Time-series records of pCO₂ and NO₃ during the OMP Field Program: A Final Report for DOE Grant DE-FG03-96ER62224

Michael D. DeGrandpre
Department of Chemistry
The University of Montana
Missoula, MT 59812

Background: Coastal margins are some of the most biologically productive areas of the ocean and may significantly contribute to CO₂ cycling on a regional and global scale. The complex physical oceanography and large seasonal variability in freshwater input has typically made these areas difficult to study. Processes such as air-sea exchange, rates of transformation between organic and inorganic carbon pools, and exchange of materials between the coastal and open ocean are not well understood. The DOE Ocean Margins Program (OMP) has focused on coastal waters off Cape Hatteras, North Carolina where shelf water leaves the continental margin, transporting carbon, in various forms, to the open ocean. Both mooring and ship-based field programs were undertaken to characterize carbon fluxes in this area. Our role in this multidisciplinary collaborative effort has been to determine CO₂ and NO₃ variability within the mooring control volume using in situ CO₂ and NO₃ sensors.

The specific goals of this research are to 1) determine daily and seasonal variability of seawater pCO₂ (partial pressure of CO₂ and NO₃ in Middle Atlantic Bight (MAB) waters 2) estimate seasonal CO₂ fluxes between the MAB shelf and the atmosphere, and 3) determine the primary controls of surface seawater pCO₂ in this coastal system. During the first phase of the DOE-OMP (1992-1995) we developed the Submersible Autonomous Moored Instrument for CO₂ (SAMI-CO₂) which is designed to measure seawater CO₂ on ocean moorings for extended periods.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

 Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
In preparation for the 1996 field program we built six SAMI-CO$_2$S (DeGrandpre) and 4 nitrate osmoanalyzers (H. Jannasch, Monterey Bay Aquarium Research Institute). The instruments were tested and calibrated during Fall 1995 just prior to the winter deployment. SAMI-CO$_2$S, nitrate osmoanalyzers, and O$_2$ sensors (C. Wirick, BNL) were fixed on a single cage designed to hold the 3 instrument types. This is the first time that pCO$_2$, NO$_3$ and O$_2$ have been determined simultaneously on a mooring and represents a landmark in the way we study ocean biogeochemical processes. The instrument arrays were successfully deployed within the OMP biogeochemical box off Cape Hatteras during two field efforts in 1996. During these two periods we obtained over 11,000 measurements of pCO$_2$ and over 8000 measurements of NO$_3$.

Data processing and interpretation: The CO$_2$ and NO$_3$ data collected during the OMP experiment have been reduced and subjected to quality assurance procedures. Quality assurance was based on shipboard measurements provided by Brookhaven National Lab (BNL) researchers (C. Wirick, C. Flagg). Time-series of pCO$_2$ have been converted to total CO$_2$ using BNL's alkalinity relationship which has been derived from shipboard measurements of temperature and salinity. The air-sea CO$_2$ flux has been calculated using the Liss and Merlivat and Wanninkhof gas transfer models which require ΔpCO$_2$, the air-sea CO$_2$ difference, and winds (measured on nearby NOAA buoys). Community metabolism has been estimated from total CO$_2$ time series and O$_2$ time series provided by 13NL.

The quality assured data has been interpreted and presented at national meetings (see below). A portion of the results from the field work have been published (see below). Additional manuscripts are currently being prepared for submission to peer-reviewed journals.

Publications and Presentations Resulting from the Grant

DeGrandpre, M. D., Baehr, M., Jannasch, H. W., Hammar, T. R. Time-series records of pCO$_2$ and NO$_3$ during the OMP field program, poster session at the DOE-Ocean Margins Program Data Workshop, January 1997, Savannah, GA.

DeGrandpre, M. D., Hammar, T., Wallace, D., Wirick, C. Simultaneous mooring-based measurements of seawater pCO$_2$ and O$_2$ off Cape Hatteras, NC, presented at the American Society of Limnology and Oceanography National Meeting, February 1997, Sante Fe, NM.

