Proton Emission from Gamow Resonance

PDF Version Also Available for Download.

Description

We demonstrated that it is possible to calculate the complex energy of the deformed Gamow state with a precision that is high enough so that the half-life calculated from the imaginary part of the energy is meaningful. We also performed a comparison between non-adiabatic and adiabatic calculations. It can be concluded that, in many cases, the corrected adiabatic treatment cannot be used as a substitute for the full non-adiabatic calculations.

Physical Description

vp.

Creation Information

Vertse, T. October 19, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 16 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We demonstrated that it is possible to calculate the complex energy of the deformed Gamow state with a precision that is high enough so that the half-life calculated from the imaginary part of the energy is meaningful. We also performed a comparison between non-adiabatic and adiabatic calculations. It can be concluded that, in many cases, the corrected adiabatic treatment cannot be used as a substitute for the full non-adiabatic calculations.

Physical Description

vp.

Source

  • NATO Advanced Research Workshop on the Nuclear Many-Body Problem 2001, Pula (HR), 06/02/2001--06/05/2001

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: P01-112229
  • Grant Number: AC05-00OR22725
  • Office of Scientific & Technical Information Report Number: 788694
  • Archival Resource Key: ark:/67531/metadc721215

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 19, 2001

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • March 25, 2016, 2:25 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 16

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Vertse, T. Proton Emission from Gamow Resonance, article, October 19, 2001; Tennessee. (digital.library.unt.edu/ark:/67531/metadc721215/: accessed October 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.