Modeling Single Molecule Fluorescence and Lasing. Final report

PDF Version Also Available for Download.

Description

In FY 1998 our efforts were in three main areas, all related to detecting single fluorescent molecules [1] and understanding their emission. (1) We completed the calculations and analysis for a paper on spatial photoselection of single molecules on the surface of a dielectric microsphere. [2] Molecules that are oriented parallel to the surface of a spherical microcavity have position-dependent excitation probabilities and a collection efficiencies. The results are different for different polarizations. (2) We completed the modeling and analysis for a paper analyzing single molecule photocount statistics in microdroplets. [3] In this paper we employed a Monte Carlo technique ... continued below

Physical Description

4 pages

Creation Information

Hill, Steven C. October 1, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

In FY 1998 our efforts were in three main areas, all related to detecting single fluorescent molecules [1] and understanding their emission. (1) We completed the calculations and analysis for a paper on spatial photoselection of single molecules on the surface of a dielectric microsphere. [2] Molecules that are oriented parallel to the surface of a spherical microcavity have position-dependent excitation probabilities and a collection efficiencies. The results are different for different polarizations. (2) We completed the modeling and analysis for a paper analyzing single molecule photocount statistics in microdroplets. [3] In this paper we employed a Monte Carlo technique to simulate effects of molecular occupancy, photobleaching, and fluorophor spatial diffusion within the droplet. We discussed the optimization of detection of single molecules in microdroplets. (3) We modeled the images of single molecules in microdroplets and submitted a preliminary report of these images in a paper which also showed experimental results. [4] The computed images depend upon the molecule's position within the microsphere, its orientation and emission frequency, and on the size and refractive index of the microsphere. For this work we used and modified models and computer codes developed previously, [5] as well as developed new models and codes.

Physical Description

4 pages

Notes

OSTI as DE00761705

Source

  • Other Information: PBD: 1 Oct 1998

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/OR/22651--1-Vol.1
  • Grant Number: FG05-98OR22651
  • DOI: 10.2172/761705 | External Link
  • Office of Scientific & Technical Information Report Number: 761705
  • Archival Resource Key: ark:/67531/metadc720560

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 1, 1998

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • March 22, 2016, 8:54 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Hill, Steven C. Modeling Single Molecule Fluorescence and Lasing. Final report, report, October 1, 1998; United States. (digital.library.unt.edu/ark:/67531/metadc720560/: accessed August 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.