Detection and Assessment Using Positron Emission Tomography of Genetically Determined Defects in Myocardial Fatty Acid Utilization

Contract #: DE-FG02-93ER61659
Steven R. Bergman, M.D., Ph.D.
Cardiovascular Division
Department of Medicine
Washington University School of Medicine
St. Louis, MO 63110
8/1/93 - 6/30/97
Washington University, St. Louis, MO

The aim of this project was to determine whether abnormalities in myocardial fatty acid metabolism could be delineated using positron emission tomography (PET) imaging in children with inherited diseases of enzymes involved in the metabolism of fatty acids. Deficiencies in these enzymes, specifically long-chain acyl-CoA dehydrogenase or carnitine transport deficiency can result in cardiomyopathy and sudden cardiac death in children. We determined that children with long-chain acyl-CoA dehydrogenase deficiency or carnitine deficiency showed specific abnormalities in fatty acid metabolism detectable by PET, and demonstrated the utility of this approach for the diagnosis of such defects.

We demonstrated that by use of a long-chain fatty acid labeled with carbon-11 (¹¹C), specifically ¹¹C-palmitate, we could track myocardial fatty acid metabolism. Utilization of long-chain fatty acid metabolism was compared with an estimate of mitochondrial turnover using ¹¹C-acetate, a 2-carbon fatty acid that is readily utilized by the myocardium and oxidized nearly exclusively in the mitochondria. Children with inherited defects had a decreased ability to use long-chain fatty acids as compared with the short-chain fatty acids, and differences between subjects with long-chain acyl-CoA dehydrogenase deficiency and those with carnitine deficiency could be identified.

In addition, we demonstrated that some patients with acquired forms of cardiomyopathy (such as alcohol, viral, or idiopathic cardiomyopathy) also had defects in myocardial long-chain fatty acid utilization. We demonstrated that, in subjects with acquired cardiomyopathy, the incorporation of long-chain fatty acids into the slow turnover pool (representing predominantly triglycerides and phospholipids) was a progenitor of sudden cardiac death or the need for urgent cardiac transplantation.

Thus, we demonstrated the ability to diagnose specific genetic defects in patients with abnormality of fatty acid metabolism and the utility of PET for this approach. In addition, the approach appears to be useful also for identifying patients with acquired cardiomyopathy who are at high risk for cardiac events.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
The Principal Investigator moved from Washington University where this award was originally performed to Columbia University in New York. This project has been continued under DOE contract #DE-FG02-97ER62433. The work is continuing in subjects with both inherited as well as acquired forms of cardiomyopathy.

Publications


