MODELING FLOW AND TRANSPORT PATHWAYS TO THE POTENTIAL REPOSITORY HORIZON AT YUCCA MOUNTAIN

PDF Version Also Available for Download.

Description

The isotopic ratios of {sup 36}Cl/Cl are used in conjunction with geologic interpretation and numerical modeling to evaluate flow and transport pathways, processes, and model parameters in the unsaturated zone at Yucca Mountain. By synthesizing geochemical and geologic data, the numerical model results provide insight into the validity of alternative hydrologic parameter sets, flow and transport processes in and away from fault zones, and the applicability of {sup 36}Cl/Cl. ratios for evaluating alternative conceptual models.

Creation Information

A.V. WOLFSBERG, G.J.C. ROEMER, J.T. FABRYKA-MARTIN, B.A. ROBINSON March 4, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The isotopic ratios of {sup 36}Cl/Cl are used in conjunction with geologic interpretation and numerical modeling to evaluate flow and transport pathways, processes, and model parameters in the unsaturated zone at Yucca Mountain. By synthesizing geochemical and geologic data, the numerical model results provide insight into the validity of alternative hydrologic parameter sets, flow and transport processes in and away from fault zones, and the applicability of {sup 36}Cl/Cl. ratios for evaluating alternative conceptual models.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: MOL.200000424.0548
  • Grant Number: NA
  • Office of Scientific & Technical Information Report Number: 780417
  • Archival Resource Key: ark:/67531/metadc720395

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 4, 1998

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • Feb. 10, 2016, 7:43 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

A.V. WOLFSBERG, G.J.C. ROEMER, J.T. FABRYKA-MARTIN, B.A. ROBINSON. MODELING FLOW AND TRANSPORT PATHWAYS TO THE POTENTIAL REPOSITORY HORIZON AT YUCCA MOUNTAIN, report, March 4, 1998; Las Vegas, Nevada. (digital.library.unt.edu/ark:/67531/metadc720395/: accessed October 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.