THREE-DIMENSIONAL STROCHASTIC ROCK-PROPERTY AND UNCERTAINTY MODELS FOR YUCCA MOUNTAIN, NEVADA

PDF Version Also Available for Download.

Description

Licensing of Yucca Mountain as a geologic disposal site for high-level nuclear waste will require quantitative predictions of the waste-isolation performance of the rocks that form Yucca Mountain and of the engineered barrier system for an extended period of time into the future. These predictions will require the use of numerical modeling in an attempt to capture the essence of highly complex physical processes, such as ground-water flow and the transport of potential radionuclide contaminants under both unsaturated and saturated conditions. Additional numerical modeling will be required to demonstrate that a mined geologic repository can be constructed safely within the ... continued below

Creation Information

MCKENNA, CHRISTOPHER A. RAUTMAN AND SEAN A. February 23, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Licensing of Yucca Mountain as a geologic disposal site for high-level nuclear waste will require quantitative predictions of the waste-isolation performance of the rocks that form Yucca Mountain and of the engineered barrier system for an extended period of time into the future. These predictions will require the use of numerical modeling in an attempt to capture the essence of highly complex physical processes, such as ground-water flow and the transport of potential radionuclide contaminants under both unsaturated and saturated conditions. Additional numerical modeling will be required to demonstrate that a mined geologic repository can be constructed safely within the rocks of Yucca Mountain, and that the underground openings will remain stable in the longer term when affected by the thermal pulse of the emplaced waste forms. A fundamental principle involved in the numerical representation of real-world physical processes is that the properties of the modeled domain that are important to that representation must be known ''exhaustively''. Standard procedure in virtually all numerical physical-process modeling is to discretize the model volume into a (large) number of individual elements or grid nodes, assign the necessary attributes to each element or node, and then apply one or more sets of mathematical expressions that are believed to represent the operation of the physical processes under investigation, given some set of external boundary and initial conditions. Because each element or node within the model domain must be assigned a set of properties to represent the variables within the numerical approximation of the process, those properties must be known at each relevant point in space. characterization of a geologic site, such as at Yucca Mountain. Because descriptive characterization is limited both by access (particularly to the subsurface) and by the availability of resources, that description is necessarily incomplete. Therefore, the exhaustive description of a site for purposes of numerical physical-process modeling requires the prior assumption of some type of conceptual model for the site, which is then implemented to assign the values of the necessary properties and other variables at every point in space.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: MOL.19980504.0098
  • Grant Number: DE-AC01-91RW00134
  • Office of Scientific & Technical Information Report Number: 776443
  • Archival Resource Key: ark:/67531/metadc720114

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 23, 1998

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • Feb. 10, 2016, 6:41 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 7

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

MCKENNA, CHRISTOPHER A. RAUTMAN AND SEAN A. THREE-DIMENSIONAL STROCHASTIC ROCK-PROPERTY AND UNCERTAINTY MODELS FOR YUCCA MOUNTAIN, NEVADA, report, February 23, 1998; Las Vegas, Nevada. (digital.library.unt.edu/ark:/67531/metadc720114/: accessed September 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.