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The accuracy .of Mach 8 kiminar flow solutions over

a spherical y-blunted cone is verifiect, and the various
physical models are validated. Verification of the solu-
tion accuracy is demonstrated by monitoring iterative
convergence, performing a comprehensive grid conver-
gence study, comparison to benchmark inviscid results,
and code-to-code comparisons. Although the numerical
scheme is nominally second order accurate in space, the
presence of first order accuracy at the shock discontinu-
ity results in first order behavior for the surface pressure
distributions as the grid is suftlciently refined. Akerna-
tive methods are proposed for analyzing the spatial con-
vergence behavior and determining the order of
accuracy for mixed first and second order schemes. Val-
idation of the wmputatiomd model is performed via sur-
face pressure comparisons with high-quality
experimental data. Careful attention is paid to the as-
sumptions in the computational and experimental mod-
eling. In particular, the thermodynamic state of the
hypersonic wind tunnel nozzle is examined and argu-
ments are made for the presence of a significant amount
of thermal nonequilibrimn. Bias errors in the experi-
mental Mach number calibration are discussed which
are related to the assumption of thermal equilibrium (-
0.23%) and the averaging of probe data over the entire
test section (+0.6%). Differences between the simula-
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tion results for surface pressure and the experimental
data are found to be as large as 3.3%. These differences
are well outside the experimental 20 error bounds, even
after accounting for the experimental bias errors.
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Nomenclature

s~ific heat at constant pressure, JlkgK
specific internal energy, JZkgK
specific internal energy rate of change,
J/kg”Es
soiution variable on mesh level k
irhorder error term coefficient
grid spacing on mesh level k
thermal conductivity, W/m.K
total number of mesh cells on grid level k
continuum breakdown parameter
Prandtl number (= 0.71)
pressure, N/m2, or spatial order of accuracy
specific gas constant J/kg.K (R = Ru/ W)
nose radius (= 0.00508 m or 0.2 in)
universal gas constant (= 8314.34 J/kmol.K)
grid refinement factor (r= hk+/hJ
translational-rotational temperature, K
vibrational temperature, K
molecular weight (= 28.013 kgAmol for N2)
axial coordinates, m
radial coordinate (Cartesian for 3-D), m
Cartesian coordhate for 3-D, m
llitiO OfSpeCifiCheats (y = c/cv)
characteristic v~tiationaI temperature, K
absolute viscosity, N.s/m2
density, Kgh3
characteristic vibrational relaxation time, s
Landau-Teller acceleration factor

(t = z#$ )
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Subscripts and Superscripts
k Mesh level
LT Landau-Teller
RE Richardson Extrapolation
* equilibrium value

introduction

With advances in computing power, engineers in-
creasingly rely on modeling and simulation for the de-
sign and certification of engineering systems. Thus,
there is a need to increase the confidence in these simu-
lations, especially in high-risk areas such as civil avia-
tion, nuclear power, and nuclear weapons systems.
Verification and validation provi&s the primary means
by which one can assess the accuracy of computational
simulations.

In order to develop a computational modeI, one must
first define a conceptual model of the physical system.l
Verification is the process of determining that a model
implementation accurately represents the developer’s
conceptual description and assessing how accurately
this conceptual mode] is solved. Validation, as defined
in Ref. 1, is “the process of determining the degree to
which a model is an accurate representation of the real
world from the perspective of the intended uses of the
model.” Simply put, verification asks the mathematical
question “are we solving the equations righb” while val-
idation asks the physical question “are we solving the
right equations.”

Verification can be separated into two parts, code
verification and solution verification. Code verification
is used to find coding errors in the discrete solution to
the chosen governing equations and boundary condi-
tions. Code verification can be accomplished by com-
parison to analytical solutions, highly accurate
benchmark solutions, and by the method of manufac-
tured solutions.2 The latter is an eiegant method which
includes the application of a priori analytical solutions
to the governing equations with a subsequent generation
of source terms. During this phase, the formal order of
accuracy of the numerical scheme can also be verified
with carefulIy chosen problems which do not require
limiting procedures (e.g. flux limiting, realizeabllity
limiting) and which have well-characterized boundary
conditions. In this paper, code verification is addressed
only through a comparison to highly accurate numerical
results fm inviscid flow and through a co&-to-code
comparison.

Solution verification (or solution accuracy assess-
ment) is concerned with quantifying the computational
emor of a given numerical simulation and should ideally
take place afler code verification has been completed.
The two main aspects of solution verification are itera-

tive convergence and spatial, or grid, convergence. The
former deals with the marching of a solution in pseudo-
time towards a steady state or the use of sub-iterates to
recover a time-accurate solution, while the latter deals
with the adequacy of the mesh upon which the discrete
equations are being solved. The spatial order of accura-
cy is also an important metric for assessing the errors
due to spatial resolution. TM paper places a strong em-
phasis on solution verification. In particular, issues deal-
ing with the spatial accuracy of flows with
discontinuities will be discussed.

Validation consists of comparing a verified numerical
solution with h@ quality experimental data. Validation
can be performed at both the submodel level (e.g. trans-
port models, equation of state models, thermodynamic
models, turbulence models) and at the system level
through comparisons with high quality experimental da-
ta. Once model validation has been performed, conclu-
sions can be drawn regarding the applicability of the
proposed mathematicrd models and recommendations
for improvements can be made.

The computational fluid dynamics code used in the
current work is SACCARA, the Sandia Advanced Code
for Compressible Aerothennodynamics Research and
Analysis. The SACCARA code was developed from a
parallel distributed memory version3-6 of the INCA
code,7 originally developed by Amtee Engineering. Thk
code has been developed to provide a unique, massively
parallel, three-dimensional compressible fluid mechan-
icslaerothermodynamics analysis capability for transon-
ic and hypersonic fllght systems. Since testing, both
flight and ground, has decreased in recent years due to
rising costs, it is necessary for modeling and simulation
to fill in the gap. Verification and validation of the com-
putational techniques developed for design and analysis
is critical to thk process.

The current paper presents computational results for a
Mach 8, huninar, spherically-bhmted cone which was
studied experimentally at the Sandm National Laborato-
ry hypersonic wind tunnel facility. The model had a pla-
nar slice on the aft section (parallel to the longitudinal
axis), where 10,20, and 30 degree flaps could be mount-
ed. The experimental database consists of both force and
moment8s9 and surface pressurelO’l 1 measurements.

The remainder of this paper is organized as follows.
A brief discussion of the experimental setup is given,
followed by the details of the computational tool includ-
ing thermodynamic models. Comprehensive verification
of the accuracy of the simulations is presented, includ-
ing a discussion of the iterative and spatial accuracy.
Model validation results are presented which include
calculations of the hypersonic nozzle used to determine
the state of the vibrational excitation at the teat section.
Results are then given which compare the verified simu-
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lation distributions for surface pressure to experimental
data. Finally, discrepancies between the experimental
and computational resuhs are addressed and conclusions
are drawn.

Rmerhnental Setun

The simulations presented herein are used to compare
to surface pressure data collected under the Joint Com-
mutational/Experimental Aerodynamics Program
(JCEAP) at the Sandia National Laboratories hyperson-
ic wind tunnel facility. 10J11The wind tunnel is a blow-

down-to-vacuum configuration and has capabilities for
Mach 5,8, and 14 flow. The Mach 8 nozzle uses dry ni-
trogen (99.999% pure) with a series of heater screens
upstream of the nozzle throat to prevent nitrogen con-
densation in the test section. The tunnel cross-section is
rectangular (0.127 m x0.178 m) in the plenum, and tran-
sitions to a circular cross-section approximately 0.1 m
upstream of the nozzle throat.8 The tonne] test section,
located approximately 2 m downstream of the nozzle
throa~ has a diameter of 0.35 m.

The JCEAP model is a ten degree half-angle sphwi-
cally blunted cone with a length of 0.2639 m and a nose
radhs of 0.00508 m (0,2 in). A planar slice is located on
the aft section (beginning at 0.7 of the length of the
body) where 10,20, and 30 degree flaps can be mounted
(see 13g. 1). The model contains a total of 96 pressure
ports located circumferentialiy around the body at vari-
ous axial stations, in addition to a numlvx of ports on
the slice and flaps. A large quantity of data was taken at
various angles of attack roll angleq and at two dEferent
axial locations in the tunnel. After varying these param-
eters and conducting a number of repeat runs, a statisti-
cal method was then used to greatly improve the
estimate of experimental measurement uncertainty.l”’l 1

‘==33”
AMDbamm&mhk18hU

Fig. 1 JCEAF model geometry.

The experimental uncertainty comes from a number of
sources including tunnel flow nonuniformity, model im-
perfections, positional uncertainty, instrumentation un-
certainty, and run-to-run variations in freestream
conditions.

The test conditions are given in TabIe 1 along with
run-to-run variations for one standard deviation. The
stagnation pressure is measured in the plenum, and the
stagnation temperature is determined from the plenum
pressure and a mass balance between the nozzle throat
and a control valve located upstream of the heaters. The
tunnel Mach number is calibrated by inserting a pitot
pressure rake into the test section and then assuming
thermal equilibrium and isentropic flow in the nozzle.
The validity of thk assumption will be assessed in the
Model Validation section. The static pressure and Rey-
nolds number are then calculated from the Mach num-
ber and stagnation values, again assuming thermai
equilibrium.

Table 1 Test conditions for JCEAP surface presaure
experiments

Flow
Mean Value

OneStandard
Parameter Deviation

Freestream 7.841 0.032%
Mach Number

Stagnation 2.4724x106 N/m2 2.1%
Pressure

Stagnation 632.8 K 2.1%
Temperature

Freestream 286.8 N/mz 1.4%
static Pressure

Freestrearn
Static Temper- 47.7 K none given

ature

Freestream
Unit Reynolds 6.88x106/m 3.7%

Number

The SACCARA code employs a massively parallel
distributed memory architecture based on muki-block
structured grids. The code is capable of simulating axi-
symmetric, two-dimensional, and three-dimensional
flows using a celi-centered finite volume discretization.
The solver is a Lower-Upper Symmetric Gauss-Seidel
scheme based on the works of Yoon et al. 12J13and Peery
and IrnIay,14 which provides for excellent scalability up
to thousands of rmcessors.ls

Results are ~resented for the laminar flow over the
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JCEAP model geometry. Unless otherwise stated, all re-
sults presented herein use a second order Steger-
Warming16 flux scheme and assume pm-feet gas

(y = 1.4) flOWof nitrogen. The boundary conditions are
assumed to be freed at the values reported in Table 1,
and a constant wall temperature of 316.7 K was used as
suggested in Ref. 17. The simulations were run using a
single 400 MHz processor of a Sun Enterprise 10000
shared-memory machine unless otherwise noted. The
solutions herein assume axisyrnmetric flow to reduce
the computational effort, with the exception of a single
three dimensional calculation performed to test this as-
sumption. Comparisons with the JCEAP experimental
data are thus limited to the data on the conical regions of
the modei only.

Governing Equations

The Navier-Stokes equations are solved for conserva-
tion of mass, momentum, and energy. The SACCARA
code has two options for determining interface fluxes,
the Ste er-Warming16 flux vector splitting scheme and

fYee’sl symmetric TVD scheme. Second order spatial
accuracy is obtained with the former via MUSCL ex-
trapolation, whiIe the latter is nominally second order in
smooth regions of the flow. Both schemes employ a flux
limiter which reduces to first order spatial accuracy in
regions with large second derivatives of pressure and
temperature, and the effects of this limiting will be dis-
cussed in the Verification section. The viscous terms are
discretizcd using central differences.

Thermodynamic Models

When applied to flows with a single chemical spe-
cies, the SACCARA code has three options for the ther-
modynamic model: calorically perfeet gas, thermally
perfect gas in thermal equilibrium, and thermally perfect
gas in thermal nonequilibrium.

Calorically Perfect Gas

For a calorically perfect gas, the specific heats are
constant. The equation of state and energy-temperature
relation are expressed as

P = p(y-l)e (1)

and

T = (y- l)e/R, (2)

respectively. For dhtmnic nitrogen IMow 300 K, the ra-
tio of speeific heats y is 1.4. Thermally frozen flow can
occur when the therrnal relaxation time scales are much
larger than the flow residenee time sales, and maybe
observed in compressive flows such as shock waves at

low pressures or in rapidly expanding flows. In a ther-
mally frozen flow, the calorically perfect gas assump-
tion is valid provided the correet value of gamma is
employed (y = 1.4 for linear, diatomic molecules).

Thermal Equilibrium

As the temperature increases, vibrational modes are
excited and the equilibrium value of gamma wiIl drop,
TIds behavior is demonstrated in Fig. 2 for nitrogen,
which has a characteristic vibrational temperature of
3390 K. For a therinally perfect gas in thermal equilibri-
um, the speeific heats, enthalpy, and entropy are func-
tions of temperature only. The SACCARA code uses
polynomial curve-fits foI1owing the work of McBride et
a] 19 For flows in thermal equilibrium, the thermal re-
laxation time scale is assumed to be much smaller than
the flow residence time scale.

1.4

1.s9 \
\\
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RatJo ot Spadflc Haata for Nitiogan ‘,

—No Vibrational Exottatlon
-- --EquMbrium Vlbra?ional Exeiiatkm

1.33
0 250 500 750 1000

T (X)

Fig. 2 Ratio of specific heats, ~, as a function of
temperature for nitrogen.

Thermal Nonequilibrium

For a thermally perfect gas in thermai nonequilibn-
um, the thermal rekixation time scale is, in some region
of the flow, of the same order of magnitude as the flow
residence time scale. In order to predct flows with ther-
maI nonequilibrium, a separate transport equation for
the vibrationrd energy is Solved.zo The right-hand side
(RHS) of the vibrational energy transport equation con-
tains a source term of the Landau-Teller (L-T) form
which governs the thermal relaxation process

RHS =
e~ib(T) – evib(Tvib)

‘LT
(3)

where the Lrm&u-Teller relaxation time Scale ~~= is
found from the correlation of Nfillikan and White.21
T& formulation is based on a harmonic oscillator mod-
el and assumes that the energy is distributed among the
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vibrational energy levels according to a Boltzmsnn dis-
tribution.

While the standard L-T vibrational relaxation has
been shown to give good agreement with experimental
data for compressive flows, as early as the 1960’s, re-
searchers found evidence that vibrational de-excitation
occurred much more rapidly for certain expanding flows
than was predicted by L-T theory.22 This accelerated re-
laxation rate is due to enharmonic effects and non-Bolt-
zrnann population distributions in the vibrational ener~
levels (often referred to as vibrational pumping), and
can be expressed in terms of a local acceleration facto~

which multiplies the standard L-T relaxation rate.23
Ruftlnm suggests that $ is a function of the translation-
al temperature T and the Tvib/T ratio only. If this as-
sertion holds, then solutions for the case of thermal
relaxation of a quiescent gas could be used to construct
a correlation for $ = $(T, Tvib/T) which in turn
could provide a relatively simple correction to the stan-
dard L-T formulation. Fig. 3 shows the behavior of the
L-T acceleration factor as a function of the TVib/T ra-
tio for three different translational-rotational tempera-
tures. The correction factor is near unity for
Compressive flOWS(T> Tvib) Snd grOWS SS the Tvib/T

ratio increases. This information will be used in the vsk
idation of the thermodynamic model.
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Fig. 3 Comparison of $ predicted by RutTin’s
simplified enharmonic relaxation model to master

equation results for the relaxation of N2 (Copyright
1994, American Institute of Aeronautics and

Astronautics - reprinted with permission from Ref. 24).

Verification

As previously discussed, an effort is currently under-
way at Sandia Natioml Laboratories to verify the
SACCARA compressible fluid mechanics code. The
code verification efforts described herein arc limited to
comparison to an inviscid benchmark solution and code-
to-code comparisons. The primary focus of the current
section is on the accuracy of the current simulations (i.e.
solution verification) with regards to iterative and spa-
tial errors.

Benchmark Inviscki solution

Inviscid solutions with the SACCARA code were
compared with highly accurate finite-difference results
reported by Lyubirnov and Russnovti for the inviscid
flow of a perfect gas (y = 1.4) over a spherically-blunt-
ed cone with a 10 ,degree half-angle. This geometry is
similar to the JCEAP model geometry but with an infi-
nitely long cone. Results shown in Fig. 4 indicate good
agreement between the inviscid SACCARA solution
and the benchmark solution at Mach 8, with a maximum
difference of 0.8%.

4.2
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3.1 — SACCARA(240xS40Ceils)i

Fig. 4 Comparison of SACCARA pressure
distributions with benchmark inviscid solution.x

Code-to-Code Comparisons

Code-to-code comparisons have been made using the
thin-layer Navier-Stokes code NSEQX’27 and the
parsboked Navicr-Stokes code SPRINTX’29 to in-
crease the confidence in the SACCARA simulations.
The SPRINT code uses NSEQ to provide initial condi-
tions for the space-marching procedure. The results for
surface pressure (see Fig. 5) show excellent agreement
between the three codes, with maximum differences of
less than 0.25%.
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Fig. 5 Code-to-code comparison of SACCARA
pressure distributions with NSEQ and SPRINT.

Iterative Convergence

Iterative convergence was assessed by monitoring the
L2 norms of the residuals for the momentum equations.
Since the flowfield is two-dimensional/axisymmetric,
laminar, and has no separation or chemical reactions,
the residuals were reduced down to machine zero (ap-
proximately fourteen orders of magnitude), thus insur-
ing convergence of the iterative algorithm. However,
the high computational expense of the finest grid level
(960x960 cells) was reduced by restarting from a coars-
er grid solution (all other simulations were initialized at
the freestream conditions) and by carefully monitoring
the iterative convergence of the surface properties at
two locations. This simulation was run until the iterative
error. in surface pressure were reduced below 0.001%.

The method for assessing the iterative convergence of
the surface properties is taken from Ref. 30 and pro-
vides local estimates of the convergence error based on
three sequential iteration levels. The local error esti-
mates for the surface pressure at the stagnation point are
presented in Fig. 6 (symbols) along with global esti-
mates (lines). These global values are obtained from the
best estimates of the exaet solution found by applying
the local estimator to the last three iteration levels in the
solution. These estimates indicate that the surface pres-
sure converges to within 0.001% accuracy at roughly
32,000 iterations, while the surface shear stress and heat
flux (both derivative quantities) require approximately
52,000 iterations. While the required number of itera-
tions appears to be high, the diagonal point-implicit
scheme, which has excellent parallel scalability, re
quires essentially the same computational cost per itera-
tion as an explicit scheme.

The iterative convergence behavior at a location
roughly halfway down the body (dl?~ = 27.2) is pre-

*.+., — Pmuiaw Wbd Efmr
SksrS~&al Em

1+ ‘- - - shwStmn:GM Enur
~ “\ 4 Hsti- laal Enw
*’\ m ------- HmPluxGblml-

.,.
+;, StagnmxlPoint

\l

.,)

%
“\

‘\.

‘*
\.

\.
\,
*

ldo~
Itetation

Fig. 6 Iterative convergence error for the 960x960 cell
parallel SACCARA simulation (stagnation point).

sented in Fig. 7. The surface pressure converges to with-
in 0.02% error much faster (80,000 iterations) than the
derivative quantities (150,000 iterations). After 150,000
iterations, the iterative errors in the surface pressure are
less than 0.001 %. These errors are much smaller than
the spatial errors, as will be demonstrated in the follow-
ing section. The larger number of iterations for this
downstream location is indicative of the hyperbolic na-
ture of the problem, where iterative convergence errors
in the upstream portions essentially serve as varying
boundary conditions for the downs&eam locations.
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Fig. 7 Iterative convergence error for the 960x960 cell
parallel SACCARA simulation (x/RN= 27.2).

Spatiai (or Grid) Convergence

Solutions were obtained for seven grid refinement
levels, from Mesh 1 (960x960 cells) to Mesh 7 (15x15
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cells), with each successive grid level found by elimi-
nating every other grid line in the two spatial dimen-
sions (i.e. grid doublinghalving]. More accurate results
are obtained by employing Richardson Extrapolation

f~~ = fl + (fl -fz) /3 (5)

where~l and~2 are the values on Mesh 1 (960x960) and
Mesh 2 (480x480), respectively. ‘Ilk relationship as-
sumes that the numerical scheme is second order accu-
rate and that both grid levels are in the asymptotic grid
convergence regime. The surface pressure on the seven
grids is presented in 13g. 8 along with the Richardson
Extrapolation results. DMferences between the finer grid
solutions and the extrapolated results are not discernible
from the figure.
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Fig. 8 Surface pressure distributions for the JCEAP
simulations using seven mesh levels.

Order ofAccuracy

The standard method31 for determining the spatial or-
der of accuracy of a numerical scheme assumes there is
a dominant error term of order p. Using three grid solu-
tions, this order of accuracy can be calculated from the
following

= ,n f3-.f2 ,In(rl

()
P—

fz -f ~
(6)

Eq. (6) requires the assumption of a constant grid refine-
ment factor

preach assumes that there is a single dominant error
term in the three solutions. An example of this proce-
dure is presented in Fig. 9 for the JCEAP surface pres-
sure distributions using the three finest meshes. The
solution accuracy varies locally from negative values to
values as large as eight. Assessment of the order of ac-
curacy from these types of plots is not possible, in fact,
Eq. (6) is undefined when the three pressure solutions
are non-monotone (i.e. local maxima or minima exist in
the surface pressure versus grid spacing curve). Also
shown in the figure are two locations which will be used
for additional analysis (X?RN= Oandfl~ = 27.2).

8

Fig. 9 Order of accuracy of the surface pressure
solutions using the three finest meshes.

Insight into the above behavior can be gained by as-
suming that both first and second order error terms are
significant. A series representation for the discrete
sohttion2 on mesh level k is assumed

fk = f=, +g~hk+g2h:+W;) (7)

which for this case will contain both even and odd error
terms since an upwind scheme is used. If three solutions

(fI, fi, fs)= ~wn alongwiththet~ m~h wacing
values (hI, h2, h3), then the three resuking equations
form a linear system which may be solved for the fwst
and second order error coefficients (gI and gz) and the
third order accurate estimate of the exact solution fe-
The solution to this linear system giverx

fs-fz-~(fz-fl)
g2 =

r(r - l)(r2- l)h~
(8)

where hk represents the grid spacing on mesh k and the
subscript 1 denotes the fine mesh solution. This ap-
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f 3 -fz - ~2(’2 - w;
L?l =

r(r - l)h,
(9)

(lo)

where again a constant mesh refinement factor r is as-
sumed.

The proposed method has been applied to the surface
pressure solutions on the seven mesh levels. Fig. 10
shows the behavior of the error in the surface pressure at
the stagnation point. The error is calculated using the

Yfm”= o (S1’gn’aon Point)
to’g SufhmPr3uui3

KF

Fig. 10 Magnitude of the error components in surface
pressure at .t#RN= O(stagnation point).

third order accurate estimate for f-t from Eq. (10)
above. This error is plotted versus h = (N1/N~lQ, where
NI is the total number of cells on Mesh 1 (the fine mesh)
and Nk is the number of cells on Mesh k. Since a grid re-
finement factor of two (grid halving) was used, the dis-
crete solution points fall at 1, 2, 4, 8, 16, 32, and M
(tYom finest to coarsest). Also shown in the figure are
the magnitudes of the first and second order error terms

glh1-+X 100 and Ig2h2 ~ 100

f c,
(11)

&c

along with the magnitude of their sum:

(12)

The frost order error term has a slope of unity on the log-
Iog plot, while the second order error term has a slope of
two. The magnitude of the sum of the two terms (solid
line) is forced to pass through the points associated with

Meshes 1-3 since these solutions are used in the deter-
mination of the coefficients in Bqs. (8) and (9). Fnt or-
der accuracy is seen in the fine grid solutions, while the
error analysis predicts that the coarse grid solutions will’
begin to efilbit a second order behavior. Indeed, the
coarse grid solutions begin to approach the second order
slope. In this case, the first and second order coefficients

(g/ and gz) have the same sign, so the magnitude of the
sum of the error terms is larger than each of the individ-
ual error terms. Also shown in the figure is the order of
accuracy p as calculated from Eq. (6). For tlds case, the
order of accuracy is well-defined and varies between 0.6
and 1.4.

The error in surface pressure at a location halfway
down the body (x/R~ = 27.2) is given in Fig. 11. As was
seen in Fig. 10, the solutions dkplay fmt order grid con-
vergence for the finer grids and second order conver-
gence for the coarser grids. This result is consistent with
the finding of Ref. 32 where the spatial accuracy of the
shock-capturing schemes reverted to first order behind
the shock on suiliciently refined meshes, In ttds case,
the first and second order error coefficients are of oppo-
site sign, predicting error cancellation at the cross-over
point (h= 7). The non-monotone behavior predicted
from the emor analysis (using the three finest mesh solu-
tions only) is qualitatively seen in the dkcrete solutions
on the coarse meshes. The fact that the pressure does not
converge monotonically results in singular behavior for
the standard method for order of accuracy (also shown
in the figure) since the argument of the natural loga-
rithm in Eq. (6) btzomes negative.

1“~’ A/.,/-./

H
1

— l=+~Ord8rEnw
---- 1“ Odor Enor Tmm
-...-..2-~*E~~~

oisODh30Mbnd-- OnhrOIAccinq

10 100
h=sqti(NJNJ

Fig. 11 Magnitude of the error components in surface
pressure at XLRN= 27.2.

The assumption that the primary error components
are first and second order is supported by the qualitative
agreement between the coarse grid error estimates and
the discrete errors shown in Figs. 10 and 11. Based on

8
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the above arguments, an alternative method for calculat-
ing the order of accuracy is now possible. If the assump-
tion of only fust and second order error terms is again
made, then the order of accuracy Can be expressed as

I I‘=”& (13)

where Iglhl and g2h2 are the magnitudes of the fmt
and second order terms, respectively. This expression
for p will approach one when the first order error term
dominates and two when the second order error term
dominates. Since the error coefficients gl and gz are
continuous functions found horn the three discrete solu-
tions with grid spacing hi, h2, a,nd h3, it is appropriate to
evaluate Eq. (13) at the internwdate mesh level (i.e. set
h = h2). Substituting the general form of gl and g2 from
Eqs. (8) and(9) into Eq. (13) above and r~nging
yields the following expression

1
P =—

q+l
(14)

where

Q
r+l (f3 - f2) - rz(f 2- f 1)=—

r (f3 -f2) - r(fz -f J
(15)

As a cautionary note, Eq. (15) should only be applied
once the first and second order error terms have been
demonstrated to be the dominant error terms. The appli-
cation of this equation to three coarse grid solutions
where the higher order error terms domimte will (err-
neohsly) yield an order of accuracy between one and
two.

The behavior of this method for estimating the order
of accuracy is shown below in Fig. 12 along with the
standard method from Eq. (6). The order of accuracy
from the akernative method is fairly well behaved and,
by construction, will only give results between one and
two. Although the order of accuracy p from the current
method could be used with a generalized R~chardson
Extrapolation procedure to obtain an estimate of the ex-
act solution, this value will not be as accurate as the vrd-
ue found from Eq. (10). It should be noted that the
preceding analysis is readily extendable to include high-
er order mm terms by simply adding additional mesh
levels.

The capturing of discontinuities (e.g. shock waves)
without oscillation requires a reduction in the local spa-
tial accuracy of a numerical scheme to fust order.33 For
the JCEAP simulations, the first order behavior at the

4 I I -r 1 * 1 1
1 1, t ~

t% 1, .1

t’fl

Fig. 12 Order of accuracy of the surface pressure
solutions using the three finest meshes.

shbck wave leads to the presence of a first order error
component (however small) everywhere downstream.
As the mesh spacing is refin~ thk first order error
component must eventually dominate. The standard
methcxi for assessing the order of spatial accuracy is in-
adquate when the first and second order error terms are
of the same magnitude. In a strict sense, the asymptotic
grid convergence regime occurs when there is a single
dominant error term as the mesh spacing h+O, which
for this case is first order. Downstream of the shock
wave, the coeftlcient on the first order error term g] is
small, with the magnitude possibly related to the prox-
imity to the dkcontinuity. In these regions, a second or-
der asymptotic region may exist which corresponds to
the local truncation error. Once sufficient grid refine-
ment is done, the errors from the discontinuity become
significant, thus resulting in a first order asymptotic re
gion. For practical purposes, the second order asymptot-
ic regime should be sufficient for engineering
calculations; however, the error and order of accuracy
analyses must take into account the fact that both first
and second order error terms may be present.

Convergence of the Richardson Extrapolatwn Erthnates

While the standard method for calculating order of
accuracy (Eq. (6)) has been shown to be imppropriate
for mixed first and second order schemes, it is worth-
while to examine the behavior of the standard Ricitard-
son Extrapolation method for estimating the exact
soMion on the various grid levels. Fig. 13 gives the er-
ror in the estimation of the exact stagnation point pres-
sure using second order Richardson Extrapolation (lU?).
Here the percent error is determined by the following re-
lation

9
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-fRE -f exact~ ~w
%Error = = (16)

where femct is taken to be the third order accurate esti-

mate found from Mesh levels 1 through 3 using
Eq. (10). Since Richardson Extrapolation requires two
solutions, estimates are only available for the six finest
mesh levels (e.g. RE34 uses information from Meshes 3
and 4 and is presented at Mesh level 3). While the Rich-
ardson Extrapolation eSdInateS impmve at ~N = O as
the mesh is refined, the error is below 1.5% for all mesh
levels.

JCEAP - Axkymmetrk
Surle4e Pmp
Stendemi2 OR!WRE

~ WR” - O(*E PBht)
I& :- -m- - ~M=27.2

3

Uii
u
g

T

~w 10’:

aqrt(N,/NJ

Fig. 13 Error in standard Richardson Extrapolation
estimates relative to the third order accurate estimates

found from Eq. (10).

Fig. 13 also gives the error in the Richardson Extrap-
olation estimate for the surface pressure at x/RN= 27.2.
While the estimates do not necessarily impmve with
mesh refinement, the errom’ are below 0.1 % in all cases.
These results are encouraging since even though the or-
der of accuracy of the solutions is changing from two to
one, the error estimates based on the standard second or-
der Richardson Extrapolation are still surprisingly accu-
rate.

Error Analysis

The error of the pressure solutions relative to the third
order accurate estimate fmm Eq. ( 10) is presented in
Fig. 14. The errors are largest at the sphere cone junc-
ture (dRN = 0.83) and the stagnation point. The errors at
these two locations akmg with the fiN = 27.2 hXt3tiOn

are summarized below in Table 2. The huge errors at the
sphere-cone juncture indicate that addkionrd grid refine-
ment is required at geometric boundaries with discontin-
uous surface curvature. Wltb the exception of the
sphere-cone juncture poin~ the errors on the three finest

5

4

3

2

cl’
=

to
“Ill -1

$

-2

-3

-4

JCEAP - Meymnetric

p-* — 960X660 Caes

I \ -- 4mf480 cone

I \ =.&.- 240@40 Celle

1 \ —*- 120x120eenI

\
--+--- 60x50 CWe

1
\

~ 30x20 Ce2e
I

\
- + - 15XISC*

1

F

i

-SF:’’’’’’”’’’’’’’’” 1 I 4
10 20 30 40 so

xm~

Fig. 14 Error in the surface pressure distributions for
the JCEAP simulations using seven mesh levels.

Table 2 Error in surface pressure

Mesh
Level

‘tigmtion ‘p:;~~;ene fiN =27.2
Point

960X960 -0.060% 0.36% 0.041%

4WX480 -0.13% 0.74% 0.068%

240x240 -0.28% 1.6% 0.079%

120X120 -0.54% 3.4% 0.048%

60x60 -1.1% 9.4% -0.041%

30X30 -2.5% 23.3% -0.43%
15X15 -5.9% 52.4% -1.9%

meshes are all below 0.28% and are considered suffl-
ciently small for model validation purposes.

Model VaEdation

Transport Property Models

A study of the transport properties for nitrogen was
undertaken in order to insure accuracy over the tempera-
ture range from 50 K to 650 K. Keyes modelw was cho-
sen for the absolute viscosity (in N.wfnz)

(17)

where a. = 1.418x104, a = 116.4, and al = 5.0, and
was correlated for a range of 90 K c T c 1695 K. Keyes
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model is shown in Fig. 15 along with Sutherland law
and experimental data from Refs. 35 and 36. Good
agreement with the data is shown for Keyes model from
30 Kto1000ZL

\
AlmeluteVheosiiy ferNitrogen

4E-05 - c) Inerepemandcklwat

- 3E.05 -
“E
~

lE-05 -

!3,., Iti 1(Y
T (K)

Fig. 15 Absolute viscosity for nitrogen with
comparison to experimental data.35tM

Keyes model for the thermal conductivity takes the
same form as that for the absolute viscosity, however
the constants are given as aO = 1.8506x10-3, a =77.0,
and a ~ = 12.0. Using these constants and the form spec-
ified in Eq. (17) gives the thermal conductivity, k (W/
rnK), in the range 273 K c T c 773 K. A comparison of
Keyes model for thermal conductivity with experimen-
tal data35136indicates that the model does not perform
well at low temperatures (see Fig. 16). Better agreement
with the data is found by simpIy assuming a constant
molecular Prandtl number, Pr = 0.71 along with Keyes
model for viscosity. .

0.0s1- %

T (K)

Fig. 16 Thermal conductivity for nitrogen witl
comparison to experimental data.35’%

Equation of State Model

The governing equations are augmented by the stan-
dard ideal gas equation of state

p = pRT (18)

In order to test the validity of this model for the JCEAP
simulations, the densities and temperatures from and
ideal gas solution were used in an a posteriori calcula-
tion of the pressure using the more accurate Beattie-
Bridgeman equation of state,37 which takes into account
intermolecular forces. These pressures were then com-
pared to the ideal gas solution results, with differences
of less than 0.05% for the entire flotileld.

Thermodynamic Model

Hypersonic Node Calculations

In order to determine the thermal state of the hyper-
sonic wind tunnel (equilibrium vecsus nonequ~lbrium),
and to assess the flowfield nonuniformity at the test sec-
tions, calculations were performed for the Sandia Na-
tional Laboratories hypersonic wind tunnel Mach 8
nozzle. These calculations employed the second order
TVD flux scheme and assumed huninar boundary layers
on the wind tunnel walls. The manufacturer’s specifica-
tions (pre-fabrication) were used for the geometry defi-
nition. Post-fabrication inspection of the nozzle throat
diameter indicated a diameter of 0.02301 m as compared
to 0.02270 m used in the calculations. While this differ-
ence is small (1.37%), it could lead to Mach number
overpredictions by as much as 0.4% based on a simple
inviscid analysis. Two axisymmetric grid levels were
employed in order to determine grid independence, with
the fine grid having 140x60 cells in the axial and radial
directions, respectively (see Fig. 17). The coarse grid
was formed by eliminating every other gridline in each
direction. The testsection is located at approximately
x=2m.

Vibratwnal Nonequilibrium

In order to determine the thermal state of the flow at
the test section, the nozzle was simulated assuming ther-
mal nonequilibrium using the standard Landau-Teller
formulation for vibrational relaxation. Viscous results
on two coarse grid levels (see Fig. 18) indicate that the
vibrational temperature freezes out at roughly 628 K,
very near to the plenum (i.e., stagnation) temperature of
633 K.

In the Flowfield Model section, it was found that for
certain expanding flows, relaxation rates could be much
larger than those predcted from Landau-Teller theory.
In order to estimate the effects of this accelerated relax-
ation, inviscid calculations were performed assuming

11
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Fig. 17 Viscous nozzle grid (coarsest mesh) for the
Mach 8 hypersonic nozzle.
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Fig. 18 Temperature profiles in nozzle assuming
Landau-Teller relaxation.

the local acceleration factor was globally fixed. While
this is certainly not the case (see Fig. 3), this type of
analysis is usefuI to gain qualitative estimates of the true
relaxation rates. Fig. 19 gives both translational and vi-
brationrd temperatures for acceleration factors betwmn
unity (Landau-Teller) and lxi06. The results clearly
show that large increases in $ can affect the relaxation
rates near the nozzle throat (x= O); however, these re-
sults also show that, due to rapid expansion in the dl-
verging section of the nozzle, the vibrational
temperature fkeezes out very near the throat regardless
of the value of ~. A magnified view is presented in
Fig. 20, which indicates that vibrational freezing occurs
by the x = 0.1 m location. As shown in l%g. 3, the local
acceleration factor is greater than ten OIIIyI for Tvib/T
ratios greater than for, however, according to the Q = 1
curve, the Tvib/T value at x = 0.1 m is approximately

12
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Fig. 19 Vibrational temperature in nozzle for a number
of different L-T acceleration factors $ (140x60 cells).

three, and even smaller at the upstream locations. Thus,
the profile most likely to be representative of the true
behavior of the vibrational state should lie somewhere
between the $ = 1 and the $ = 10 curves, It should be
noted that this argument assumes that the local accekra-
tion factor for this case is of approximately the same
shape as the T = 1000 K profile given in Fig. 3. An anal-
ysis by Ruffin38 using the simplified enharmonic relax-
ation model on a similar nozzle geometry provides
further evidence of rapid vibrational freezing in the noz-
zle.

Nonequilibnum E#ects on Freestreom Mach Number

Based on the above arguments for vibrationaIly fro-
zen flow in the tunnel, the assumption of equilibrium

,..
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Fig. 20 Enlarged view of the vibrational temperature
in nozzle for a number of different L-T acceleration

factors $ (140x60 cells).



theory used in the experimental Mach number calibra-
tion is not valid. Furthermore, simulations on the
JCEAP geometry indicate that the freestream pressure at
the test section is low enough tha~ even through the nor-
mal shock wave, the flow remains thermally frozen until
it reaches the waiI boundary layer. Calculations of the
Mach number from measured stagnation and pitot pres-
sures show that assuming frozen flow yields a Mach
number appro~mately 0.23% lower than that found
from equilibrium theory. TMs difference, although
small, represents a bias error in the calibration of
freestrearn Mach number. Errors of this order can ad-
versely affect validation efforts, especially for the cur-
rent case, where agreement between computations and
experiment is desired withh a few percent.

These differences in the Mach number based on fro-
zen flow (nonequilibrium) versus equilibrium theory
arise due to the dependence of the Mach number on the
ratio of specific heats y when establishing isentropic and
normal shock relations. Although very Iittie energy is
tied up in the vibrational modes at Tvib= 628 K, the ef-
fect on gamma can have an impact on the determination
of freestream conditions.

Nonequilibrium Eff2cts on JCIL4P Simulations

Although not shown, simulation results assuming
thermal nonequilibrium and thermal equilibrium gave
no differences in surface pressure. This iack of sensitivi-
ty indicates that the nonequilibrhnn effects discussed
previously impact the simulation results primarily
through the freestream boundary conditions (Mach
number, pressure, etc.).

Continuum Flow Assumption

In order to insure that the assumption of continuum
flow is valid for the wind tunnel nozzle in the low-pres-
sure rapid expansion region, the continuum breakdown
parameter P was calculated.39 Continuum theory breaks
down for P >0.02, and the maximum values calculated
in the Mach 8 nozzle simulations were approximately
2X10-5, fhus wnfirming the use of continuum theory.

uniform Flow Assumptiotr

From the laminar nozzle calculations, estimates of
the spatial nonuniformity due to axisymmetric waves in
the nozzle can be made. In the experiment two test sec-
tion locations were used in order to minimize the effects
of these tunnel flow nonuniformities. Mach number and
pressure across the two test sections (corresponding to
model nosetip locations) are given in Fig. 21. For refer-
ence, the model base radius (approximately 0.051 m) is
rdso shown. Mach number variations in the region corre-
spondhg to the model base are less than 0.1%, while
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Fig. 21 Mach number and pressure profiles across the
two test section locations.

pressure variations are as large as 0.65%. The tempera-
ture and density are given in Fig. 22, with maximum
variations over the effective model cross-section of
0.16% and 0.81%, respectively. The variations in pres-
sure and density were included in the simulation bound-
ary conditions by using the reported &tream values at
the centerline and allowing the radkd distribution to
change according to l%gs. 21 and 22; however, negligi-
ble differences in the surface pressures were found.

It should be noted that the preceding analysis ac-
counts only for the effects of axisymmetric waves on the
ffowfield nonuniformity. This analysis omits nonunifor-
mities due to the rectangular-to-axisymmetric transition
(which occurs approximately 0.1 m upstream of the noz-
zle throat), flow obstructions upstream of the plenum
(e.g. heater screens), or asymmetries in the tunnel manu-
facture and assembly. The proper way to include these
effects is to perform a detailed measurement of the flow
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Fig. 22 Temperature and density profiles across the
two test section locations.
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properties (velocity components, pressure, temperature)
at some location upstream of the test section to be used
as an inflow boundary condition for the computations.

Base Flow Model

For aIl the simulation’presented herein, a supersonic
outflow condition was applied at the outflow boundary
(i.e. the end of the vehicle). This boundary condition is
clearly not appropriate in the subsonic portion of the
boundary layer where information can travel upstream.
In order to assess the effects of tids boundary condition
on the pressure dktributions, an axisymmetric case was
run which inchided the base region. WhiIe the model is
only 0.264 m long, the domain had to be extended to
2.5 m in the axial direction to insure supersonic flow in
the wake region. The wake was assumed to be Iaminar,
and a supersonic recirculation zone appears consistent
with earlier laminar computational studks.a The fore-
body grid used 250X240 cells and was essentially the
240x240 axisymmetric grid with clustering to the end of
the model. The base region has 340x360 cells with clus-
tering to the base region and the shear layer. The com-
putations were run in parallel on six processors of the
Sun Enterprise 10000 shared-memory machine.

While the pressure does drop dramatically near the
base (as shown in Fig. 23), the upstream influence is
only seen for 2.5RN upstream (approximately four
boundary layer Mxcknesses). Thus, while the presence
of the base flow does affect the pmzsure at the comer,
the upstream effects are limited and will not affect the
experimental data comparisons since the farthest aft
data location is at tiRN = 46.5.

Fig. 23 Comparison of baseline simulation results with
axisymmetric calculation including base flow and full

three dimensional simulation including the planar slice.

Axisymxnetric Flow Assumption

The appropriateness of the axisymmetric flow as-
sumption was addressed by conducting full three dimen-
sional calculations of the JCEAP geometry including
the planar slice on the aft end of the model but without
the flaps (see Fig. 1). A symmetry plane was assumed,
thus only half of the model was simulated. The three di-
mensional grid was based on the 240x240 axisymmetric
grid (considered the coarsest grid accurate enough for
experimental data comparisons) and employed 105 azi-
muthal grid cells from the cone-symmetry plane to the
slice-symmetry plane (180 degrees). The grid was de-
composed into 144 zones (as shown in Fig. 24) and run
in parallel on the ASCI Red Teraflops machine. With
the exception of the planar slice region, little effect is
seen in the upstream region and on the cone-side (see
Fig. 23). Maximum differences between the baseline ax-
isymmetric simulation and the three dlmensionrd calcu-
lations are approximately 0.25%.

Fig. 24 Three dimensional JCEAP grid with
24OX24OX1O5mesh cells and 144 zones.

Surface Pressure Predictions

In order to validate the SACCARA code for huninar,
hypersonic flows, comparisons were made to the experi-
mental surface pressure data from the JCEAP experi-
ment.lo)ll As previously mentioned, the actual JCEAP
geometry has a planar slice on the aft portion of the
model. While comparisons of axisymmetric computa-
tional results with data on the slice are clearly not appro-
priate, the findings from the precechg subsections
indicate that the data on the conical portions of the mod-
el (cone-side and slice-side upstream of the slice) can be
used to validate the axisymmetric simulations.
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results with the X!.EAP data (all data points shown). pressure results with mean JCEAP data.

Surface pressure distributions are compared with ex-
perimental data in Fig. 2S with all data points shown.
The scatter in the data indicates the presence of random
error and correlated bias error as discussed in Refs. 8
and 10. A huge number of runs were conducted at dif-
ferent roll angles and at the different axial stations. Sta-
tistical procedures were then applied to determine error
bounds.l” Comparison to the data with 95% (2tr) confi-
dence bands is shown in Fig. 26. The computed pressure
ratios fall consistently below the experimental data, with
the poorest agreement Occurnng upstream of the slice
location (fi~ = 21,26, and 31). The maximum dMfer-
ence, occurring at the fijv = 26 hlcation, is 3.3%, we]i
outside the experiments] 2C error bound of ~0.4 %.
Based on the verification evidence presented in the pre-
vious sub-section, the lack of agreement between the
simulation and the experiment is due to either a poor
characterization of the tunnel conditions (used for simu-
lation boundary conditions) or a bias error in the experi-
mental data.

Ahhough the accuracy of the three dimensional simul-
ations has not been verified, the 240x240 cell axisym-
metric mesh was used as a baseline in generating the
three dimensional grid (24OXMOX1O5cells). Based on
the experience with the error analysis on the axisymmet-
ric grids and the favorable comparison of the cone-side
surface pressure between the axisyrnmetric and three di-
mensional calculations, it may be useful to compare the
three dimensional simulation with the slice-side experi-
mental data. This comparison is given in Fig. 27 and
shows very good agreement between the calculations
and the data on the slictz however, further work needs to
be done to verifi the accuracy of the three dimensional
calculation.
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Fig. 27 Comparison of the three dimensional
SACCARA surface pressures with mean JCEAP data.

Bias Errors

From the hypersonic wind tunnel simulations (dis-
cussed in the Thermodynamic Models validation sub-
section), it was found that the assumption of thermal
equilibrium in the experimental Mach number calibra-
tion was not valid. Based on the experimentally mea-
sured values for stagnation pressure in the plenum and
pitot pressure in the test section, a more physically con-
sistent value for the freestream Mach number was calcu-
lated by assuming frozen flow with an appropriate value
of gamma (y = 1.4). Using the standard isentropic and
normal shock relations for a crdoricalIy perfect gas, a
nonlinear equation for Mach number was obtained as a
fimction of these two pressures. Thk method resulted in
a freetrcam Mach number of 7.823, 0.23% lower than
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the experimentally reported value of 7.841 which comes
from the thermal equilibrium assumption. Based on a
simple oblique shock wave analysis with a shock angle
of 12 degrees (determined from the simulations), the
0.23% reduction in Mach number corresponds to a 0.5%
reduction in the simulation pressure ratio. Ilowever, this
bias error does not explain the differences seen between
the simulation results and the experimental surface pres-
sure data.

Another potential source of bias error is the averaging
of the pitot pressures across the entire test section to de-
termine the freestream Mach number. The pitot rake
used in the Mach number calibrations has probes spaced
0.0572 m (2.25 in) apart. The region which can influ-
ence the surface pressures for the Mach 8 flow is rough-
ly on the order of the base radius of 0.0508 m (2 in).
Therefore, one could argue that rather than using an av-
erage of the seven probes (two as far as 0.1143 m away),
it is more appropriate to use the centerline probe only to
calctdate the freestream Mach number. By examining
the actual Mach number calibration data, the centerline
probe was found to give a Mach number approximately
0.6% larger than the averaged value. This represents a
potentiat bias error in the freestream Mach number. In-
cluding this bias error would increase the fkestream
Mach number from the reported value of 7.841 to a val-
ue of 7.887. Again employing the oblique shock analy-
sis, the 0.6% increase in Mach number corresponds to a
1.3% increase in the simulation pressure ratio. Some
other possible sources of experimental bias errors in-
clude the dlfficuky in achieving a reference pressure
well below the low tumel static pressures and errors in
the standard used to calibrate the pressure transducers.

Concludin~ Remarks

Simulations have been conducted for the laminar,
perfect gas flow over a 10 degree half-angle sphere-
cone. The accuracy of the pressure predictions have
been verified to witbin approximately 0.1% by carefully
monitoring iterative and grid convergence. Additional
confidence in the simulations was gained by comparing
inviscid results to a highly-accurate benchmark solution
and by performing code-to-code comparisons.

In general, numericrd schemes reduce to f~st order
accuracy through discontinuities such as shock waves to
prevent oscillations. The first order behavior at the
shock wave leads to the presence of a first order en-or
component (however small) everywhere downstream.
As the mesh spacing is refined, this fmt order error
component will eventually dominate. The standard
method for assessing the order of spatial accuracy was
shown to be inadequate when the first and second order
error terms are of similar magnitude. An alternative

method was proposed for anrdyzing both the conver-
gence behavior and order of accuracy for mixed first
and second order schemes.

The computational submodels for the transport prop-
erties, equation of state, thermodynamic state, and the
base-flow boundary condition were validated. Jn addi-
tion, the assumptions made in the computations regard-
ing continuum flow, uniform freestream conditions, and
axisymmetric flow were found to be valid. While the
Mach number calibration in the experiment assumed
thermal equilibrium, simulations of the hypersonic wind
tunneI nozzle found the flow to be thermally frozen.
Bias errors from assuming equilibrium theory would re-
duce the freestream Mach number by 0,23%. Bias errwrs
in the tunnel Mach number calibration related to the av-
eraging of the pitot probe readings across the entire test
section were discussed. Accounting for this potential
bias error would increase the freestrearn Mach number
by an estimated 0.6%, After accounting for these exper-
imental bks errors, the maximum difference between
the data and the simulation results for surface pressure
are within 2.5%: This difference is still well outside the
experimental 2cr error bounds ofd?0.4 %.

It is difficult to resolve these inconsistencies due to
the time span (approximately five years) between the
experiment and the cnrrent computations. Thus it is
clear that validation experiments must be carried out in
conjunction with computational analyses. Not only
wou[d thk aid in design of the experimen~ but it would
provide an additional check on the assumptions made,
both in the experiment and in the computations.

A reca~bration of the freestream parameters used in
the experiment and the data reduction is needed. This
recalibration should use frozen flow theory instead of
assuming the flow is in thermal equilibrium, and should
have finer spatial resolution to provide detailed bound-
ary conditions to be used as inflow conditions for mod-
eling and simulation. Finally, the experimental database
should be further investigated for the possibility of bhs
errors in the measurements and the data reduction pro-
cess. Once the discrepancies between the experimental
data and the simulation results are maolved, data com-
parisons can be made at various angles of attack and
flap deflection angles. This hierarchy of physical com-
plexity in wdidation experiments demonstrates the syn-
ergism between computation and experiment that can be
achieved.
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