EXPERIMENTAL EVALUATION OF CHEMICAL SEQUESTRATION OF CARBON DIOXIDE IN DEEP AQUIFER MEDIA - PHASE II

PDF Version Also Available for Download.

Description

In 1998 Battelle was selected by the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) under a Novel Concepts project grant to continue Phase II research on the feasibility of carbon dioxide (CO{sub 2}) sequestration in deep saline formations. The focus of this investigation is to conduct detailed laboratory experiments to examine factors that may affect chemical sequestration of CO{sub 2} in deep saline formations. Reactions between sandstone and other geologic media from potential host reservoirs, brine solutions, and CO{sub 2} are being investigated under high-pressure conditions. Some experiments also include sulfur dioxide (SO{sub 2}) gases to evaluate ... continued below

Physical Description

24 pages

Creation Information

Gupta, Neeraj; Sass, Bruce & Ickes, Jennifer November 28, 2000.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

In 1998 Battelle was selected by the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) under a Novel Concepts project grant to continue Phase II research on the feasibility of carbon dioxide (CO{sub 2}) sequestration in deep saline formations. The focus of this investigation is to conduct detailed laboratory experiments to examine factors that may affect chemical sequestration of CO{sub 2} in deep saline formations. Reactions between sandstone and other geologic media from potential host reservoirs, brine solutions, and CO{sub 2} are being investigated under high-pressure conditions. Some experiments also include sulfur dioxide (SO{sub 2}) gases to evaluate the potential for co-injection of CO{sub 2} and SO{sub 2} related gases in the deep formations. In addition, an assessment of engineering and economic aspects is being conducted. This current Technical Progress Report describes the status of the project as of September 2000. The major activities undertaken during the quarter included several experiments conducted to investigate the effects of pressure, temperature, time, and brine composition on rock samples from potential host reservoirs. Samples (both powder and slab) were taken from the Mt. Simon Sandstone, a potential CO{sub 2} host formation in the Ohio, the Eau Claire Shale, and Rome Dolomite samples that form the caprock for Mt. Simon Sandstone. Also, a sample with high calcium plagioclase content from Frio Formation in Texas was used. In addition, mineral samples for relatively pure Anorthite and glauconite were experimented on with and without the presence of additional clay minerals such as kaolinite and montmorillonite. The experiments were run for one to two months at pressures similar to deep reservoirs and temperatures set at 50 C or 150 C. Several enhancements were made to the experimental equipment to allow for mixing of reactants and to improve sample collection methods. The resulting fluids (gases and liquids) as well as the rock samples were characterized to evaluate the geochemical changes over the experimental period. Preliminary results from the analysis are presented in the report. More detailed interpretation of the results will be presented in the technical report at the end of Phase II.

Physical Description

24 pages

Notes

OSTI as DE00788095

Source

  • Other Information: PBD: 28 Nov 2000

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: AC26-98FT40418--06
  • Grant Number: AC26-98FT40418
  • DOI: 10.2172/788095 | External Link
  • Office of Scientific & Technical Information Report Number: 788095
  • Archival Resource Key: ark:/67531/metadc720215

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 28, 2000

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • March 30, 2016, 7:16 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Gupta, Neeraj; Sass, Bruce & Ickes, Jennifer. EXPERIMENTAL EVALUATION OF CHEMICAL SEQUESTRATION OF CARBON DIOXIDE IN DEEP AQUIFER MEDIA - PHASE II, report, November 28, 2000; Pittsburgh, Pennsylvania. (digital.library.unt.edu/ark:/67531/metadc720215/: accessed December 13, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.