This has been an outstanding year for our work, and our DOE project. We moved the lab to the Loker Hydrocarbon Research Institute at the University of Southern California. I now hold the Ray R. Irani, CEO of Occidental Petroleum Corp., Chair in Chemistry. I will receive the American Chemical Society's Award in Hydrocarbon or Petroleum Chemistry at the ACS Meeting in San Francisco next Spring as a result of my work on the grant. Two articles in the last year in Chemical & Engineering News highlighted experimental and theoretical work on the project.

Former graduate student Dr. Larry Beck, joined the faculty of the University of Michigan. Former graduate student and postdoc Dr. Teng Xu works on new leads in zeolite catalysis at Exxon. Former graduate student Dr. Dewey Barich is a postdoc at Utah and is applying for faculty positions. Dr. Tom Krawietz is a now a chemist at a US military laboratory.

Some of the papers referencing DOE support include:

- J. F. Haw, In situ NMR of heterogeneous catalysis: new methods and opportunities, Topics in Catalysis, 8, 81-86 (1999).
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

 Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
1 Introduction

This report summarizes the work done on Grant # DE-FG03-95ER40916 over the period April 1, 1995 through March 31, 1999. Detailed progress reports have been submitted for the years through March 31, 1998. The primary project during this period was the DØ experiment at Fermilab and is discussed first. The last year of the period was an extension to complete the study of laser induced fluorescence in neon. This work is discussed in the section “Detector R&D”.

2 The DØ Experiment at Fermilab

The group’s primary work during this period was as a member of the DØ experiment at Fermilab. Participation included software development, data collection shifts, data processing shifts, trigger development, physics analysis and upgrade work.

2.1 DØ Physics

The group’s primary responsibility was the search for supersymmetry via the the associated production of the lightest chargino, $\tilde{\chi}_1^\pm$, and the second lightest neutralino, $\tilde{\chi}_2^0$, via a trilepton + missing Et signature. The Run 1a analysis was done in collaboration with the U.T. Arlington group and published in PRL in 1995. The Run IIb,c result was published in PRL in 1998.

In an effort to increase sensitivity, a second search was initiated for $\tilde{\chi}_1^\pm, \tilde{\chi}_2^0$ and $\tilde{\chi}_1^\pm, \tilde{\chi}_1^\pm$ production that required two leptons + missing Et. For the associated $\tilde{\chi}_1^\pm, \tilde{\chi}_2^0$ production, it includes $\tilde{\chi}_1^\pm$ to jets and $\tilde{\chi}_2^0$ to leptons, and two-out-of-three of the trilepton signature. Therefore, the sensitivity is increased at a cost of higher background. This analysis is now complete, and will be published as the PhD thesis for student Taylor Goss pending completion of his thesis defense.

Early in this period, the group also completed a search for second generation leptoquarks that was published in PRL in 1995. The group has also made contributions to later leptoquark analyses.
2.2 DØ Personnel / Service Activities

Members of the group during at least a portion of the period included Emeritus Professor Russ Huson, Associate Professor James White, Post Doctoral Research Associate Doug Norman and graduate students Taylor Goss and Djoko Wirjawan. Areas of major contributions have included electronics commissioning, Level 1 and 2 triggering, electron and tau ID, TRD operation and physics analysis, and software development for Run II. Our primary physics contribution has been the search for supersymmetry through the tri- and di-lepton signatures of chargino-neutralino production, though members of our group also carried out searches for leptoquarks. We also participated in numerous workshops concerning the future of HEP and Fermilab. A list of personnel and major contributions is summarized below.

- **Professor F. Russel Huson** formed and led the group as PI through 1996 when he retired.

- **Assistant Professor James White** was Co-PI of the group and led the DØ effort beginning 1990. Major contributions included initiation of and leadership in the supersymmetry di- and tri-lepton search analyses, participation in shift work during data collection, and participation in numerous studies (TeV-2000, Snowmass, and NLC workshops) concerning the DØ upgrade and other issues related to the future of high energy physics.

- **Research Associate Doug Norman** became a member of the group in Spring 1994 and was stationed at Fermilab through January 1999. His thesis - “A Search for First Generation Scalar Leptoquarks at $\sqrt{s} = 1.8$ TeV with the DØ Detector” - lead to the first DØ physics paper. In addition to working closely with our students, he finished analysis of a search for second generation leptoquarks, optimized low E_t electron ID, optimized low E_t lepton triggers (needed for the group’s physics analyses as well as others) and developed software for electron ID using the transition radiation detector for Run 1b. He also worked data collection shifts, played a leadership role in the supersymmetry searches, and contributed strongly to the upgrade. His primary upgrade work was on vertex triggering and vertex tracking software written in C++.

- **Student Djoko Wirjawan** was stationed at Fermilab to participate in the DØ experiment beginning September 1993. Major contributions included Level-2 trigger development, development of an H-Matrix technique to identify tau leptons, participation in
detector shift work during the data run, and participation in data processing shift work. His PhD work was completed in 1997 with a thesis titled “Search for Supersymmetry via $\tilde{\chi}_1^\pm \tilde{\chi}_2^0 \rightarrow$ trileptons”, Portions of this work were published in PRL.

- Student Taylor Goss was stationed at Fermilab beginning January 1994. Before that, he worked on our SSC detector program while finishing classes. Major contributions included Level-2 software development, participation in the running and development of the Transition Radiation Detector (monitoring, calibration, software development and detector shift work during the data run). His PhD analysis, “Search for supersymmetry via $\tilde{\chi}_1^\pm \tilde{\chi}_1^\mp$ and $\tilde{\chi}_1^\pm \tilde{\chi}_2^0 \rightarrow$ dileptons”, was essentially completed in summer 1999. He is now preparing for his final exam.

3 Detector R&D

In addition to the DØ project, our group maintained a detector R&D program that began as part of the effort to build fast, radiation-resistant calorimetry for the SSC. After the termination of the SSC, we began a project in collaboration with an atomic physics group to study methods to detect radiation using fluorescent imaging of ionized and excited atoms. Several techniques were investigated theoretically and an approach that could potentially be used in a dark matter search was published in 1997 (“Spectroscopic Particle Detection: A New Technique to Search for WIMPS”, J.T. White, E.S. Fry and Th. Walther, Proceedings, 14th International Conference on the Application of Accelerators in Research and Industry, Nov. 6-9, 1996, Denton, Texas, CAARI’96. published in AIP Conference proceedings 392, 1997) Several other techniques were investigated and the primary experimental effort was to investigate fluorescence of excited atoms along tracks in gaseous neon.

Personnel working on Detector R&D within our HEP group included Associate Professor James White (PI), post-doc Kiki Hosea, and graduate students David Brookes, Patrick Riggs and Ben Cain. Funding for Kiki Hosea and PhD student David Brookes have been obtained through the state of Texas (Advanced Research Program) and through two interdisciplinary research programs sponsored by our university. K. Hosea was funded through spring 1999, and D. Brooks is funded through summer 1997, after which he was funded by this DOE grant. Patrick Riggs and Ben Cain both worked on MS degrees and were funded through teaching assistantships. Undergraduate students who worked on the project include Erin
Rericha, Eric Mayes, Shawn Vinyard, Jack McClure and Jeff Hillhouse.

The investigation of tracking in neon resulted in the PhD thesis “A study of Laser Induced Fluorescence in Neon as a Potential Particle Tracking Mechanism” by student David Brookes in 1999. A subsection of this work resulted in the MS thesis “Measurement of ION Diffusion in He, N and Ar” by student Ben Cain in 1998. The expertise gained from this effort also lead to the development of two argon-based approaches to dark matter detection. Our group is now developing these ideas with the goal being to build a large scale dark matter detector in the near future.

4 Publications

The following is a fairly complete list of publications produced during the grant period.

12. "Measurement of the Shape of the Transverse Momentum Distribution of W Bosons Produced in pbarp Collisions at sqrt(s) = 1.8 TeV" Physics Rev. Lett. 80 5498 (1998)
18. "Combined Limits on First Generation Leptoquarks from the CDF and D0 Experiments" preprint only; CDF-D0 combined, FERMILAB PUB-98/312-E, hep-ex/9810015.

27. "Limits on Anomalous WWgamma Couplings from $p\bar{p} \rightarrow W \gamma + X$ Events at $\sqrt{s} = 1.8$ TeV" Phys. Rev. Lett. 78, 3634 (1997), FERMILAB-PUB-96/434-E, hep-ex/9612002

32. "Limits on WWZ and WWgamma couplings from $p\bar{p} \rightarrow e \nu j j X$ events at $\sqrt{s} = 1.8$ TeV" Phys. Rev. Letters 79 1441 (1997)

34. "Color Coherent Radiation in Multijet Events from $p\bar{p}$ Collisions at $\sqrt{s} = 1.8$ TeV" Phys. Lett. B vv pppp (1997), FERMILAB PUB-97/201-E, hep-ex/9706012,

43. "The Isolated Photon Cross Section in the Central and Forward Rapidity Region in pbarp Collisions at sqrt s = 1.8 TeV" Accepted by Phys. Rev. Letters, FERMILAB-PUB-96/072-E

48. "Search for W Boson Pair Production in p\bar{p} Collisions at $\sqrt{s} = 1.8 \text{ TeV}" Phys. Rev. Letters 75 1023 (1995)

53. "Measurement of the WWgamma Gauge Boson Coupling in p\bar{p} Collisions at $\sqrt{s} = 1.8 \text{ TeV}" Phys. Rev. Letters 75 1034 (1995)

54. "W and Z Boson Production in p\bar{p} Collisions at $\sqrt{s} = 1.8 \text{ TeV}" Phys. Rev. Letters 75 1456 (1995)

59. "Search for Winol Zino2 via Trilepton Final States in p\bar{p} Collisions at $\sqrt{s} = 1.8 \text{ TeV}" \text{ Submitted to Phys. Rev. Letters , FERMILAB-PUB-95/385-E}

60. "Studies of Topological Distributions of Inclusive Three- and Four- Jet Events in p\bar{p} Collisions at $\sqrt{s} = 1800 \text{ GeV with the D0 Detector}" Submitted to Phys. Rev. D , FERMILAB-PUB-95/296-E
61. "Search for Right-Handed W Bosons and Heavy W' in pbarp Collisions at \(\sqrt{s} = 1.8 \) TeV" Submitted to Phys. Rev. Letters, FERMILAB PUB-95/412-E