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Introduction

Dilts[l-2] has introduced an extension of smoothed-particle hydrodynamics (SPH)[3]

using moving-least-squares interpolants[4] (MLSPH) that in certain variations provides

linear completeness and improved tension stability at the cost of a loss of local conserva-

tion, or local flux balance. Local conservation has been found a highly desirable property

of the original formulation of SPH[3]. Reference [2] also showed that local conservation

could be regained satisfactorily at the cost of a loss of linear completeness, due to the in-

adequacy of the nodal quadrature scheme. In the course of regaining local conservation, it

was found that it is necessary to introduce boundary conditions into the scheme in natural

way, and that to do so required a means of identifying precisely which particles formed

the boundary. A two-dimensional “exposure method” for doing so was introduced. We

shall here describe a three-dimensional exposure method that performs to the same level

of satisfaction.
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Much effort was expended to achieve the simultaneous goals of local conservation and

linear completeness via a suitable quadrature technique. If the ultimate answer has not

been found yet, an interesting discovery has been made along the way regarding quadra-

ture and MLS. We shall show that the MLS correction factors can be regarded in them-

selves as quadrature weights. A few examples will be given and some empirical observa-

tions related.

Three-Dimensional Boundary Detection

In the two-dimensional “exposure method”, we draw a circle of radius hi for each particle

i, where hi is the smoothing length of the kernel centered at particle i. For every neigh-

bor circle j that intersects circle i we find the arc that circle j covers on circle i. If the

union of the set of arcs from neighboring circles completely covers circle i, then particle

i is an interior particle, otherwise it is a boundary particle. The coverage is determined by

applying a quick sort to left endpoints of the arcs, and comparing the right endpoints of

the sorted set. The boundary so determined is “exact” because in SPH, typically sym-

metrized kernels yield pair interactions that appear and disappear precisely when the ra-

dius- h circles touch or do not touch, respectively. The exposure method finds exactly

those particles that are not completely bathed in interacting neighbors.

In extending the two-dimensional algorithm to three dimensions, a candidate boundary

circle with a set of surface arcs created by intersections with neighboring circles is re-

placed by a candidate boundmy sphere with a set of surjace circles created by intersec-

tions with neighboring spheres. The chief idea is to apply the two-dimensional boundary

2
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detection scheme to the set of intersection circles on the surface of the candidate bound-

ary particle. If any arc of an intersection circle is exposed, then the candidate is a bound-

ary sphere. This criterion produces a boundary identification the same as would be de-

termined by looking at the outer surface of a three-dimensional physical model of the

particle configuration. The three-dimensional exposure method thus produces the exact

solution to the problem. Figure 1 illustrates the basic idea. Figure 2 shows a cut-away of a

time step from a ball-on-plate impact simulation where the three-dimensional exposure

method has been applied. The method is more fully explained in reference [5].

I
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Intrinsic Quadrature

Dolbow and Belytschko[6] present a detailed study of the quadrature of MLS shape

functions in the context of the element-free Galerkin method[7], showing that accuracy
I

depends on the relationship of the underlying background mesh to the supports of the

MLS shape functions (particle configuration). In seeking Galerkin-based extensions of

the original meshfree method SPH, as attempted in references [1] and [2], a convergent

quadrature technique that does not require a background mesh is desirable in order to re-

tain a fully meshfree character.

In reference [2] a nodal quadrature method given by

was used, where ~ satisfies an evolution equation,

(1)

(2)
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and represents the evolving physical volume of the particle. The initial value of ~ is cho-

sen to be the particle volume that is typically

{ }h,, zh12,%zlf in one, two, and three dimensions,

used for nodal quadrature, e.g.

respectively. This method is truly

meshfree, but has several deficiencies. It is not anti-symmetric, does not lead to linear -

completeness, and does behave properly at boundaries. We focus in this paper on perhaps

the most fundamental deficiency: it does not converge to the correct value except in spe-

cial circumstances.

convergent, and in

squares interpolant.

We will show how to derive a one-point quadrature scheme that is

the process, gain new insight into the nature of the moving-least-

Recall the definition of the moving-least-squares (MLS) interpolants,

@i(x)= p’(xi)a(x)lqx),

( )a(x) = ~ p(xk)p=(xk)wk(x)“p(x),
k

(3)

Hp(x)= [1,X,X’,...], y(x) =2 q .
I t

The function K represents any real-valued function of the real line of compact support

containing zero. The weight function II( can be more general, but this definition is suffi-

cient for this paper. Under the definitions ~ ~(xi), Vif ~ v~(~i)>

c,(x) - pT(Xi)CY(X) we have

Wj = W(xj)! Cij = .P~Taj, @ij = @i(xj) = cij~j~

4
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where f is an arbitrary function. I

We assume that ~ is of compact support and is normalized, thus representing an ap-

proximate delta function:

J ~ = 1, J f(x) l’l@ix = f (xi). (5)

This implies that ~ has dimensions of inverse volume. Combining equations (4) and (5),

we have

jf(x)w(x)h=~fi ‘ticki (6)
k

as an approximation for the integral off against one of the ~. If Wki = ~k (which is true

for the form specified in equations (3) and if hi = hk), then we have

(7)

This implies that the MLS correction factors Cti= P[ai? ‘Mch ‘ave ‘imensions ‘f

volume, represent a set of quadrature weights for integration against the func-

tion ~. We now let ~ represent any of the components of p and observe by (4) that

pi = ~pkwticti. (8)
k

This leads to the interpretation that the MLS correction factors Cfi= p~czi are precisely

the quadrature weights that make the approximate quadrature scheme (6) exact for

membersof the MLS basis.

To integrate an arbitrary function against an MU basis function @i,we expand @iac-

cording to (3) and integrate the product f (x)ci (x) according to (6) to obtain

5
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Setting ~(x) -1 in (10), we have

(11)

To integrate an arbitrary function by itself, we can proceed two ways. First we expand

1= ~@l and use (10) to obtain
i

Secondly, we can expand ~ = ~J @iand use(11) to obtain
i

(12)

(13)

If Wji= W,, we have q, = q;. We refer to the quadrature schemes represented by either

(12) or (13) as MLS intrinsic quadrature.

Figure 3 illustrates the application of intrinsic quadrature (12) to the function

f(x) =+x + 2sin(~x). The function is plotted in Figure 3a. Particle configurations con-

sisting of points and smoothing lengths given by

[

xi= (i+ O.2q)/(2” .10)

hi= h“(l +0.24/(2” .10)
}, ~:~::;;o}}, ,14,

where q is a random number between –1 and 1, were used. The randomness prevents a

misleadingly optimistic assessment of the convergence rate. MLS is expensive, and only

justified for highly non-uniform particle configurations. Convergence studies should

therefore be conducted with non-uniform configurations. Figure 3b shows an example of

6



a configuration given by (14) for n = O and h* =1. Figure 3C shows the quadrature

weights given by (12) for this configuration and order-O MLS interpolants (p= [1]in

(3)). Figure 3d and 3e show the base-10 logarithm of the maximum relative error of the

nodal and intrinsic quadrature schemes, respectively. The convergence rate for nodal

quadrature in this example is 0.935, while for intrinsic quadrature the rate is 1.56.

Figure 4 shows the configuration, weights and error norms for n = O and h* = 3 and or-

der-O MLS. Note the increased smoothness of the weights. The correct value of the inte-

gral is 25. The nodal quadrature value at n = 4 was 75.6 and the convergence rate was

0.038. The intrinsic quadrature value at n = 4 was 25.4 and the convergence rate was

1.04. Nodal quadrature converges to 3 times the correct value, because it begins with an

estimate of particle volume that is 3 times too large. If the average particle spacing hap-

pens to be the same as the average particle radius, then the nodal scheme converges to the

correct value as in Figure 3. In general this is not the case and it cannot correct for arbi-

trary overlap of the particles. The intrinsic scheme on the other hand has the appropriate

correction for overlap built in and converges to the correct value.

After studying many examples, a few empirical observations can be made. When the av-

erage smoothing length is equal to the average particle spacing, nodal quadrature will

sometimes converge faster than intrinsic quadrature. On uniform configurations, intrinsic

quadrature has been observed to converge super-linearly, when linear and higher-order

MLS is used. On non-uniform configurations, order-O MLS works as well as any higher-

order version. On non-uniform configurations, there is no advantage to using higher-order

7



MLS. In fact, the convergence rate seems to fall off with the order of MLS interpolant

used. Higher orders converge more slowly than lower orders. There appears to be no no-

ticeable difference in performance between (12) and (13) when IJjj # Wji.

Conclusions

A successful three-dimensional version of the two-dimensional boundary detection tech-

nique reported previously has been devised and implemented, providing an exact solution

as did the two-dimensional version. Computational expense does not seem to be exces-

sive, but could be improved.

The MLS correction factor has been discovered to provide a set of quadrature weights on

scattered data points, and many examples demonstrate reasonable convergence. It is left

to study the convergence with respect to variable smoothing length and fixed mesh, and

develop an analytic theory to explain the observed inverse dependence of convergence

rate on order of approximation.
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Figure 1. Green circle represents candidate boundary sphere. Black arcs represent por-

tions of neighboring spheres. Circles of intersection are in blue. Red arcs are those por-

tions of circles of intersection which are not covered. Any red arcs showing means parti-

cle is on boundary.
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Figure 2. Cut-away of a time-step in a ball-on-plate impact simulation. Red spheres are

boundary particles, blue spheres are interior particles.
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Figure 3 Convergence of nodal and intrinsic quadrature. (a) Sample function to integrate:

(-). (b) Initial randomized particle configuration. Lines plotted are from+x +2sin ~0x

(x, -2hi,i) to (x, +21zi,i). (c) Quadrature weights corresponding to particle configuration

(b) and order-O MM. (d) Log10of maximum relative error for nodal quadrature for initial

configuration plus four randomized refinements versus – log10max{hi}. (e) Log10 of

maximum relative error for intrinsic quadrature for initial configuration plus four ran-

domized refinements versus – log10max{hi}.
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Figure 4. Convergence of nodal and intrinsic quadrature of same function used in . (a)

Initial randomized particle configuration. Lines plotted are from (xi – 2hi,i) to

(xi +2hi,i). (b) Quadrature vveights corresponding to particle configuration (a) andorder-

0 MLS. (c) Log10of maximum relative error for nodal quadrature for initial configuration

plus four randomized refinements versus –log10m~{hi}. (d) LogIOof maximum relative

error for intrinsic quadrature for initial configuration plus four randomized refinements,

versus –log10max{hi}.
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