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ABSTRACT

Consider a system of rigid bodies with multiple concurrent contacts.  The multi-rigid-body
contact problem is to predict the accelerations of the bodies and the normal friction loads
acting at the contacts.  This paper presents theoretical results for the multi-rigid-body
contact problem under the assumptions that one or more contacts occur over locally planar,
finite regions and that friction forces are consistent with the maximum work inequality.
Existence and uniqueness results are presented for this problem under mild assumptions on
the system inputs. In addition, the performance of two different time-stepping methods for
integrating the dynamics are compared on two simple multi-body systems.

Key Words.   Multi-rigid-body contact problem, torsional friction, maximum work
inequality, complementarity, time-stepping methods.



1 Introduction 

Multi-bocly dynamic systems are ubiquitous in our society: motors, engines, and the au- 
tomation devices used to build portions of these machines are common examples. Where 
possible, machine designers use joints that provide bilateral kinematic constraints between 
the connected bodies (e.g., pin joints). Such joints are desired. because they are easy to 
analyze during design. and they have long operational lives. In some situations, however. 
design constraints dictate the use of “joints” which provide only unilateral kinematic con- 
strain!,. For example, in the domain of automated manufacturing. parts feeders typically 
have rigid protrusions that interact with parts as they stream by. The protrusions reorient 
parts but, occasionally jam (see Figure 1.) In assembly applications. fixtures are designed to 
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Figine 1: The: exit orientation of the cup-shaped part must be with the curved portion down, 
rogarcllt:ss of the cnteririg orientation [l]. 
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hold parts in precise positions and orientations relative to each other and a reference frame.
If a part comes to rest undetected before fully engaging the fixture, subsequent operations
on the fixtured parts may not meet design specifications and may not be recognized until
the completed product fails an inspection test.

Well-designed parts-feeding systems can save a significant portion of operating costs,
while increasing quality and throughput. However, due to a lack of general, efficient soft-
ware packages for simulating and analyzing systems with unilateral contacts1, current design
methods are error prone and inefficient. Further, when a design fails, there is no way to an-
alyze it to determine if a simple modification could correct the problem.

This paper represents a step toward the development of improved engineering design tools
for mechanical systems with unilateral contact. Following in the footsteps of Lötstedt and
others who have popularized the use of complementarity methods in rigid body dynamics
[7, 8, 11], we extend the model developed formally in [15] to include a frictional moment
(transmitted about the contact normal). While it is not possible to transmit such a moment
through a point contact (as would occur generically between curved rigid bodies), we include
it in our model in recognition of the fact that contacts between stiff real bodies are distributed
over small patches [6] and that the friction forces obey the maximum work inequality [5].
While in principle, the geometries of the contact patches could be arbitrary, the supporting
empirical data presented in [6] and the leveraged theory in [5] assumed that contact patches
were planar. Thus we include that assumption here.

The main contribution of this paper is a set of new existence and uniqueness results that
provide strict theoretical guidelines for the use of our model in the analysis of multi-rigid-
body dynamic systems with multiple distributed unilateral contacts. A secondary contribu-
tion is the demonstration that time-stepping methods can be used to accurately simulate
such systems.

2 The Model

The derivation of our mathematical model describing the motion of a system of rigid bodies
with locally planar, finite areas of contact is analogous to the model with isolated point con-
tacts developed previously [15]. Therefore, in this paper, we will only detail the extension
to include frictional moments in the directions of the contact normals at the distributed
contacts. Our model consists of several sets of equations and inequalities enforcing the
Newton-Euler equations of motion, kinematic nonpenetration constraints, and a dry fric-
tion law satisfying the maximum work inequality. When formulated at the current time,
the solution to these equations and inequalities yields the accelerations of the bodies, the
contact forces and moments, and the qualitative contact changes (e.g., contact separation

1Adams, DADS, Solid Works, and Working Model are some of the best available software packages,
but they all have shortcomings in terms of generality and in identifying situations where the rigid body
assumption leads to nonuniqueness.
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or conversion from rolling to sliding). Integration of the accelerations over time yields the
motion of the system.

We begin by assuming that there are a number of rigid bodies, each composed of a finite
number of features (e.g., surface patches, edges between the patches, and vertices formed by
the intersections of edges). The positions and orientations of the bodies are represented by
the tuple q. Given a feature on each of two bodies, one can derive a distance function ψn(q)
that is positive when the two features are separated, equal to zero when the two features
are in contact, and negative when the two features interpenetrate. The nonpenetration
constraint on the ith feature pair is thus:

ψin ≥ 0, ∀ i = 1, . . . , nc,

where nc is the number of contact points. Since the dynamic equations are expressed in terms
of accelerations, a contact is assumed to exist only if ψin = 0 and the normal component of
relative velocity, vin = (∇qψin)T q̇ = 0, where ∇qψin is the gradient of ψin with respect to
the configuration variable, q. If in addition, the normal component of relative acceleration,
ain, of the contact point as it moves across the two bodies is zero (positive), then the contact
is assumed to be maintained (breaking) (see [11]).

We also must precisely distinguish between sliding and rolling. Let vit and vio denote two
orthogonal components of relative velocity in the contact tangent plane at contact i, and vir

denote the relative angular velocity about the normal of contact i. If any one of these three
relative velocity directions is non-zero, then the direction of the generalized contact force is
completely specified (see equation (2)). If all three relative velocity components are zero,
then the components of the generalized friction force are unspecified by the current state,
and so must be revealed by the solution of the model, specifically by the relative contact
acceleration (again, see equation (2)). Therefore, it is convenient to define the index sets
R and N , respectively, as the sets of rolling and non-rolling contacts; these two index sets
partition {1, . . . , nc}. The intuition behind the selective use of velocities and accelerations
in the formulation of the friction law is as follows. In the case of a non-rolling contact,
the friction direction is already known, so the only unknowns are the normal components of
contact force and relative acceleration. If contact is maintained at the end of the current time
step (indicated by ain = 0), then non-rolling with constant relative velocity was implicitly
assumed. In the case of a rolling contact, the only way to indicate changes from rolling to
non-rolling is through non-zero values of the relative accelerations components, which imply
yield non-zero relative velocities that determine the direction of the generalized friction force.

Before introducing the complete model below, we must first introduce several quanti-
ties. The contact velocity components expressed in the contact frames will be denoted by
ν = (νn,νt, νo,νr), where each subvector is defined as να = (v1α, v2α, . . . , vncα) for α =
{n, t, o, r}. For example, νn is the vector of normal components of the relative velocities at
the contacts. Further, denote the positive definite system inertia matrix and system con-
straint Jacobian as M and J , respectively. The inertia matrix relates forces and moments
to body accelerations, while the Jacobian relates the body velocities to the relative con-
tact velocities. The unknowns of the model will be the vectors of relative accelerations and
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contact forces and moments. Following the convention used to define ν, these are denoted
by (an,at,ao, ar) and (cn, ct, co, cr), respectively. The subscripts t and o refer to the two
tangential components of the relative linear accelerations or forces at the contacts, while the
subscript r refers to the relative angular acceleration or contact moment in the direction of
the contact normal.

The equations and inequalities mentioned above that constitute the model are naturally
partitioned into four sets as follows:

(i) the combined kinematic/Newton-Euler equations of motion,




an

at

ao

ar




= A




cn

ct

co

cr




+




bn

bt

bo

br




,

where A = J TMJ is a positive semidefinite matrix of size 4nc, and (bn, bt, bo, br) = J̇ T ν +
J TM−1gobj is a vector containing the known external forces applied to the system and
velocity product forces; (since M is positive definite, the null space of A coincides with the
null space of J ; in particular, A is positive definite if and only if J has linearly independent
columns2)

(ii) the nontensile restrictions on the contact forces, the unilateral kinematic constraints,
and the complementarity conditions on the normal contact forces and accelerations,

0 ≤ an ⊥ cn ≥ 0,

where the ⊥ notation denotes the perpendicular relation between two vectors;

(iii) the elliptic dry friction condition suggested by Howe and Cutkosky [6] (based upon a
series of contact friction experiments),

c2
it

e2
it

+
c2
io

e2
io

+
c2
ir

e2
ir

≤ µ2
i c

2
in, i = 1, . . . , nc, (1)

where eit, eio, and eir are given positive constants and µi is the coefficient of friction (assumed
positive); and

(iv) the maximum work principle: for each i ∈ N ,

(cit, cio, cir) ∈ argmax





−(vitc
′
it + vioc

′
io + virc

′
ir) :

(
c′it
eit

)2
+

(
c′io
eio

)2
+

(
c′ir
eir

)2 ≤ µ2
i c

2
in





,

2Note that the restriction of linearly independent columns of J is very stringent, since any pair of bodies
with two or more contacts will violate this condition.
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and for each i ∈ R,

(cit, cio, cir) ∈ argmax





−(aitc
′
it + aioc

′
io + airc

′
ir) :

(
c′it
eit

)2
+

(
c′io
eio

)2
+

(
c′ir
eir

)2 ≤ µ2
i c

2
in





,

where argmax {f(x) : x ∈ X} denotes the set of optimal solutions of the maximization
problem:

maximize f(x)

subject to x ∈ X.

By formulating the above maximization problem with Lagrange multipliers as an un-
constrained problem and deriving the Fritz-John optimality conditions, the maximum work
principle (conditions (iv) above), can be replaced by the following equivalent system of equa-
tions:

e2
itµicinσit +

√
e2

itσ
2
it + e2

ioσ
2
io + e2

irσ
2
ir cit = 0

e2
ioµicinσio +

√
e2

itσ
2
it + e2

ioσ
2
io + e2

irσ
2
ir cio = 0

e2
irµicinσir +

√
e2

itσ
2
it + e2

ioσ
2
io + e2

irσ
2
ir cir = 0





∀i = 1, . . . , nc; (2)

where

(σit, σio, σir) =





(vit, vio, vir) if i ∈ N ,

(ait, aio, air) if i ∈ R.

In order to handle other kinds of dry friction laws, we introduce a generalized model in
which we replace the quadratic friction cone defined by (1) by an abstract closed convex cone
and modify the maximum work inequality accordingly. Specifically, for each i = 1, . . . , nc, let
Fi : R+ → R3 be a set-valued map with the property that for each scalar σ ≥ 0, the image
Fi(σ) is a closed convex cone in the 3-dimensional Euclidean space R3 and that Fi(0) = {0}.
The latter property of Fi stipulates that at each contact, if the normal force is zero, then so
is the friction force and the transmitted moment.

Consider the following generalized friction conditions:

(iii)′ for each i = 1, . . . , nc, (cit, cio, cir) ∈ Fi(µicin);

(iv)′ the maximum work principle: for each i ∈ N ,

(cit, cio, cir) ∈ argmax{−(vitc
′
it + vioc

′
io + virc

′
ir) : (c′it, c

′
io, c

′
ir) ∈ Fi(µicin)},

and for each i ∈ R,

(cit, cio, cir) ∈ argmax{−(aitc
′
it + aioc

′
io + airc

′
ir) : (c′it, c

′
io, c

′
ir) ∈ Fi(µicin)}.

The generalized dynamic multi-rigid-body problem with concurrent distributed frictional
contacts is to find contact forces (cin, cit, cio, cir) and accelerations (ain, ait, aio, air) satisfying
conditions (i), (ii), (iii)′, and (iv)′.
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Examples of Fi(σ) include (a) the elliptic cone (1):

Fi(σ) ≡
{

(cit, cio, cir) ∈ R3 :
c2
it

e2
it

+
c2
io

e2
io

+
c2
ir

e2
ir

≤ σ2

}
,

where eit, eio, and eir are some given positive scalars; (b) approximations of such a cone by
a convex polyhedron:

Fi(σ) ≡
{

(cit, cio, cir) ∈ R3 : αijcit + βijcio + γijcir ≤ σ, j = 1, . . . , mi

}
,

where αij, βij and γij are some given scalars and mi is a positive integer; and (c) mixtures
of elliptic and polyhedral friction constraints: e.g.,

Fi(σ) ≡
{

(cit, cio, cir) ∈ R3 :
c2
it

e2
it

+
c2
io

e2
io

≤ σ2, |cir| ≤ σ

}
.

For planar problems, we can let

Fi(σ) ≡ {(cit, 0, 0) ∈ R3 : |cit| ≤ σ}.
Examples (a) and (c) pertain to axi-symmetric friction laws; whereas (b) do not necessary
correspond to such laws. Other axi-asymmetric friction laws can also be modeled by using
the friction map Fi.

3 Existence and Uniqueness of Solutions

Employing a unified approach, we provide sufficient conditions for the existence and unique-
ness of solutions to the basic model presented in the last section. Similar results can be
established for variations of this model, such as those based on the abstract friction maps
Fi. Due to space limitations, we will focus our discussion on the basic model under the
quadratic dry friction law with torsional friction.

Let F consist of all force tuples (cn, ct, co, cr) such that cn ≥ 0,

e2
itµicinvit +

√
e2

itv
2
it + e2

iov
2
io + e2

irv
2
ir cit = 0

e2
ioµicinvio +

√
e2

itv
2
it + e2

iov
2
io + e2

irv
2
ir cio = 0

e2
irµicinvir +

√
e2

itv
2
it + e2

iov
2
io + e2

irv
2
ir cir = 0




∀i ∈ N ,

and
c2
it

e2
it

+
c2
io

e2
io

+
c2
ir

e2
ir

≤ µ2
i c

2
in, ∀i ∈ R.

Let
FJ ≡ F ∩ null space of J .

The main result of this paper is summarized in the following theorem.
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Theorem 1 Let A ≡ J TMJ with M being symmetric positive definite.

(A) If A is positive definite, then there exists a scalar friction bound µ̄ > 0 such that
whenever µi ∈ [0, µ̄] for all i ∈ N , there exist

(an, at,ao, ar) and (cn, ct, co, cr)

solving the rigid-body contact model defined by conditions (i)–(iv). If in addition µi ∈
[0, µ̄] for all i ∈ R, then the solution is unique.

(B) If N = ∅, and 


bn

bt

bo

br




T 


cn

ct

co

cr



≥ 0 for all




cn

ct

co

cr



∈ FJ ,

then for any positive {µi : i = 1, . . . , nc}, the first conclusion of (A) holds.

The conditions in the two statements (A) and (B) of the theorem are different. The
conditions in (A) require the entire matrix A be positive definite and the friction coefficients
at the non-rolling contacts be small; in this case if the friction coefficients at the rolling
contacts are also sufficiently small, then the solution must be unique. A theoretical estimate
for the friction bound µ̄ can be computed as discussed in [15]. Such an estimate tends to
be very conservative and can be expected to be much smaller than one would expect to
encounter in real systems.

Part (B) pertains to the all-rolling case. In this case, there is no condition imposed on
the friction coefficients; also A is not required to be positive definite. The proofs of Theorem
1 are straight forward extensions of those in the papers [10, 15]; background results needed
in the proofs are in [2, 4].

4 Example Problems

Two simple multi-rigid-body systems were simulated using two different time-stepping meth-
ods; a first-order, explicit method (referred to as the Stewart method [13]) based on forward
Euler time-stepping and a linearized dynamic model, and a first-order, implicit method (re-
ferred to as the Tzitzouris-Pang method [17, 18]) based on backward Euler time-stepping
and the full nonlinear dynamic model. While both of these methods have been reformulated
around more accurate time-stepping schemes, the comparison presented here is limited to
the Euler methods.

To apply the Stewart method one approximates each friction cone as a convex polyhedron
in the space of generalized friction force directions and each active nonpenetration constraint,
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ψin ≥ 0, as a linear inequality. After replacing the acceleration and velocity variables with
their forward differences divided by the integration time interval, h, one formulates a linear
complementarity problem (LCP). The solution of this LCP is the contact impulses that
guarantee the consistency of the linearized model and maximum work inequality at the
end of the current time interval. The impulses obtained are then used to compute the
corresponding new body velocities and positions, without ever computing the accelerations.
To advance the state another time step, the system is linearized about its new configuration
and another LCP is formulated and solved.3

The Tzitzouris-Pang method (see [18]) retains the nonlinear features of the dynamic
model and therefore leads to a (mixed) nonlinear complementarity problem (NCP) to be
solved at each time step. An implicit time-stepping method was employed in the Tzitzouris-
Pang method, because it was expected that the bulk of the computational work for each
time step would be devoted to the solution of the NCP rather than the implicit equations.4

Similar to the Stewart method, the subproblems solved in the Tzitzouris-Pang method guar-
antee consistency with the (nonlinear) model at the end of the current time interval. One
difference between the methods is that the Tzitzouris-Pang subproblems are written in terms
of acceleration and force variables, which are obtained by solving the mixed NCP and are
then integrated numerically to obtain the configuration and velocity variables. The NCPs
were solved by a “hot-starting” Bouligand differentiable (B-diff) Newton algorithm [3, 9].
For sufficiently small step sizes, using the previous solution as a starting point for the new
NCP was quite effective.

Since the methods were implemented on different platforms and languages (Matlab and
C++) and require the solution of quite different numerical problems at each step, our com-
parison is limited to accuracy. While direct cpu time comparisons would not be meaningful,
our experience indicates that the Tzitzouris-Pang method is likely to be faster and more
accurate than the Stewart, but more difficult to implement.

4.1 System 1: Sphere on Plane

Figure 2 shows an elevation view of a uniform sphere in contact with a fixed half-space in
a uniform gravitational field. This example was chosen, because the “surface” constraint in
configuration space is planar. As such, it removed one of the sources of difference between
the Stewart and Tzitzouris-Pang methods. The primary difference between the two methods
for this problem then was the linearization of the friction law.

For the sphere/plane problem, the surface of the fixed half-space coincides with the
xy-plane of the (right-handed) inertial frame, with the inertial z-direction parallel to the
outward normal of the half-space. The normal axis, n̂, of the contact frame always points in
the inertial z-direction. The t̂ and ô directions lie in the inertial xy-plane rotated π

4
(R) from

3The LCPs of the Stewart method were solved using Lemke’s algorithm provided by Michael Ferris,
University of Wisconsin at Madison.

4This expectation was born out in our experiments.
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Figure 2: Sphere on a Half-Space.

the inertial x and y axes. In addition, the mass matrix, M, the Jacobian matrix, J , the
external generalized force, gobj, and the position of the contact with respect to the center
of the sphere (expressed in the inertial frame), are all constant. Given this information
and assuming the sphere has unit mass and radius the Jacobian and mass matrices and
generalized external force can be shown to be:

M =

[
E3 0
0 2

5
E3

]
, J =




0
√

2
2

−
√

2
2

0

0
√

2
2

√
2

2
0

1 0 0 0

0
√

2
2

√
2

2
0

0 −
√

2
2

√
2

2
0

0 0 0 1




, gobj =




0
0

−9.81
0
0
0




.

Substituting these quantities into the definitions of A and b defined in section 2 yields:

A = J TM−1J =




1 0 0 0
0 3.5 0 0
0 0 3.5 0
0 0 0 2.5


 , b = J̇ T ν + J TM−1gobj =




9.81
0
0
0


 . (3)

4.1.1 Problem 1, Experiment 1: Sphere Rotating in Place

In this problem, the sphere was placed on the plane and released with angular velocity normal
to the plane with all other velocity components zero.5 The specific data for this problem
was:

initial configuration: q = [0 0 1 | 1 0 0 0]T

initial velocity: ν = [0 0 0 | 0 0 1.962]T

friction parameters: et = eo = 1 er = 0.4 µ = 0.2.





(4)

where the first three components of the initial configuration represent the position of the
center of the sphere and the last four components are the Euler parameters (or unit quater-
nion) defining the orientation of the sphere’s body-fixed frame (origin at the center of the

5Other experiments in which the sphere initially translated can be found in [16].
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sphere) relative to the inertial frame. The values [1 0 0 0] indicate that the body axes were
initially aligned with those of the inertial frame. The first and last three components of the
generalized velocity, ν, are the linear and angular velocities, respectively, of the sphere with
respect to the inertial frame.

Figure 3 shows the nonlinear surface of the friction ellipsoid in the space of friction
directions, ct, co, and cr, used by the Tzitzouris-Pang method. It also shows the directions
(indicated by the small spheres embedded in the ellipsoid) used to linearize the ellipsoid for
the Stewart method. The columns in Equation (5) correspond to these directions.
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Figure 3: Friction Ellipsoid (equation (1)) for Problem 1, Experiment 1 with cn = 5.

D =




0.7071 0.0000 −0.7071 −1.0000 −0.7071 −0.0000 0.7071 1.0000 0.4177 −0.2682
0.7071 1.0000 0.7071 0.0000 −0.7071 −1.0000 −0.7071 −0.0000 0.4177 0.5264

0 0 0 0 0 0 0 0 0 0
0.7071 1.0000 0.7071 0.0000 −0.7071 −1.0000 −0.7071 −0.0000 0.4177 0.5264
−0.7071 −0.0000 0.7071 1.0000 0.7071 0.0000 −0.7071 −1.0000 −0.4177 0.2682

0 0 0 0 0 0 0 0 0.3227 0.3227

...

...

−0.5835 −0.0924 0.5264 0.4177 −0.2682 −0.5835 −0.0924 0.5264 0.0000 0.0000
−0.0924 −0.5835 −0.2682 0.4177 0.5264 −0.0924 −0.5835 −0.2682 0.0000 0.0000

0 0 0 0 0 0 0 0 0 0
−0.0924 −0.5835 −0.2682 0.4177 0.5264 −0.0924 −0.5835 −0.2682 0.0000 0.0000
0.5835 0.0924 −0.5264 −0.4177 0.2682 0.5835 0.0924 −0.5264 −0.0000 −0.0000
0.3227 0.3227 0.3227 −0.3227 −0.3227 −0.3227 −0.3227 −0.3227 0.4000 −0.4000


 . (5)

Using a time step of 0.07 seconds, the dynamics were integrated for approximately 1.2
seconds of simulated time using the Stewart and Tzitzouris-Pang methods. Both methods
returned identical results. From the symmetry of the problem, one can see that the sphere
should rotate in place with constant deceleration to zero. Therefore, the plot of vr(t) = ωz(t)
should decrease linearly from its initial value to zero. Figure 4 shows the analytical solution
for the ωz as a fine dotted line of slope equal to -1.962(Rad/s2). The circles on that line are
the velocity components predicted by the time-stepping methods, while the light circles on
the horizontal axis are the values of the other 5 velocity components (all zero) of the sphere.
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Figure 4: Numerical vs. Analyti-
cal Velocities for Problem 1, Experi-
ment 1.
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Figure 5: Numerical vs. Analytical
Forces for Problem 1, Experiment 1.

Since the form of ωz(t) implied by the time-stepping methods are piecewise linear between
the solution points, only in the time step from t = 0.98 to t = 1.05 did the analytical and
numerical solutions disagree. This mismatch was due to the fact that the time at which
spinning stopped did not appear in the sequence of times used for integration. It should
also be noted that the Stewart method matched the exact solution, only because one of the
friction directions (column 20, in equation (5)) corresponded to the exact solution, thereby
eliminating the friction linearization error.

Consistent with the velocity plot, the friction force plot in Figure 5 shows good agreement
between the numerical and exact solutions. While not shown, the normal component of the
contact force, cn, was equal to mg for all time. The tangential components of the contact
force, ct and co, plotted as circles connected by solid line segments, were zero as expected.
The torsional component of the contact force, cr, plotted as a circles connected by dashed line
segments, shows the prediction error clearly in the time step containing t = 1.0. However,
despite this error, the total frictional impulse was correct since the sphere stopped spinning.
Again, the Tzitzouris-Pang and Stewart methods produced identical force values at the times
of evaluation.

Since the direction of the friction moment was known a priori to be constant and in the
−z-direction for all time in this problem, it was possible to rerun the problem with only that
friction direction in the matrix D, so that all LCPs solved in the Stewart method were of size
3 rather than 22. However, when the initial conditions were changed to include translational
velocity components parallel to the plane, the sphere translated indefinitely (due to the
lack of a friction force to resist translational slipping). While such an example is physically
unreasonable, it demonstrated that friction linearization and the Stewart method can be

12



easily used to model the behavior of systems with unusual anisotropic friction behavior.

4.1.2 Problem 1, Experiment 2: Sphere Rotating in Place

The Stewart method was applied to the same problem again, but with the set of friction
direction vectors shown in Figure 6; none of which pointed in the direction of the exact
generalized frictional force. The misalignment of the friction directions effectively reduced
the frictional moment and led to slower deceleration of the spinning sphere (see Figures 7 and
Figures 8; the dotted black line represents the exact solution.) Notice that while the friction
work rate was reduced, the total torsional impulse delivered to the sphere was identical to
that predicted analytically. However, the impulses delivered in the t and o directions was
not quite zero, leading to a very small residual velocity after spinning stopped.

−1 −0.5 0 0.5 1 −1

0

1

−0.4

−0.2

0

0.2

Force in o−direction

Force in t−direction

M
om

en
t a

bo
ut

 n
−

di
re

ct
io

n

Figure 6: Friction Ellipsoid for Problem 1, Experiment 2 with cn = 5.

D =




0.3410 −0.4659 0.1248 0.3410 −0.4659 0.1248
0.3410 0.1248 −0.4659 0.3410 0.1248 −0.4659

0 0 0 0 0 0
0.3410 0.1248 −0.4659 0.3410 0.1248 −0.4659
−0.3410 0.4659 −0.1248 −0.3410 0.4659 −0.1248
0.3504 0.3504 0.3504 −0.3504 −0.3504 −0.3504


 . (6)

4.1.3 Problem 2, Experiment 1: Initially Translating Sphere

In this experiment, the sphere was released in contact with the plane with zero angular
velocity. Only the x-component of linear velocity was nonzero. The initial conditions and
friction model parameters that defined this example were:

initial configuration: q = [0 0 1 | 1 0 0 0]T

initial velocity: ν = [2 0 0 | 0 0 0]T

friction parameters: et = eo = 1 er = 0.4 µ = 0.2,

(7)
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Figure 7: Numerical vs. Analyti-
cal Velocities for Problem 1, Experi-
ment 2.
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Figure 8: Numerical vs. Analytical
Forces for Problem 1, Experiment 2.

The friction model and linearization used in this example were the same as those used in
the first problem (see Figure 3).

For problem 2, experiment 1, the exact solution of the sphere’s motion was obtained
analytically. It was found that the sphere would initially slide in the x-direction, gathering
angular velocity in the y-direction until the transition time, ttrn =

2vx0

7µg
≈ 0.291, where vx0 is

the initial velocity in the x-direction. After the transition time, the sphere would roll with
constant velocity along the x-axis and angular velocity ωy = 5

7
vx0 ≈ 1.429. The remaining 4

velocity components would be zero (i.e., vy = vz = ωx = ωz = 0).

The numerical solution for this experiment was computed over the time interval [0, 0.6].
Both methods matched the exact velocities as shown in Figure 9, which plots the sphere’s
velocity components and the exact solution (as dotted lines). It should be noted that the
Stewart method only matched the exact solution, because one of the friction directions
(column 7, in equation (5)) was pointing exactly in the −x-direction. Since every nonzero
friction force for this problem was acting in this direction, the friction cone linearization
error was zero. Since the Tzitzouris-Pang method uses the nonlinear friction cone, it cannot
suffer from a similar problem.

Figure 10 shows the components of the friction force over time as predicted by the two
methods, which both implicitly assume piecewise constant forces. Thus, the stair-step look
of the plots in the figure. Note that both ct and co were nonzero due to the misalignment of
the t̂ and ô directions with respect to the x- and y-axes. Again, the analytical solution is
plotted with dotted lines.

This experiment was rerun with the same data as given in equations (7) and (5), but
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Figure 9: Numerical and Analytical
Velocities: Both Time-Stepping Meth-
ods, h = 0.12.
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Figure 10: Numerical and Analytical
Forces: Both Time-Stepping Methods,
h = 0.12.

with the step size reduced by a factor of 10. The results demonstrated convergence to the
exact solution with decreasing step size.

4.1.4 Problem 2, Experiment 2: Initially Translating Sphere

A second numerical experiment was run with the Stewart method with the same initial
conditions (7), but with friction directions chosen such that no vector was aligned with the
−x-direction (see Figure 11): Further, in the crucial tangent plane of the contact force,
only three friction directions were used. Figures 12 and 13 show reduced frictional impulses
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Figure 11: Friction Ellipsoid for Problem 2, Experiment 1 with cn = 5.
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and a longer sliding period. This was caused by the misalignment of the friction directions
available in the linearized friction model. However, since the Stewart method is based on
the first integral of Newton’s second law, the total impulse applied at the contact matches
that of the exact solution. Hence, the final rolling velocity of the sphere agrees with the
analytical result.
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Figure 12: Numerical and Analyti-
cal Velocities for Problem 2, Experi-
ment 2: Stewart method, h = 0.12.
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Figure 13: Numerical and Analytical
Forces for Problem 2, Experiment 2:
Stewart method, h = 0.12.

4.1.5 Problem 3: Hooking Bowling Ball

The third problem was designed to simulate a hooking bowling ball. The ball was released
in contact with the plane with linear velocity in the direction of the lane’s axis (the x-axis).
Its initial angular velocity components were intended to cause the ball to curve as it moved
down the lane (generally in the x-direction). Since oil is usually present on bowling lanes
(to reduce friction and make the behavior of balls more uniform over a variety of lanes), the
effective coefficient of friction was chosen to be very small; µ = 0.01. The viscous friction
generated by the oil was not modeled, but could be included in gobj if desired. The initial
conditions and friction parameters defining this problem were:

initial configuration: q = [0 0.5 1.0 | 1 0 0 0]T

initial velocity: ν = [1 0.2 0 | 1 0.5 0.2]T

friction parameters: et = eo = 1 er = 0.2 µ = 0.01.

(8)

The friction linearization for the Stewart method used 40 friction directions spaced uniformly
around 7 latitude circles. Thus, the LCPs arising in the Stewart method for this problem
were of size 42.
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This problem was integrated by both methods for 8.0 seconds of simulated time using a
step size of 0.05 seconds. Several aspects of the solution should be noted. First, the gross
behavior predicted by both methods was essentially identical. As expected, the ball hooked
as it moved down the lane (see Figure 16). Second, the frictional force components, while
small (their magnitudes are less than 1% of the normal impulse) were saturated for most
of the 8 seconds of simulated time, implying that the contact was sliding. After this time,
the sphere began pure rolling. Last, the friction forces obtained with the Tzitzouris-Pang
method were larger in magnitude and varied smoothly over time. These differences were
due directly to linearizing the friction ellipsoid by an inscribed polyhedron. A consequence
was that the Tzitzouris-Pang method predicted that sliding would stop more quickly, as
shown in Figure 14. When the dashed curves reach zero near t = 8(sec), sliding ceases. The
curve that reaches zero first, about 0.4(sec) sooner is that predicted by the Tzitzouris-Pang
method. While there were also differences in the final trajectory of the ball, they were too
small to be seen in a plot.
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Figure 14: Velocity components: both
time-stepping methods, h = 0.05.

0 2 4 6 8
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

Simulated Time

C
on

ta
ct

 F
ric

tio
n 

F
or

ce
s

c
t

c
o

c
r

Figure 15: Friction force components,
both time-stepping methods, h =
0.05.

Figure 17 shows the details of the friction errors during the simulation. The dashed line
is a boolean variable indicating when there is relative sliding at the contact (the value 0.13
was arbitrarily chosen to imply sliding). In this problem, the contact was sliding in the
interval [0, 7.9] seconds. Interestingly, the friction force components found by the Stewart
method were not always saturated. If the friction components had always lain along one of
the linearizing directions, then friction would have been saturated (as indicated by the zero
value of the friction slack from about the 4.5 second mark). The nonzero slack during the
beginning of the simulation was caused by the algorithm’s finding a solution with the friction
force formed by a positive linear combination of two of the initial friction directions. Such
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linear combinations lie strictly inside the friction ellipsoid, and thus caused nonzero slackness
in the friction ellipsoid constraint. The last feature of figure 17 worth noting, was that after
sliding converted to rolling, the friction force was always zero, and hence the friction slack
was maximized.
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Figure 16: Path of the bowling ball
as it moved down the lane toward the
right: both time-stepping methods,
h = 0.05.
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Figure 17: Friction force errors and
slackness: Stewart method, h = 0.05.
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4.2 System 2: Sphere on Spherical Surfaces

Figure 18 shows a small sphere of unit radius in simultaneous contact with two large, fixed
spheres. The sphere of radius 10 is centered at the origin of the inertial frame, while the
origin of the sphere of radius 9 is located at the point, (0, 11.4, 0). The small sphere began
at rest, but under the influence of an external force (gobj = [1.0 2.6 − 9.81 0 0 0]T ) that
drove it rolling and sliding along the seam between the two fixed spheres. This particular
example was chosen because the contact constraints in configuration space were nonlinear
and because there were two simultaneous contacts. Therefore, in comparing the two time-
stepping methods, we expected to see the effects of linearizing the friction model and of
linearizing the distance functions ψin, i = 1, 2. In addition, since these contacts converted
from rolling to sliding to breaking, solution by DAE methods would have been awkward.

Figure 18: Small Sphere in Contact with Two Large Fixed Spheres.

The data used for this experiment were:

initial configuration: q = [0 6.62105263157895 8.78417110772903 | 1 0 0 0]T

initial velocity: ν = [0 0 0 | 0 0 0]T

friction parameters: et = eo = 1 er = 0.3 µ = 0.2

(9)

The friction linearization for the Stewart method used the same 20 directions shown in
Figure 3. Thus, the LCPs were of size 44 for two contacts or of size 22 for one.

The motion of the moving sphere was simulated by both methods using a time step of
0.1 seconds. Figures 19 and 20 show the velocities of the moving sphere and the forces
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at one contact predicted by the Stewart method. Note the nonsmoothness of the velocity
components that become obvious at t ≈ 2. These discontinuities are due to the fact that even
though the linear nonpenetration constraints were satisfied at the end of every time step,
the nonlinear constraints were violated. As the speed of the moving sphere increased, the
penetrations became larger, causing the method to predict large impulses, that ultimately
caused the moving sphere to bounce back and forth across the gap until contact was lost
permanently at t ≈ 3.6 seconds.
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Figure 19: Velocities of the Moving
Sphere: Stewart Method, h = 0.1.
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Figure 20: Forces at One Contact:
Stewart Method, h = 0.1. The normal
force component at this contact and
all the force components at the other
contact behaved similarly.

The Tzitzouris-Pang method, using h = 0.1, produced considerably smoother results (see
Figures 21 and 22). This experiment was rerun using the Stewart method in an attempt
to obtain comparable results. For each run, the step size was reduced by a factor of 3. At
h = 0.0012, the unstable bouncing phenomenon disappeared and, despite the linearization,
the force and state trajectories agreed well with those produced by the Tzitzouris-Pang
method. However, differences in the contact forces, shown in Figure 23, caused noticeable
differences in the velocities beginning at t ≈ 2(seconds) in Figure 24.

This experiment also highlighted somewhat unexpected behavior of the Stewart method
in the force plots as the step size shrank toward zero. Figure 25 shows chattering of the
torsional friction force amidst otherwise smooth behavior of the state trajectories. This was
not brought about by any apparent physical phenomena. Rather, it appears to have been
purely numerical and worsened as the step size was reduced beyond h = 0.0012.
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Figure 21: Velocities: Tzitzouris-
Pang, h = 0.1.
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Figure 22: Forces at One Contact:
Tzitzouris-Pang, h = 0.1.

5 Conclusion

We have formulated the dynamic equations of a general, spatial, multi-rigid-body system
with multiple distributed contacts as a complementarity problem, and provided two sufficient
conditions for solution existence and uniqueness. The first condition guaranteeing solution
existence requires linear independence of the columns of the system Jacobian and constrains
the maximum coefficient of friction at the non-rolling contacts. If the coefficients of friction
at the rolling contacts are also small, then the solution is unique. The second condition
guaranteeing existence pertains to problems in which all contacts are initially rolling (without
twisting). It is important to note that the latter condition does not restrict the coefficients
of friction.

We have also simulated two simple problems using an explicit method with a linearized
model and an implicit method with the nonlinear model. The results have shown the prac-
ticality of the nonlinear method and highlighted the importance of retaining the nonlinear
features even for very simple problems. While the Tzitzouris-pang method is more difficult
to implement, it’s ability to take large time-steps in problems with significant nonlinearities
should not be under-appreciated.

There remain a number of open questions. On the theoretical side, we have not yet
developed an efficient procedure for determining the friction bound, µ̄. More generally, an
algorithm to determine solution uniqueness is desirable (in some situations) as a means
for delineating the domain of applicability of the multi-rigid-body model. Last, there is a
need to develop existence and uniqueness conditions for general situations characterized by
a system Jacobian without full column rank. In the area of time-stepping methods, it would
be desirable to establish similar convergence results for the Tzitzouris-Pang implicit method
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Figure 24: Selected Velocities: Stew-
art, h = 0.0012 and Tzitzouris-Pang,
h = 0.1.

as Stewart did for the implicit version of his algorithm [12].
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Figure 25: Chattering Phenomenon of cr for h = 0.0004.
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