdg.net), Earth Systems Grid, Grid Physics Network (www.griphyn.org), and
European Data Grid (grid.web.cern.ch/grid) projects. Experience with these applications
will motivate further refinements and additions to the services described here. We are
already planning extensions, such as automated replica management, community-based
access control, automated buffer size negotiation, and server-side data reduction [14].

Acknowledgements

We are grateful to Marcus Thiebaux and Soonwook Hwang for their work characterizing
the performance of LDAP servers; to Brian Toonen, who helped to optimize the GridFTP
code; to Gail Pieper, Laura Pearlman and Ewa Deelman for comments on this paper; and
to the many colleagues in the sciences who helped us understand their requirements.
This work was supported in part by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing Research,
U.S. Department of Energy, under Contract W-31-109-Eng-38, and by the National
Science Foundation.

References
[1] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, S. Tuecke, “The Data Grid:
Towards an Architecture for the Distributed Management and Analysis of Large
Scientific Datasets,” to be published in the J. of Network and Computer Applications.
[2] I. Foster, C. Kesselman, S. Tuecke, “The Anatomy of the Grid: Enabling Scalable
Virtual Organizations”, Tech. Report, Argonne National Laboratory and USC/ISI, 2001.
[3] I. Foster, C. Kesselman, “Globus: A Metacomputing Infrastructure Toolkit,” Intl. J.
Supercomputer Applications, 11(2): 115-128, 1997.
[4] W. Hoschek, J. Jaen-Martinez, A. Samar, H. Stockinger, K. Stockinger, “Data
Management in an International Grid Project”, 2000 Intl. Workshop on Grid Computing
(GRID 2000), Bangalore, India, December 2000.
[5] K. Holtman, “Object Level Replication for Physics”, Proceedings of 4th Annual
Globus Retreat, Pittsburgh, July 2000.
[6] I. Foster, C. Kesselman (eds.). The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, 1999.
[7] B. Tierney, J. Lee, B. Crowley, M. Holding, J. Hylton, F. Drake, "A Network-Aware
Distributed Storage Cache for Data Intensive Environments", Proc. of IEEE High
Performance Distributed Computing Conference (HPDC-8), August 1999.
[8] "Basics of the High Performance Storage System", www.sdsc.edu/projects/HPSS
[9] C. Baru, R. Moore, A. Rajasekar, M. Wan, "The SDSC Storage Resource Broker,"
Proc. CASCON'98 Conference, Nov.30-Dec.3, 1998, Toronto, Canada.
[10] Lili Qiu, Yin Zhang, Srinivasan Keshav, “On Individual and Aggregate TCP
Performance,” Proc. of 7th Intl. Conference on Network Protocols (ICNP'99), Toronto,
Canada, 1999.
[11] B. Tierney, W. Johnston, J. Lee, G. Hoo, “Performance Analysis in High-Speed
Wide Area IP over ATM Networks: Top-to-Bottom End-to-End Monitoring,” IEEE
Networking, 1996.
[12] dast.nlanr.net/Projects/Iperf/
[13] D. Gunter, B. Tierney, B. Crowley, M. Holding, J. Lee, “NetLogger: A Toolkit for
Distributed System Performance Analysis”, Proc. of the IEEE Mascots 2000 Conference
(Mascots 2000), August 2000.
[14] M. Beynon, R. Ferreira, T. Kurc, A. Sussman, and Saltz, J., “DataCutter:
Middleware for Filtering Very Large Scientific Datasets on Archival Storage Systems,”
Proc. 8th Goddard Conference on Mass Storage Systems and Technologies/17th IEEE
Symposium on Mass Storage Systems, 2000, 119-133.

