Deployment of an Alternative Closure Cover and Monitoring System at the Mixed Waste Disposal Unit U-3ax/bl at the Nevada Test Site

PDF Version Also Available for Download.

Description

In October 2000, final closure was initiated of U-3ax/bl, a mixed waste disposal unit at the Nevada Test Site (NTS). The application of approximately 30 cm of topsoil, composed of compacted native alluvium onto an operational cover, seeding of the topsoil, installation of soil water content sensors within the cover, and deployment of a drainage lysimeter facility immediately adjacent to the disposal unit initiated closure. This closure is unique in that it required the involvement of several U.S. Department of Energy (DOE) Environmental Management (EM) groups: Waste Management (WM), Environmental Restoration (ER), and Technology Development (TD). Initial site characterization of ... continued below

Physical Description

vp.

Creation Information

Levitt, D.G. & Fitzmaurice, T.M. February 1, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In October 2000, final closure was initiated of U-3ax/bl, a mixed waste disposal unit at the Nevada Test Site (NTS). The application of approximately 30 cm of topsoil, composed of compacted native alluvium onto an operational cover, seeding of the topsoil, installation of soil water content sensors within the cover, and deployment of a drainage lysimeter facility immediately adjacent to the disposal unit initiated closure. This closure is unique in that it required the involvement of several U.S. Department of Energy (DOE) Environmental Management (EM) groups: Waste Management (WM), Environmental Restoration (ER), and Technology Development (TD). Initial site characterization of the disposal unit was conducted by WM. Regulatory approval for closure of the disposal unit was obtained by ER, closure of the disposal unit was conducted by ER, and deployment of the drainage lysimeter facility was conducted by WM and ER, with funding provided by the Accelerated Site Technology Deployment ( ASTD) program, administered under TD. In addition, this closure is unique in that a monolayer closure cover, also known as an evapotranspiration (ET) cover, consisting of native alluvium, received regulatory approval instead of a traditional Resource Conservation and Recovery Act (RCRA) multi-layered cover. Recent studies indicate that in the arid southwestern United States, monolayer covers may be more effective at isolating waste than layered covers because of the tendency of clay layers to desiccate and crack, and subsequently develop preferential pathways. The lysimeter facility deployed immediately adjacent to the closure cover consists of eight drainage lysimeters with three surface treatments: two were left bare; two were revegetated with native species; two were allowed to revegetate with invader species; and two are reserved for future studies. The lysimeters are constructed such that any drainage through the bottoms of the lysimeters can be measured. Sensors installed in the closure cover provide soil water content data, whereas sensors installed in the lysimeters provide soil water content, soil water potential, soil temperature, and drainage data for a detailed evaluation of the cover performance. Revegetation establishes a stable plant community that maximizes water loss through transpiration and reduces water and wind erosion and ultimately restores the disposal unit to its surrounding Great Basin Desert environment.

Physical Description

vp.

Notes

INIS; OSTI as DE00774295

Source

  • Waste Management '01 Conference, Tucson, AZ (US), 02/25/2001--03/01/2001

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: DOE/NV/11718--462
  • Grant Number: AC08-96NV11718
  • Office of Scientific & Technical Information Report Number: 774295
  • Archival Resource Key: ark:/67531/metadc721191

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 1, 2001

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • Feb. 11, 2016, 9:17 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 10

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Levitt, D.G. & Fitzmaurice, T.M. Deployment of an Alternative Closure Cover and Monitoring System at the Mixed Waste Disposal Unit U-3ax/bl at the Nevada Test Site, article, February 1, 2001; Nevada. (digital.library.unt.edu/ark:/67531/metadc721191/: accessed December 13, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.