Dynamic Effects of Tank Waste Aging on Radionuclide-Complexant Interactions - Final Report - 10/01/1997 - 10/01/2000

PDF Version Also Available for Download.

Description

The long-range objective of this project is to provide a scientific basis for safely processing high-level nuclear tanks wastes for disposal. Our goals are to identify a means to prepare realistic simulant formulations for complexant-containing Hanford tank wastes, and then use those simulants to determine the relative importance of various organic complexants and their breakdown products on the partitioning of important radionuclides. The harsh chemical and radiolytic environment in high-level waste tanks alters both the organic complexants and the metal species, producing radionuclide-chelator complexes that resist standard separation methods. A detailed understanding of the complexation reactions of the key radionuclides ... continued below

Physical Description

vp.

Creation Information

Chamberlin, Rebecca M.; Arterburn, Jeffrey B. rmchamberlin@lanl.gov & jarterbu@nmsu.edu October 1, 2000.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The long-range objective of this project is to provide a scientific basis for safely processing high-level nuclear tanks wastes for disposal. Our goals are to identify a means to prepare realistic simulant formulations for complexant-containing Hanford tank wastes, and then use those simulants to determine the relative importance of various organic complexants and their breakdown products on the partitioning of important radionuclides. The harsh chemical and radiolytic environment in high-level waste tanks alters both the organic complexants and the metal species, producing radionuclide-chelator complexes that resist standard separation methods. A detailed understanding of the complexation reactions of the key radionuclides in tank wastes would allow for reliable, science-based solutions for high-level waste processing, but a key problem is that tank waste samples are exceedingly difficult to obtain, transport and handle in the laboratory. In contrast, freshly-prepared simulated wastes are safe and readily obtained, but they do not reproduce the partitioning behavior of actual tank waste samples. For this project, we will first artificially age complexant-containing tank waste simulants using microwave, ultrasound, and photolysis techniques that can be applied in any standard laboratory. The aged samples will be compared to samples of actual Hanford tank wastes to determine the most realistic aging method, on the basis of the organic fragments present, and the oxidation states and partitioning behavior of important radionuclides such as 90Sr, 99Tc, and 239Pu. Our successful completion of this goal will make it possible for scientists in academic and industrial laboratories to address tank waste remediation problems without the enormous costs and hazards associated with handling actual tank waste samples. Later, we will use our simulant aging process to investigate the relative effects of chelator degradation products on the partitioning of important radionuclides from the waste. Using NMR-active labels in the chelators, we will use a combinatorial approach of generating multiple chelator fragments in a single experiment and then determining which, if any, of the fragments have a negative effect on the separations chemistry. Our successful completion of this goal will specifically identify the most problematic organic fragments in complexant-containing waste and provide the basis for developing successful treatment strategies for these wastes.

Physical Description

vp.

Notes

INIS; OSTI as DE00790170

Source

  • Other Information: PBD: 1 Oct 2000

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/ER/14863
  • Report No.: Project Number 59993
  • Grant Number: FG07-98ER14863
  • DOI: 10.2172/790170 | External Link
  • Office of Scientific & Technical Information Report Number: 790170
  • Archival Resource Key: ark:/67531/metadc720299

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 1, 2000

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • April 21, 2016, 6:22 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Chamberlin, Rebecca M.; Arterburn, Jeffrey B. rmchamberlin@lanl.gov & jarterbu@nmsu.edu. Dynamic Effects of Tank Waste Aging on Radionuclide-Complexant Interactions - Final Report - 10/01/1997 - 10/01/2000, report, October 1, 2000; United States. (digital.library.unt.edu/ark:/67531/metadc720299/: accessed August 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.