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ABSTRACT

Superresolution concepts offer the potential of resolution beyond the classical

limit.  This great promise has not generally been realized.  In this study we investigate the

potential application of superresolution concepts to synthetic aperture radar.  The

analytical basis for superresolution theory is discussed.  The application of the concept to

synthetic aperture radar is investigated as an operator inversion problem.  Generally, the

operator inversion problem is ill posed.  A criterion for judging superresolution

processing of an image is presented.
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FOREWORD

The ability to resolve Synthetic Aperture Radar (SAR) images to finer resolutions

than the system bandwidths allow is a tantalizing prospect.  Seemingly superresolution

offers “something for nothing”, or at least “something better than the system was

designed for” if only we process ‘enough’ or ‘right’.  Claims in this arena certainly

warrant further investigation.

This report documents the research that was commissioned with the following

questions:

“What exactly is superresolution?” and “What is not really superresolution?”

“Is superresolution possible?” and if so “to what degree?”

“What constrains superresolution?”

“How should we objectively test whether an image is superresolved?”

The answers to these questions ultimately lead to yet another question that is

outside the scope of this report, namely “Should we incorporate some form of

superresolution within our SAR designs?”
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1   Introduction

The purpose of this study is to evaluate the potential application of

superresolution techniques to synthetic aperture radar (SAR).  Superresolution is an

attempt to extrapolate the Fourier transform of an image beyond the bandpass of the

image acquisition system, SAR in this case.  The concept of superresolution has been

around in one form or another since 1952.1 Superresolution is based on the idea that the

Fourier transform of a finite object (finite field-of-view) is analytic and the knowledge of

the image transform is limited by the bandpass of the imaging system.  The part of the

spectrum outside the bandpass of the system is obtained using the method of analytic

continuation.  The problem is that an analytic function plus noise is no longer analytic.

Also, the process of analytic continuation involves derivatives, which are sensitive to

noise.  Interest in the subject swelled about 1970 and continued for several years.

Despite considerable work in the area, the authors do not know of any significant

application of the concept.  In their book, Andrews and Hunt 2 list superresolution in the

index as, “superresolution (myth of).”  In an early paper, Di Francia3 addresses the

degrees of freedom of an image.  He concludes that the space-bandwidth product of the

imaging system essentially limits the degrees of freedom of an image, effectively

eliminating the prospects of superresolution.  Bertero and De Mol give a very good

summary of the superresolution problem in their chapter in Progress In Optics. 4

There is considerable literature on the subject of superresolution.  We have

compiled a bibliography on the subject that is fairly complete, especially if references in

the listed papers are considered.  The papers are listed in chronological order and are

grouped into four categories: General, Synthetic Aperture Radar, Ancillary and Books.
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The “general” category is just those papers that generally address superresolution or

provide related mathematical background material.  “Synthetic Aperture Radar” papers

are papers that specifically address superresolution processing of SAR imagery.  Papers

that may touch on the subject of superresolution in general or its applications to SAR

imagery but are not considered that direct are put in the “Ancillary” category.  Finally,

books are put in a separate category.

The next section discusses assumptions that define the problem.  The ideal model

for superresolution is analyzed in Section 3.  Perturbations on the ideal model are treated

in Section 4.  The impact of noise on the problem is discussed in Section 5.  Finally,

Section 6 discusses a test criterion for evaluating superresolution processing schemes.
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2   Definition and Assumptions

To address the application of superresolution concepts to SAR it is important to

define what is meant by superresolution.  We define superresolution as:

Definition: Superresolution is the recovery of spectral information outside

the bandpass of the system.  It is assumed that the bandpass of the system

is determined by a hard limit, a limit beyond which no spectral

information is available. Either the frequency response is identically zero

outside of the band limit or noise masking imposes an effective band limit.

This is the approach taken in the Progress in Optics chapter by Bertero and De Mol.4

A schematic of the spectral response of an ideal bandpass system is illustrated in

Fig. 1.  In the figure the system frequency response is zero outside the band 0ff ≤ .  A

more general representation of a bandpass system is shown in Fig. 2.  In this case the

frequency is again zero outside the band defined by 0ff ≤ .  A third type system

response is shown in Fig. 3.  In this case the usable system bandwidth is limited by noise.

The system design should always limit the bandwidth so that the part of the spectrum that

is dominated by noise is excluded.
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Fig. 1  Ideal bandpass system response.
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Fig. 2  Schematic of a general bandpass system response.
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Fig. 3  Schematic of a noise limited system response.
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For our purposes there is effectively no difference between the system responses

illustrated in Fig. 1, Fig. 2, and Fig. 3.  In each case the superresolution problem is to

recover the spectral information outside the bandpass of the system.  Any attempt to

flatten the response in Fig. 2 or Fig. 3 is a deblurring, inverse filtering, or Wiener filtering

problem.4

In reviewing the SAR papers in the bibliography, we found that they did not

generally address the imaging system model or noise, and if they did it was mainly a

passing comment.  Reference 5 does treat the system model and noise, and although it

addresses SAR, it was put in the “General” category because of the broad applicability of

the analysis.  For this reason we make the following assumptions (or axioms).

Assumption – 1: Any significant treatment of superresolution applications

in SAR must address the system model.

Assumption – 2: Any significant treatment of superresolution applications

in SAR must address system noise.

Whether significant superresolution improvements can be obtained depends both on the

system model and noise, and the two are generally related.  It is of interest to make the

system model as general as possible so that the results of the analysis will have broad

applicability.  The analysis can always be refined or extended for a specific system.
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3  The Ideal Model and Superresolution

The general imaging problem is described by the equation,

σLs = ,                                                                                                            (1)

where σ is the function representing the object (i.e. the scene), L  is a linear operator

describing the imaging system, and s is the observation (data) collected by the imaging

system.  It should be noted that s in Eq. (1) may be an approximation to (image of) the

object.  This is the case for standard imaging in optics using a lens1,4 and it is also the

case for SAR imaging5 if the standard processing is incorporated in the operator L .  That

is, the operator L  can be a product of operators, or a complex operator, representing the

transmitted signal, antenna pattern, receiver function, and SAR data processing.  In

general, the ideal imaging problem is the inversion of Eq. 1 written as

sL 1−=σ                                                                                                                 (2)

where 1−L  is the inverse operator.  The inverse may not exist, and if it does it may not be

bounded or continuous.  When the inverse does not exist, one can use the pseudo-inverse,

which is an inverse in least-mean-square sense.

The solution of the problem described by Eq. (1) or equivalently Eq. (2) belongs

in the theory of operators on a Hilbert space (functional analysis).  Generally, we will

need only rudiments of the theory to address the problem of superresolution.  A terse

summary of most of the related Hilbert space facts is contained in the paper by Joyce and

Root.5 A good introduction to functional analysis is given by Kreyszig. 6 The inverse

operator for compact self–adjoint (Hermitian) operators can be expressed in terms of the

eigenvalues and eigenfunctions of the operator.7,8 It turns out that integral operators of the

type that we will be interested in are generally compact.  They are self-adjoint if they are
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invariant (a convolution operator) with a real kernel.  However, there are self-adjoint

operators for which the kernel is neither real nor a convolution type.   In the case that the

operator of interest is not self-adjoint, but compact, we can form self-adjoint operators

that have the properties needed to address the inversion.

For compact self-adjoint operator L on a Hilbert space H , the Hilbert-Schmidt

theorem7,8 states that there is an orthonormal system of eigenfunctions, ,, 21 ⋅⋅⋅ϕϕ  and

associated eigenvalues ,, 21 ⋅⋅⋅λλ  such that every element H∈σ  has a unique

representation

∑= nna ϕσ ,                                                                                                          (3)

and

0lim
0

=
→ nn

λ .                                                                                                             (4)

We state the obvious by noting that the an are independent.  That is, for an arbitrary scene

no inference can be made on an from any set of am for nm aa ≠ .

Further, we can represent the inverse operator 1−L  (Eq. (2)) as

nn
n

L ϕθϕ
λ

θ ∑=− ),(
11 ,                                                                                          (5)

where ),( θϕ  denotes the inner product between ϕ  and θ .

A problem is well posed5 if (1) the problem has a solution, (2) the solution is

unique, and (3) the solution is a continuous function of the data.  A problem is ill posed if

it is not well posed.  Equation (5) shows that condition (3) is not satisfied for compact

self-adjoint operators.  This is due to the division by the eigenvalues, which approach

zero as n approaches infinity.  The inverse is unbounded, or equivalently, discontinuous.

This means that arbitrarily small changes in s  can result in arbitrarily large changes in
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σ .  Thus, linear inverse problems for compact self-adjoint operators are necessarily ill

posed.

It is impractical to base an assessment of the potential of superresolution in SAR

imaging on too detailed of a model of the SAR system.  However, there are some very

general assumptions about the model that may be reasonable that have significant impact

on the analysis.

One such assumption is that the SAR imaging operator L  can be represented as

an integral operator with kernel ),( yxK  of the form

∫==
I

K dyyyxKLxs )(),()( σσ ,                                                                            (6)

where I  is a closed interval.  We shall carry out the analysis in one-dimensional form;

however, the formulations and results are readily extended to two (or higher) dimensions.

The operator represented by Eq. (6) is compact (completely continuous) if

∫ ∫ ∞<=
I I

MdxdyyxK
2

),(                                                                                   (7)

The operator adjoint to KL  is an integral operator with kernel ),( xyK ∗ .  It is self-adjoint

if

),(),( xyKyxK ∗= .                                                                                               (8)

This is the case if ),( yxK , is real and symmetric. Further if ),( yxK  has the form

)( yxK −  the operator is a convolution type, and it is self-adjoint if it is real..  The SAR

data processing is sometimes modeled as a convolution (invariant) process.  In general,

the processing is quasi-invariant.
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3.1  The Ideal SAR Model

We will use the model put forward by Joyce and Root.5 It is a linear invariant

model that can be adapted to a quasi-invariant system model.  In SAR imagery and

tomography the collected measurement (data) can be arranged so as to constitute a band-

limited Fourier transform of the space-truncated complex reflectivity of the object,9,10

∫
−

−





=

2

2

2 )(
2

)(~
X

X

nxi dxxe
W

rects σ
η

η π .                                                                        (9)

We can (inverse) Fourier transform Eq. (9) to obtain,

dyy
yx

yxW
xs

X

X

)(
)(

)(2sin
)(

2

2

σ
π
π

∫
− −

−
= .                                                                     (10)

Superresolution can be applied to either Eq. (9) or Eq. (10).  Both equations describe a

process of collecting over an interval and then band-limiting the result.  Although these

two equations are equivalent, in that they are Fourier transform pairs, Eq. (10) represents

the classical imaging problem.  By classical imaging problem it is meant that )(xs given

by Eq. (10) is an image of )(xσ  with the resolution given by the implicit sinc function in

the integrand.  That is the resolution is inversely proportional to W  (bandwidth).  Only in

the limit of large W  do we have a true inversion.

The operator in Eq. (10) is compact, self-adjoint, and positive on the interval X.

For any 0>X  and any 0>W , there is a countably infinite set ⋅⋅⋅),(),(),( 210 xxx ψψψ  and a

set of real positive numbers

⋅⋅⋅>>> 210 λλλ                                                                                                (11)

with the following properties:13
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1)  The )(xnψ  are band-limited, orthonormal on the real line and complete in the space of

band-limited functions (bandwidth W2 ):

∫
∞

∞− 



=
≠

=
ji
ji

dxxx ji 1
,0

)()( ψψ .                                                                             (12)

2)  In the interval 22 XxX ≤≤−  , the )(xnψ are orthogonal and complete on the

interval X :

∫
− 




=
≠

=
2

2

,0
)()(

X

X i
ji ji

ji
dxxx

λ
ψψ .                                                                        (13)

3)   For all values of x , real or complex,

dyy
yx

yxW
x n

X

X
nn )(

)(
)(2sin

)(
2

2

ψ
π
π

ψλ ∫
− −

−
= .                                                             (14)

This notation conceals the fact that both the ψ ’s and the λ ’s are functions of the product

WX .  That is, )(cnn λλ =  and ),()( xcx nn ψψ = , where

WXc π= .                                                                                                           (15)

There are many other properties of the ψ ’s; we will only use them as needed.  The ψ ’s

are prolate spheroidal wave functions.  They are extremely valuable in the treatment of

space-limited and band-limited functions and to address the ability to achieve essentially

space and band-limited functions. An example is the application of prolate spheroidal

wave functions to the problem of optimum edge detection. 11  Harger12 applies the prolate

spheroidal wave functions to SAR antenna design and signal analysis. The properties of

the prolate spheroidal wave functions have been extensively treated in the

literature.13,14,15,16,17,18, 19,20
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The analysis of the inversion (superresolution) problem can be carried out using

the properties of the prolate spheroidal wave functions without explicit use of the fact that

the defining operator is compact, self-adjoint, etc.  Since the prolate spheroidal wave

functions are complete in the interval I , property 2), we can expand the input as

∑
∞

=
0

)()( xax nnψσ .                                                                                             (16)

Applying Eq. (14) to Eq. (10) and Eq. (16) gives the output as

∑
∞

=
0

)()( xaxs nnn ψλ ,                                                                                          (17)

which is just the prolate spheroidal wave function expansion for the output.  This says

that to invert Eq. (10) we need only to expand the output in terms of the prolate

spheroidal wave functions and divide each term by the corresponding eigenvalue, nλ .

This is equivalent to Eq. (5) with nnn xx λψϕ )()( = .  The division by nλ  is required

to make the functions nψ  orthonormal on the interval.

Even though 0→nλ  as ∞→n , division by nλ  does not seem to be that much of

a problem.  Certainly, we can include a lot of terms in the inversion before we get very

close to infinity.  The real problem with superresolution is that for a fixed value of c  is

that the nλ  fall off to zero rapidly with increasing n  once n  has exceeded

WXc 2)2( =π .13,17,18,19 Further, Newsam and Barakat21 argue that the nλ  are distributed

in a step-like fashion,

WXnif
WXnifn

20
21

>≈
<≈λ

,                                                                                      (18)
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with the change from unity to zero occurring  in a strip of width nlog≈  centered on

WXn 2= .  Furthermore, the eigenvalues decay exponentially with n , as ∞→n .  This is

the heart of the superresolution problem.  It is this rapid roll-off of the eigenvalues that

limits the ability to recover information outside the bandpass of an essentially band-

limited system.  Clearly, terms in Eq. (17) would be lost in the noise for WXn 2> .  It is

very curious that, although Joyce and Root5 address the ill posed aspects of the inversion

of Eq. (9) (equivalently Eq. (10)), they do not address this well known and problematic

result.  They do, in passing, reference Slepian and Pollak13 with respect to the general ill

posed nature of the problem of inversion of compact self-adjoint operators.

One might consider an alternate scheme for divining the values for an for n >

2WX, by perhaps somehow transmogrifying or extrapolating in some manner from those

values of an for n < 2WX.  Extrapolation techniques of various sorts pervade the field of

superresolution techniques.  Clearly, however, for a general scene the independence of

the an precludes this.  Denying this undeniable truth and attempting to do so anyway then

forces a correlation between the an that in fact destroys the ability of such an algorithm to

superresolve a general scene.  While perhaps allowing some images, or perhaps some

targets within a specific image, to ‘look better’, such a technique would necessarily make

other sorts of targets or images less accurately rendered in an image.  One might consider

this as actually adding distortion to a general image with results that are likely arguable

and highly subjective.  In any case, this is not superresolution as we have previously

defined it.  We reserve further comments on these sorts of algorithms to the discussion

later in this report.
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In some sense, one could stop at this point and consider the problem solved.

However, further treatment of the matter would provide additional insight into the

problem, and the added material may be of interest to the reader in its own right.
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3.2  Degrees of Freedom of an Image

A very related problem is the number of degrees of freedom of an image.  This

subject has received considerable attention in the literature3,15,21,22,23 Di Francia3 uses (as

do others) the imaging model of the previous section.  Since the object (field-of-view)

has a finite field of view and the imaging system has a finite bandwidth, he defines the

number of degrees of freedom of an image as,

WXN 2= .                                                                                                           (19)

This definition is based on the sampling theorem; it is just the band-limited sampling rate

times the extent of the image.  The argument in the previous sections effectively limits

the degrees of freedom of an image to the number given by Eq. (19).

Although a function cannot be simultaneously space-limited and band-limited, it

can be so to a high degree of approximation.  Such functions are considered “essentially”

space and band-limited.  Landau and Pollak treat this problem in great detail.15 We state

the main theorem of their paper as:

Theorem 1: Let )(xg , of total energy 1, be band-limited to bandwidth W2 , and

let

∫
−

−=
2

2

22 1)(
X

X
Xdxxg ε .                                                                                           (20)

Then

{ }

[ ]
2

22

0

)(inf X

NW X

nna
Cdxaxg

i

εϕ <−∫ ∑
∞

∞−

+

,     [z] means the largest integer z≤ ,          (21)
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is (a) true for all such g with N=0, C=12, if the nϕ  are the prolate spheroidal wave

functions; (b) false for some such g for any finite constants N and C if the nϕ are the

sampling (sinc) functions.

If the expansion in part (a) of Theorem 1 is done in terms of prolate spheroidal wave

functions we have the following theorem15

Theorem 2: Given )(xg defined in Theorem 1, then

[ ]
2

22

0

12)( X

W X

nn dxaxg εψ ≤−∫ ∑
∞

∞−

,     [z] means the largest integer z≤ ,                (22)

where the na  are the Fourier coefficients of its  expansion in the s'ψ (prolate spheroidal

wave functions).

This theorem bounds the accuracy with which a function can be represented by a

function with WX2  degrees of freedom.   For example, if the energy in the function )(xg

falling outside the interval X is p−10 , the mean square error in representing the function

with WXN 2= prolate spheroidal wave functions can be made less than p−×1012 .  Later

we will discuss bounds on the use of sampling functions.  It is not as bad as one might

expect.
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4  Perturbations on the Ideal Model

A natural question at this point is, what happens when the ideal model of Section

3.1 does not hold?  There are several ways that this can be approached.  The most general

assumption, for our purposes, is a model in the form of Eq. (6).  The associated operator

is probably compact, but it may not be self-adjoint.  If it is not self-adjoint, we can form

the self-adjoint operators, KK LL̂  and KK LL ˆ  where KL̂  is the adjoint of KL .  The

eigenfunctions and eigenvalues of these self-adjoint operators would provide set of basis

function for the analysis of the problem similar to the approach taken above. To do this,

we would have to solve the eigenvalues and eigenfunctions.  This approach is referred to

as singular value decomposition (SVD).24,25 It is probably not necessary to take the SVD

approach.

A sinc function kernel in Eq. (6) gives a spectral response represented in Fig. 1

and the analysis leading to Eq. (17) is applicable.  If we perturb the kernel we would

generally get a spectral response represented by Fig. 2.  First order operator perturbation

theory shows that small perturbations of the kernel can destroy the exponential decay in

the eigenvalue spectrum described by Eq. (18).  However, one can design large

perturbations of the operator that do not destroy the exponential decay in the eigenvalue

spectrum.  One way to do this is to design perturbations that leave the form of the kernel

unchanged, but change the value of c  given by Eq. (15).  In general, perturbations of the

kernel in Eq. (6) will give a frequency response with a roll-off characterized in Fig. 2.

Since there is always some noise there is always a cut-off frequency used in the system

design/processing and we are back to the type system associated with Fig. 1.
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Mathematically we can state the above considerations as follows.  We assume that

the data is of the form

∫==
I

K dyyyxKLxs )(),()( σσ .                                                                          (23)

Although Eq. (23) is the same form as Eq. (6), in this case it represents the collected data,

not a classical image.  The data, )(xs , has a Fourier transform that is generally

represented by Fig. 3.  Due to the presence of noise we assume that a band-limiting

operator of the form

dyys
yx

yxW
sLxs

I
BW )(

)(
)(2sin

)( ∫ −
−

==′
π

π
,                                                            (24)

is applied to the data )(xs .  If an image processing operator, ipL , is then applied to the

band-limited data, )(xs′ , we have a classical image of the form,

σKBWip LLLs =′′ .                                                                                                  (25)

Even if we assume that we can invert the operator ipL , the inversion of the operator, BWL ,

is limited to by the rapid decay of its eigenvalue spectrum as discussed in the previous

discussion.  Thus it appears that there is a practical limit beyond which spectral

information about an image (data set) cannot be recovered.  This limit is, of course, set by

noise.



- 26 -

5 Noise

Clearly, noise is the major obstacle to achieving significant imaging system

resolution improvement (superresolution gain) from bandwidth extrapolation beyond the

system bandwidth. In an empirical study of band-limited image extrapolation based on a

Gerchberg type algorithm, Smith and Marks26 reported that the output began looking like

the input at a signal-to-noise ratio (SNR) of 108 and the output became virtually

equivalent to the input at a SNR of 1010.  They investigated the problem of extrapolating

a truncated image function given that the image bandwidth is known.  They used a sinc

function as the image function.  This should be equivalent to extrapolating the Fourier

transform of a function given the extent of the function.  Cox and Sheppard27 take the

interesting approach of treating the superresolution problem in terms of information

theory.  Their analysis is based on the invariance of information capacity.  They state that

it is not the spatial bandwidth but the information capacity of an imaging system that is

constant.  Further, they conclude that analytic continuation is essentially an attempt to

increase the spatial bandwidth by reducing the SNR in the final image.  Their analysis for

the large space-bandwidth product case is plotted in Fig. 4.  In the figure, SNRI and

SNRO denote input and output signal-to-noise ratio respectively.  In their paper they use

bandwidth to define resolution, that is, the resolution improvement is a ratio of the output

to the input bandwidth.
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Input signal-to-noise ratio (SNRI)
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Bertero and De Mol,4 using the approach in Section 3.1 conclude 1) that

superresolution is feasible only when the object is not too large compared to the

resolution of the imaging system, and 2) the amount of achievable superresolution

depends on the space-bandwidth-product )(c  and the SNR.  They analyze the noise effect

in the small space-bandwidth-product case.  They also point out that attempts have been

made to add additional constraints such as image positivity to improve the extrapolation.

We are not sure what constraints, if any, would be appropriate in the SAR case.  Since the

image/data SNR is a dominant factor in extending the bandwidth of the SAR image, it is

appropriate to say something about the sources of noise.  It is outside the scope of this

work to treat the sources of noise (or errors) in radar systems in any detail.  We might
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mention that there is clutter noise, receiver noise, noise due to system and waveform

nonlinearities (multiplicative noise), and noise due to sampling.  We consider errors

associated with sampling appropriate to this study.

The analysis we have presented is for continuous variables, but any numerical

processing would certainly involve sampled data.  We have been working under the tacit

assumption that that the most favorable solutions are those using continuous variable

analysis.  The discrete case would be an approximation, although a good one.  In fact,

Fiddy and Hall28 argue that superresolution applied to sampled data is not unique if the

number of samples is finite.  It is well known (Shannon sampling theorem) that a band-

limited function can be represented exactly if using a countable infinity of uniformly

spaced samples.  In practice an infinity of samples is never used.  However, from

Theorem 1, a function can be effectively band-limited and space-limited.  The question is

then, what is the bound on the error resulting from using a finite number of samples to

represent a band-limited function?  Landau and Pollak15 address this in an interesting

theorem.  We give an abridged version of that theorem.

Theorem 3: Let )(xg , of total energy 1, be band-limited to bandwidth W2 , and

let
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This theorem should be compared with Theorems 1 and 2.  The major result is that if

“unconcentrated part,” 2
Xε , of the energy is small, the errors in representing a function

using the prolate spheroidal wave functions is proportional to 2
Xε  while the errors using

sampling functions is proportional to Xε .  For example if the “unconcentrated part,” of

the energy is 10-6 the error in the sampling function representation may be as large as

310−×π  while the errors in the prolate spheroidal wave function representation is less

than 61012 −× .  The sampling errors are part of the noise to be considered with respect to

the application of superresolution techniques.  It should noted, that for hard-limited chirp

type waveforms, this Theorem 3 can be turned around to estimate the error in sampling of

the Fourier transform.

If the signal to noise ratio is large enough, we can use super-resolution techniques

to resolve well past the limits of the classical resolution limit.  However, for large space-

bandwidth product signals the signal to noise ratios must be enormously large to achieve

even a moderate amount of super-resolution.  We will now estimate how large the signal

to noise ratios must in fact be.  The following argument, although somewhat heuristic

with respect to the noise characterization, gives reasonable results and it is instructive.

For the noise case corresponding to Eq. (1), we are trying to solve the equation

ησ += sLc ,                                                                                                        (28)

where s  is the noiseless data, and )(xη  is the noise. We will assume that )(xη  is white

noise.  This means that

0)( =xη ,                                                                                                           (29)

and
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)()()( 2 zxzx −= δεηη .                                                                                    (30)

Here ε  represents the level of the noise.  The following lemma will be used to

characterize the noise.

Lemma 1: Let kϕ  be the normalized eigenfunction associated with the eigenvalue

kλ of the operator cL .  Let kη  be the kth component of the eigenvalue expansion of the

noise.  The expected value of 2
kη  is given by

22 εη =k .                                                                                                            (31)

Proof:  We can write
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Taking the expected value of this, and using Eq. (30), we find that
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QED

Radar processing is much more realistically modeled by bandlimited white noise.

Let )(xWη  represent the noise that results from bandlimiting the noise )(xη  to a

bandwidth W2 .  The autocorrelation function of Wη  satisfies
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The following lemma concerns the expected value of the eigenfunction expansion of the

coefficients of Wη .
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Lemma 2: Let kϕ  be the normalized eigenfunction associated with the

eigenvalue  kλ of the operator cL .  Let W
kη  be the kth component of the eigenvalue

expansion of the noise.  The expected value of 2)( W
kη  is given by

22)( ελη k
W
k = .                                                                                                  (36)
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Taking the expected value of this, and using Eq. (35), we find that
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QED

We believe that the radar data is correctly represented as

{ }[ ]ησ +∗





= Lh
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rectso .                                                                              (40)

where h  is the impulse response of a bandlimiting filter.  This equation says that since

the imaging operator L bandlimits the data we should filter the signal and noise to the

bandwidth W2 and retain the data corresponding to the field-of-view.  This is reasonable

because the data extent and field-of-view are essentially the same for large space-

bandwidth-product systems.  This allows us to write Eq. (40) as
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rectso .                                                                                 (41)
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The rect function in Eq. (41) allows us to expand the right hand side over the interval X .

Using Eqs. (13) we obtain
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where kψ  are the prolate spheroidal wave functions.  Applying lemma 2 gives
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The first term on the right in Eq. (43) represents the signal (data) and the second term is

the noise.

For the operator cL  (with c  large) the eigenvalues kλ  are very close to unity as

long as

WX
c

Nk c 2
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.                                                                                          (44)

For cNk >  the eigenvalues are close to zero.  This allows us to write the signal energy as
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and the noise energy in the kth ( cNk > ) term in the noise expansion as

22 ελη kE = .                                                                                                          (46)

We should be able to invert our problem to include term of order k if the noise energy in

the kth term is much smaller than the signal energy.  This implies a SNR requirement

given by

η

ε
λ

Ek >> .                                                                                                        (47)
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This shows that we can tolerate large levels of noise if we only invert the data using the

first cN  eigenfunctions.  When we do this we achieve the classical resolution.    We

achieve super-resolution by using more eigenfunctions in our inversion.  It is commonly

assumed that in the absence of noise if we used cN2  eigenfunctions then we have

effectively doubled our bandwidth.  We believe that this is true, but the argument making

this precise is somewhat subtle.  We will assume that this is in fact the case.  Certainly,

we will have doubled the number of degrees of freedom.

We now ask the question: For a given space-bandwidth product (c ), what SNR is

needed in order to double our effective bandwidth.  To answer this question we use the

fact that for large values of c , we have

)2ln(
2

c
N e

c

πλ −= .                                                                                                  (48)

This result is easily obtained using equations in Reference 17.  In order to reliably invert

the modes associated with all of these eigenfunctions, the noise must satisfy Eq. (47).

This shows that the signal to noise ratio must satisfy

)2ln(2ceSNR π= .                                                                                                 (49)

This result is derived for one-dimensional signals.  For two-dimensional signals, the

required signal to noise ratio is squared.

There are a few things that should be said about this result.  First, if for example

202 =WX  (a small value in practice), then Eq. (49) requires a SNR greater than 5103.3 ×

to improve the resolution by a factor of 2.  Although this analysis does not estimate the

SNR of the superresolved image, it appears compatible with the data in Fig. 4, which is

derived from an information theory point-of-view.  In either approach, the results do not

predict significant gain by superresolution processing.  This result agrees with the SNR
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requirement in Reference 4.  They use the operator eigenfunction approach as we do.

Newsam and Barakat21 treat the problem in a more detailed manner, relating the noise to

a quantitative mean square error in the inversion.

Finally, it is generally believed that some moderate superresolution improvement

is possible if the space-bandwidth product (c ) is small.  However, in that case the

problem is probably one of spectral shaping (inverse filtering).  The low space-bandwidth

product case suggests a possible extension of the above to the problem of imaging

relatively isolated bright targets.  For such targets the SNR “might” be greater than the

average for the image.  This suggests that one might cut out that part of the image and

attempt to achieve superresolution due to the reduced space-bandwidth product.  Note

that the space-bandwidth product approximated by dividing the reduced image size by the

system resolution.  We were not able to obtain an analytical solution to this problem

within the scope of this work.  The problem could be treated along the lines of this work.

This would require the eigenvalues and eigenfunctions associated with the imaging

operator representing this problem.  They would probably be calculated numerically.

There are two reasons for some doubt that there may be much gained in this case.  One is

that even in this case the space-bandwidth product would still be too large to expect much

superresolution gain.  The other is that the SNR for the isolated part of the image may not

be as large as first assumed.  This is due to the fact that the tails of the impulse response

for the surrounding scene would corrupt (add noise to) the data for the restricted part of

the image.  Selecting a portion of a larger image for processing is not the same as

imaging an isolated object, such as the example of imaging an object in space.
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6 A Test Criterion

A basic test criterion for superresolution is one that determines the ability of a

superresolution method to extrapolate, with fidelity, the data spectrum beyond that of the

effective system bandwidth.  Fidelity is a key part of the measure of performance; it

would be meaningless to add, by whatever means, uncorrelated spectral content outside

the system bandwidth.  We have defined superresolution as the recovery of spectral

information that falls outside the bandpass of the system.  This suggests a mean square

error measure of superresolution gain.  Clearly, the merit function should be normalized

so that amplitude scaling does not produce erroneous errors.

As discussed by Davila and Hunt,29 there are three quantities that should be

addressed in the development of a merit function; the object σ , the bandlimited image

(data) s , and the superresolved image ŝ .  They propose a measure of superresolution

gain SRG  of the form

2

2

ŝ

s
SRG

−

−
=

σ

σ
,                                                                                                  (50)

where g  is the norm of g .  As the superresolved image ŝ  approaches σ , ∞→SRG .

Further, 1→SRG  as ss →ˆ , which should be the case if σ=s .  One might argue that a

possibly infinite measure is not a well normalized.  This is readily resolved by defining

the superresolution gain as
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This form has 1=NSRG  for σ=ŝ  (perfect superresolution), and 0=NSRG  if ss =ˆ  (no

improvement).  Also, for really poor superresolution processing, 
22

ŝs −<− σσ , Eq.

(51) gives a negative NSRG .  Finally, Parseval’s theorem allows us to replace the

quantities in Eq. (50) or Eq. (51) with their Fourier transforms.  Equation (51) can be

written in terms of Fourier transformed functions as

2
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.                                                                               (52)

We can use Eq. (51), Eq. (52) or equivalently Eq. (50) as a guide in the

development of tests of superresolution schemes (algorithm).  These Equations tell us

that we need a reference object σ  and a bandlimited image s  of σ .  We can apply the

algorithm in question to s  and calculate the superresolution gain by the above equations.

One approach would to use a model for σ , add noise and simulate the image s  of σ .

We can then apply the algorithm to s  to obtain ŝ .  Another approach is to use a high

quality SAR image to represent σ and bandlimit this result to represent s .  In this case

we need to add noise to s  before applying the superresolution algorithm.  In this case

noise should always be added at this step because once an image is formed the noise is an

inseparable part of the image.  Finally one might develop a test target (perhaps a corner

reflector array), for which σ  is well defined, and obtain a SAR image s .  One can then

apply the superresolution algorithm and calculate the merit function.   Note that noise

does not need to be added to s  in this case.  However, one could add noise (above that

which is already present) to explore the effects of increasing noise beyond that inherent in

the specific imaging process.  That is, when a high resolution SAR image is used as the

object function, noise should be added after the image is degraded (filtered) to produce
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lower resolution image that is used as a test image for superresolution studies.  Finally, it

should be emphasized again that noise is the determining factor in the superresolution

question.
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7 Discussion

We would like to start this section with an example that illustrates what is not

superresolution.  The example consists of taking an image, )(xs , and raising it to the nth

power to obtain an “enhanced image,” )(xsn .  Generally, we do not need to require n to

be an integer, greater than 1, or even positive.  However, for simplicity, we will consider

the case of positive n greater than 1.  It is easy to see that this operation, in this case, will

increase the bandwidth of the image.  However, within the context of our definition, this

is not superresolution.  Although the bandwidth has been increased, the increased

bandwidth is not related to any information contained in the part of the spectrum that falls

outside the bandwidth of the system.  Further, it is easy to see that this image

enhancement would not generally give 1=NSRG  in Eq. (51).  If the image were a sinc

function corresponding to a point target, this process would appear to enhance the

resolution and the peak-to-sidelobe ratio.  However, if the image were a poorly resolved

square wave, this processing would, in the limit of large n, produce narrow spikes of the

same periodicity (which is not a superresolved image).  It should be clear that this

processing will, in most cases, add distortions.  Finally, if the image is real and positive,

no information is lost if the image is raised to a power.  This is not generally the case if

the image is complex or nonpositive.

This example is only one of many that may be used to “enhance” the appearance

of an image.  In fact such enhancements may be a valuable aid to the SAR image

interpreter, or even as preprocessing steps to machine interpreters (e.g. automatic target

recognition algorithms), but they should not be classed as resolution (superresolution)

enhancements.  Another defining test for superresolution would be to investigate what the
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algorithm/method produces for an object that is considerably smaller than the classical

resolution of the imaging system.  To be specific, assume an isolated target that has radar

reflectivity represented by a rect function of width ρ  and the system resolution is ρm ,

where 1>>m .  The question is, if the superresolution algorithm is applied without limit

does it reproduce the target at resolution ρ  or does it produce an impulse that has a width

much less than ρ .  If the algorithm produces a narrow impulse in this case it lacks

fidelity and would not be considered superresolution as defined in this study. Algorithms

that model an object as (that is, presume an object is composed of) a collection of

impulses (point targets) seemingly do just this.  Extruding non-impulse scene features

through image impulse models might seem somewhat presumptuous.  Clearly, such a

result would not give a value of unity for Eq. (51).

There are several papers that present some approach to the application of

superresolution techniques to SAR imaging.  These papers are difficult to address in that

they frequently have one or more of the following characteristics:

a) The algorithm is nonlinear.

b) The author does not provide an analysis of the algorithm.

c) The data is too limited to draw broad conclusions.

d) A quantitative measure of performance is not included.

e) The paper is dealing more with image enhancement than

superresolution, as defined in this study.

Although one cannot prove a negative, it is generally difficult to see how an

algorithm, by virtue of being nonlinear, can increase the degrees of freedom of an image.

In fact, the degrees-of-freedom of an image is a property of the imaging system, not the
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image.  If one assumes that the number of degrees-of-freedom of an image is effectively

set by the system and that this number is a conserved quantity (as suggested in Reference

27), then it is difficult to see how copious amounts of processing would increase the

number of degrees-of-freedom of an image.  Having said this, we don’t want to throw out

any algorithms out of hand.  If an algorithm appears to produce significantly improved

images, it should be analyzed in detail.  Unfortunately for most nonlinear algorithms,

analysis is a major task.

As discussed in Section 3, the superresolution problem is ill posed.  Techniques

for mitigating the ill posed nature of the problem are referred to as regularization

techniques.  Regularization is the process of modifying the original problem so that it

becomes less sensitive to small perturbations of the data and, at the same time, the

solution is close to that of the original problem (See Reference 24, Chapter 1).  These are

conflicting goals.  Generally, making the trade-off between these two goals is an

empirical problem.  In their highly analytical paper, Joyce and Root5 propose linear-

precision gauges as an approach to regularization.  They do not address the rapid fall-off

of the eigenvalues in the original problem.  The also do not give any examples of the

application of their iterative algorithm.

In an interesting paper, Delves, Pryde and Luttrell30 give an algorithm for

superresolving isolated point targets in a uniform background.  Their approach is an

iterative algorithm that requires a statistical estimate of 
2

f  where f  is the target they

wish to superresolve.  They also assumed a 1-% additive noise level.  Simulation results

are given.  The space-bandwidth-product associated with this problem appears to be
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small.  Luttrell and Oliver31 give a more detailed exposition of the basic concepts in a

related paper.

In a short paper, Guglielmi, Castanie and Piau32 investigate the Gerchberg-

Papoulis generalized inversion to achieve superresolution.  They use a stochastic

inversion based on prior knowledge based on a priori probability distributions.  The noise

level does not appear to be explicitly given.  The paper gives results of one-dimensional

simulations for a radar target consisting of a rect function and two point targets.  In such

simulations, there is always a question of how well the SAR imaging process and noise

are modeled.

Stankwitz and Kosek33 propose using spatially variant apodization (SVA) to

implement superresolution processing (Super-SVA).  Assuming that the image data is

bandlimited, they apply a nonlinear apodization to the image plane data that is designed

to eliminate sidelobes from bright targets.  This, generally, produces spectral content

outside the system bandlimit, which is typically appended to the original spectrum for

reprocessing.  The resulting data is then effectively inverse filtered to give an appearance

of enhanced resolution. The process can be applied iteratively. This approach does not

appear to be superresolution in the sense of this study.  It might be more appropriately

considered image enhancement in the sense of the example at the start of this section,

which is also a nonlinear process. (We do note that SVA enjoys some measure of

popularity specifically as an image enhancement tool.)

Novak, Owirka and Weaver34 report significant target recognition performance

using what they call enhanced resolution SAR data. The image enhancing algorithm is
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described in detail by Benitz. 35  This work also involves selective sidelobe reduction and

a point target model.

Sidney, Bowling and Cuomo36 discuss superresolution methods in the context of

bandwidth extrapolation that involves sidelobe removal.  They also discuss extended

coherent processing that is based on a rotating point target model.  They give interesting

results for simple targets; they state, “The results demonstrate the validity of the

principles discussed earlier and they illustrate the effects that can be observed with well-

defined targets that are not very complex.”  For a simple reentry vehicle type target they

show a bandwidth extension by a factor of six.  They also state that there are three

important factors that will effect the success of bandwidth extraction, they are: 1)

conformity actual target reflectivity with the limited-number-of-points model, 2)

systematic errors that can distort signals relative to the model assumptions, 3) the signal-

to-noise ratio.

A particularly interesting paper is by DeGraaf37 wherein he compares a number of

superresolution techniques.  He states that these techniques generally “exploit a point

scattering (sinusoidal signal history) model” to various degrees.  Of special note is a

figure containing an array of images processed by the various techniques of a common

real (in the sense of non-synthetic) data set.  Differences in the “superresolved” images

are clearly obvious, and discussed.

There are several other papers38,39,40,41,42,43 that generally fit in class of techniques

discussed above.  It is not practical to discuss each of them in detail within the scope of

this study.  In fact, the above cursory discussion of some papers is not meant to obviate

the need for the reader to pursue these papers and their references further.  In addition we
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have included a bibliography that includes related papers not specifically cited in this

study.
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Summary

The concept of superresolution has been around for many years.  The original

concept as well as the definition of superresolution in this study dealt with the possibility

of recovering Fourier transformation about the target (radar cross section) that falls

outside the effective bandpass of the imaging (SAR) system.  Over the years several

authors have investigated the potential of achieving significant superresolution of images.

Unfortunately, the answer is that significant superresolution improvement on an image

(data set) is not practical.  The limit is set by the high sensitivity of superresolution to

noise and equivalent system errors.  The result is that, if an application requires a given

resolution the resolution must be obtained by an equivalent real or synthetic aperture.  It

can not be obtained by post image processing.

There are image processing techniques that can generally be classed as image

enhancement that may be beneficial to an application such as visual image interpretation

or automatic target recognition.  However, they are not truly superresolution techniques

as defined here .  “Better looking” does not equate to “more accurately resolved.”
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