

SAND REPORT

SAND2001-3093
Unlimited Release
Printed November 2001

Visual Structure Language

Philip L. Campbell, Juan Espinoza Jr.

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department
of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or assume
any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represent that its use would
not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government, any agency thereof, or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily state or
reflect those of the United States Government, any agency thereof, or any of their
contractors.

Printed in the United States of America. This report has been reproduced directly
from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/ordering.htm

SAND2001-3093
Unlimited Release

Printed November 2001

Visual Structure Language

Philip L. Campbell
Networked Systems Survivability & Assurance Department

Juan Espinoza Jr.
Cryptography & Information Systems Surety Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, New Mexico 87175-0785
{plcampb, jespino}@sandia.gov

Abstract

In this paper we describe a new language, Visual Structure Language (VSL), designed to
describe the structure of a program and explain its pieces. This new language is built on top of a
general-purpose language, such as C. The language consists of three extensions: explanations,
nesting, and arcs. Explanations are comments explicitly associated with code segments. These
explanations can be nested. And arcs can be inserted between explanations to show data- or
control-flow.

The value of VSL is that it enables a developer to better control a code. The developer can
represent the structure via nested explanations, using arcs to indicate the flow of data and
control. The explanations provide a “second opinion” about the code so that at any level, the
developer can confirm that the code operates as it is intended to do.

We believe that VSL enables a programmer to use in a computer language the same model—a
hierarchy of components—that they use in their heads when they conceptualize systems.

(This work was developed as part of a Laboratory Directed Research and Development project,
the details of which are elsewhere. [3])

Keywords: visual languages, software tools, software analysis, software assessment, software
testing, analysis of programs, debugging, program understanding, reverse engineering, software
maintenance.
1

2

Table of Contents

1 Introduction .. 5

2 VSL ... 5

 2.1 Extension 1: Explanations ... 5

 2.2 Extension 2: Nesting .. 9

 2.3 Extension 3: Arcs ... 14

3 Related Work .. 15

4 Discussion .. 17

5 Status and Future Work ... 18

References ... 19
3

List of Figures

Figure 1. A SWITCH Statement ... 7

Figure 2. SWITCH Statement from Figure 1, with Explanations .. 8

Figure 3. Explanations and code, from Figure 1 and Figure 2 ... 9

Figure 4. A C File, showing only explanations .. 10

Figure 5. Expansion of “central function” explanation from Figure 4 10

Figure 6. Code for “build lfsr loop” explanation in Figure 5 .. 11

Figure 7. Explanation for “while statement” from Figure 6 ... 11

Figure 8. Explanations for statements inside the “build lfsr loop” shown in Figure 7 12

Figure 9. Expansion of the “header” explanation, from Figure 4 ... 12

Figure 10. Expansion of the “helper functions” explanation, from Figure 4 13

Figure 11. Side view of explanations shown in Figure 4 through Figure 8 13

Figure 12. Side view of explanations shown in Figure 4 through Figure 10 14

Figure 13. Top level view of program files, with arcs ... 15

Figure 14. The “visual programming” branch of Kiper’s Taxonomy of visual languages 16

Figures 15. V conditional statement .. 17
4

1 Introduction

Programmers work with systems. When asked to describe such a system, a programmer usually
wants to draw boxes—programmers feel a need to create a visual representation of the system.
The boxes represent components and usually there are about half a dozen of them. The
programmer then draws arrows between the boxes, representing data- and/or control-flow. When
asked about a given box, the programmer answers by repeating the process, drawing another set
of boxes. At some point in this decomposition boxes are created that cannot be represented by
another set of boxes. The contents of these lowest-level boxes is source code.

The language presented in this paper, the Visual Structure Language (VSL), is intended to
increase program understanding by enabling a programmer to use in a computer language the
same model—a hierarchy of components—that they use in their heads when they conceptualize
systems.

The Visual Structure Language (VSL) consists of three extensions—explanations, nesting, and
arcs—to a text-based language, such as C, Java, or C++. VSL provides a way to show the
structure of a program, hence the name.

In the next section we introduce each of the three extensions. In the subsequent section we show
how VSL might be related to other visual languages. In the final sections we present our
conclusions and discuss status and future work.

2 VSL

This section introduces each of VSL’s three extensions—explanations, nesting, and arcs.

2.1 Extension 1: Explanations

VSL explanations are comments that are explicitly associated by the user with sections of code.
An implementation of VSL associates text with a section of code, perhaps specified by beginning
and ending line and column numbers in a given file. Since the user depends on the system to
create the holder of an explanation, the system can impose two particularly important constraints
upon the use of explanations.

First, the system can force explanation to cover an entire semantic structure and prevent
explanations from straddling semantic structure. For example, the system can force an
explanation to cover an entire factor, term, expression, statement, function, or file, and never part
of a factor, or part of a term and part of an expression, and so on. The system can prevent an
explanation from covering only parts of two adjacent factors, say. Instead, the system could force
the user to cover both factors completely or else provide two separate explanations. As a result,
explanations can always map to syntactic structure. This makes this structure more visible,
making the code easier to understand.
5

Second, the system can prompt the user to review an explanation whenever the code associated
with that explanation is changed. This provides an automated way for the user to compare the
new code with the previous explanation and remove disparities that may have been introduced
with the change in code. As a result, the explanations have a better likelihood of remaining
current. (To help, an implementation could use some visual flag, such as a different color, to

identify explanations that are older than the code with which they are associated.)1

Depending upon the capabilities of an implementation, the user could choose to view the
explanations instead of the code—that is, to have the explanations appear in a window over the
screen area where the code would otherwise be displayed—or the user could choose to view the
code instead of the explanations, or the user could choose to view both the code and its
associated explanation, if there is one, at the same time in some arrangement that is
implementation dependent.

In order to provide some precision to the above description, we will present an extended example
of the use of explanations.

1. As we will see in Section 2.2, explanations can be nested. Depending upon the implementation, a code change for a nested explanation could
trigger requests for review of explanations at each higher level.
6

Suppose we have the SWITCH statement shown in Figure 1.

We could associate explanations with it, as shown in Figure 2. We have chosen, in this and

Figure 1. A SWITCH Statement

switch (ft)
{

case (DRIVER):
main_driver (argc, argv);
break;

case (SINGLE_STRING):
run_single_string ();
break;

case (ALL_STRINGS):
run_all_strings ();
break;

case (RANDOM_STRINGS):
run_random_strings ();
break;

case (EXAMPLE_0):
run_example_0 ();
break;

case (EXAMPLE_1):
run_example_1 ();
break;

default:
print_usage (argc, argv);
printf("fatal: unrecognized

function\n");
exit(1);

}

7

subsequent Figures, to show the explanations visually covering the associated code.

There are, of course, many different possible explanations for any given piece of code. The
explanations shown in Figure 2 are only one of those possible explanations. We could associate

Figure 2. SWITCH Statement from Figure 1, with Explanations

run using input from a file,
breaking into blocks as we go

other run options, and default

run using all strings of a given length

run using one string of a given length

switch (ft)
{

}

8

different explanations, such as those shown in Figure 3.

Note how the “break” statements shown in Figure 1 obscure the SWITCH statement. The syntax
of C requires these statements but they get in the way of understanding. Using explanations
assuages this problem.

The writing and maintenance of explanations cannot be automated. It is the user’s responsibility
to write each explanation so that it reflects the intent of the code to which the explanation is
associated.

2.2 Extension 2: Nesting

The second VSL extension is nesting. The explanations introduced in Section 2.1 can be nested
to an arbitrary depth. A nesting can include code and or explanation(s). For example, a C source

Figure 3. Explanations and code, from Figure 1 and Figure 2

run using input from a file,
or given string(s)

switch (ft)
{

}

case (EXAMPLE_0):
run_example_0 ();
break;

case (EXAMPLE_1):
run_example_1 ();
break;

other run options, and default
9

code file is shown in Figure 4.

These explanations help us understand the organization of this file (or at least what the developer
at one point intended the organization to be). We see the structure almost immediately: the file
consists of three parts—header, central function, and helper functions. Given these parts, our
next step in understanding the file would probably be to look at that central function, since this is
where the work appears to be done, as shown in Figure 5.

Figure 5 shows a mixture of code and explanation. We note that this central function consists of
three semantic parts. From the explanations, it is apparent that the “build lfsr loop” is the heart of

Figure 4. A C File, showing only explanations

Figure 5. Expansion of “central function” explanation from Figure 4

helper functions

central function

header (externs, global vars, etc.)

void bm ()
{

convert results; check output

build lfsr loop

reset; get input; check input

}

10

the function, so we expand that, as shown in Figure 6.

Without explanations, the code in Figure 6 does not make much sense, at least not without some
work. However, we know that it is the heart of this program, so we know that our time is
fruitfully spent right here.

To start with, we would like to see what the FOR loop is supposed to do, and what the “d = (s[N]
...” statement is intended to do. But as it is, we are at a loss. Figure 7 shows the same code, but
this time covered by one explanation for the entire while loop.

Figure 6. Code for “build lfsr loop” explanation in Figure 5

Figure 7. Explanation for “while statement” from Figure 6

while (N < s_length)
{

for (i = 1, k = 0 ; i <= L ; i++)
k += c[i] * s[N-i];

d = (s[N] + k) % 2;
if (d == 1)
{

bound = N+1;
p = N - m;
... <--code not shown

}
N++;

}

in this while statement we build an
lfsr, one cell at a time, as we
consider each input in the input
string; as long as the bits generated
by our under-construction lfsr match
the bits in the input string, then
we are fine, but if there is a
discrepancy, then we have to change
the lfsr, possibly increasing its
length.
11

We are making headway, thanks to that explanation. We now know the basic structure of the
loop. We are ready to delve deeper into the explanation in Figure 7. As we do so, we see nested
explanations, as shown in Figure 8.

As we delve deeper into these explanations we will, at some point, reach the code itself. But
hopefully by then we will have in mind the context and structure that give meaning to that code
and allow us to determine whether or not the code is “correct,” i.e., matches the explanations.

Meanwhile, let us return to Figure 4 and expand the “header” explanation, as shown in Figure 9.

Figure 8. Explanations for statements inside the “build lfsr loop” shown in Figure 7

Figure 9. Expansion of the “header” explanation, from Figure 4

if not, change lfsr

does next bit match input bit?

determine next bit generated by lfsr

forward declarations

global variables

externs
12

And now let us expand the “helper functions” explanation from Figure 4, as shown in Figure 10.

We have seen enough from these two lower-level explanations to understand now what the code
here is supposed to do. We are in a position to determine whether or not the code performs as the
explanations indicate it is supposed to.

There is a final twist to explanations that can provide additional program understanding.
Explanations enable an implementation to provide a “side” view that allows the user to see the
layering of explanations and thereby visually understand the complexity of the code. For
example, Figure 11 shows a side view of the “central function” part of Figure 4, giving us a way
to see the complexity of the code.

If we remove the text from Figure 11, we can expand the scope of the side view to include

Figure 10. Expansion of the “helper functions” explanation, from Figure 4

Figure 11. Side view of explanations shown in Figure 4 through Figure 8

get functions: copy out the value of

helper functions: reset, check,

static variables for functions in
other files, thereby keeping control
of those variables in this file

print (these functions operate
on the lfsr array and assist
the central function)

central function

reset build lfsr convert

changematch?next bit
13

Figure 4 through Figure 10, as shown in Figure 12.

The presentation of the side view, as shown in Figure 12, can be augmented in a number of
ways. For example, the thickness of lines could indicate the depth of explanations below. The
length of lines could indicate the number of lines of code covered by the explanation.

One way to think of nesting is that it provides anonymous higher-level structures. The historical
progression of programming languages begins with machine language. In the first major step up
from machine language, we graduate to assembly language. Even though each statement in
assembly maps to one statement in machine language, assembly is still considered a step up
because it uses mnemonics. Mnemonics enable the human reader to understand the code
significantly faster than when it is presented in machine language. The next major step is to so-
called higher-level languages. These languages are characterized by a one-to-many relationship
between the number of statements in the higher-level language and the number of statements in
the corresponding machine language statements. This condensation of machine language
statements in higher-level languages enables the human reader to understand significantly more
code (i.e., more of the machine language code) with the same effort. In addition higher-level
languages can provide constructs, such as WHILE statements, that increase the human reader’s
understanding of the code.

Subsequent to the advent of higher-level languages, researchers have been looking for
increasingly higher-level constructs. C uses the file, for example. Within a file the programmer
can declare functions or variables to be invisible to code outside the file (“static”). But there is no
structure in C that is at a higher-level than the file. The nesting in VSL continues where the file
in C leaves off and it continues for as high as the programmer needs it to go.

2.3 Extension 3: Arcs

The third and final VSL extension is arcs. Arcs explicitly connect explanations, the code for
which is presumed to be already connected by data- or control-flow. Arcs express the developer’s
understanding of this connection; arcs are not the result of automatic processing on the code by a
compiler, for example. Arcs enable a component view of the code. Let’s consider Figure 4 again.
This Figure represents a file. There are nine other files in that program, comprising
approximately 5,000 lines of code in all. Figure 13 shows all ten files, but does so via

Figure 12. Side view of explanations shown in Figure 4 through Figure 10
14

explanations connected with arcs.

Note first of all that there are less than ten explanations in the Figure. This implies that some of
the explanations cover multiple files. However, we know by the nature of explanations that no
explanation covers part of one file and part of another.

Figure 13 makes clear the high-level structure of these 5,000 lines of code. We see how the code
associated with the different explanations is related (or at least intended to be related). We can
now expand any of these explanations and pursue deeper levels. As we do so, more of the lower-
level structure is revealed. However, since we already know the highest-level structure—given to
us in Figure 13—we can more easily understand that lower-level structure. (If we expand the
“Berlekamp-Massey” explanation we will, eventually come to the file represented in Figure 4.)
We have not shown a difference between control- and data-flow in Figure 13, but a given
implementation could provide this.

3 Related Work

We do not know of a language similar to VSL. However, inasmuch as VSL may be considered a
“visual” language, we will compare and contrast it to other visual languages.

Unfortunately it is not clear what visual languages are or even if they are effective. Kiper et al.’s
[4] recent paper provides a taxonomy of “visual computing,” the “visual programming” branch

Figure 13. Top level view of program files, with arcs

main time stamp

maintain
input

drive the run

Berlekamp-Massey

check

strings,
parameters,
and
statistics
15

of which is shown Figure 14, is perhaps the best. [4] But VSL does not fit in this part of the

taxonomy. There is another branch of the taxonomy, named “visualization,” that is at the same
level as the “visual programming” branch shown in Figure 14. But VSL does not fit here either
since VSL does not make a program visible. Rather, it enables the user to make visual the
structure of the program—quite a different thing. Chang [2] [2]and, long ago now, Shu [5]
[5]also grapple with the world of visual languages, but VSL does not fit easily in either of their
taxonomies.

The “V” programming language, for example, is based on data-flow diagrams[1]. [1] In V,
operations are replaced with visual symbols—a box with a “+” in it represents the addition
operation, for example. Statements are likewise replaced with symbols—a conditional statement

Figure 14. The “visual programming” branch of Kiper’s Taxonomy of visual languages [4]

visual language systems

flow diagrams icons tables/forms others

control flow data flow

visual programming

graphical
interaction
systems
16

is replaced by a four sided figure, as shown in Figure 15. The rest of the language follows suit.

Another visual language is LabVIEW. [6] LabVIEW [6]is similar to V in that it is also based on
data-flow and has symbols for different kinds of statements.

Our general experience is that visual languages often trade one symbol system (text) for another
(visual), without an obvious increase in control or expressiveness. Those familiar with assembly
language programming note how baffling the code looks at first. With time the code becomes
less baffling until finally the meaning of the code seems immediately evident. At that point the
only thing that is still baffling is why it is confusing to newcomers. We suspect that a similar
progression happens with text and visual languages.

Whitley [7] argues that the value of visual programming—whatever that may turn out to be—is
still “unproven.” “This is so much the case that the empirical evidence problem warrants being
called the biggest open problem in visual programming research,” Whitley writes. The field is
trying to find solid ground. Empirical studies here would be helpful. Whitley concludes that
“visual representations can improve human performance,” but there is not enough evidence yet to
know the parameters of this improvement. We would have to agree that this same argument
applies to VSL.

4 Discussion

We believe that VSL provides significant power for two reasons. First, VSL provides a “second
opinion” for arbitrarily sized segments of code. This enables the developer to check that that
particular segment of code functions as it is intended to do. Second, VSL provides a way to
represent the organization of the code, using structures of arbitrary depth. This enables the
developer to express the code’s organization so that the forest can always be visible, in spite of
the trees. We believe that these two reasons provide significant power for code development and
understanding.

Figure 15. V conditional statement

Boolean Expression outputs for “true”

outputs for “false”

inputs
17

We do not know of a language—visual or otherwise—that provides the capabilities of VSL.

5 Status and Future Work

At present VSL is a “paper” language: there is no prototype, let alone an implementation. Our
next step is to build a prototype. With a prototype in hand we plan on running experiments to test
the hypothesis that VSL increases program understanding.
18

References

[1] Mikhail Auguston, “The V Experimental Visual Programming Language. (draft) Part 1.”
Technical Report NMSU-CSTR-9611, October 1996. 38 pages.

[2] Shi-Kuo Chang, “Visual Languages: A Tutorial and Survey.” IEEE Software. January 1987.
pp. 29-39.

[3] Juan Espinoza, Philip L. Campbell, “Source Code Assurance Tool: LDRD Final Report.”
SAND2001-3091. Sandia National Laboratories, Albuquerque, NM. Printed October 2001.

[4] James D. Kiper, Elizabeth Howard, Chuck Ames, “Criteria for Evaluation of Visual Program-
ming Languages.” Journal of Visual Languages and Computing (1997) 8, 175-192.

[5] Nan C. Shu, Visual Programming. Van Nostrand Reinhold Company, New York. 1988. ISBN
0-442-28014-9.

[6] G. Michael Vose, Gregg Williams, “LabVIEW: Laboratory Virtual Instrument Engineering
Workbench.” BYTE, September 1986. pp. 84-92.

[7] K. N. Whitley, “Visual Programming Languages and the Empirical Evidence For and
Against.” Journal of Visual Languages and Computing (1997) 8, 109-142.
19

20

Distribution

1 MS 0188 LDRD Office, 1030

2 0785 J. Espinoza, 6514

1 0785 R. E. Trellue, 6514

2 0785 P. L. Campbell, 6516

1 0785 R. L. Hutchinson, 6516

1 0839 R. L. Craft, 16000

1 0899 Central Technical Files, 8945-1

2 0899 Technical Library, 9616

1 0612 Review & Approval Desk, 9612

For DOE/OSTI
21

	Abstract
	Table of Contents
	1 Introduction
	2 VSL
	2.1 Extension 1: Explanations
	2.2 Extension 2: Nesting
	2.3 Extension 3: Arcs

	3 Related Work
	4 Discussion
	5 Status and Future Work
	References
	Distribution

