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Recently, the question of a relevance of the so-called quantum chaos has been raised in
applications to quantum computation [2,3]. Indeed, according to the general approach to
closed systems of finite number of interating Fermi-particles (see, e.g. [4,5]), with an increase
of an interaction between qubits a kind of chaos is expected to emerge in the energy spectra
and structure of many-body states. Specifically, the fluctuations of energy levels and com-
ponents of the eigenstates turn out to be very strong and described by the Random Matrix
Theory. Clearly, if this happens in a quantum computer, it may lead to a destruction of the
coherence of quantum computations due to internal decoherence inside many-body states.
It is important to stress that quantum chaos occurs not only in the systems with random
interaction, but also for purely dynamical interaction. In the latter case, the mechanism of
chaos is due to a complex (non-linear) form of a two-body interaction represented in the
basis of non-interacting particles.

Numerical analysis [2] of a simplest model of quantum computer (2D model of 1/2-spins
with a random interqubit interaction J) shows that with an increase of the number L of
qubits, the chaos threshold J.. decreases as J., o 1/L. On this ground, it was claimed
that the onset of quantum chaos could be dangerous for quantum computers, since their
effectiveness requires L > 1. On the other hand, in [3] is was argued that in order to treat
this problem properly, one needs to distinguish between chaotic properties of stationary

states, and the dynamical process of quantum computation.



Below, we report our main theoretical and numerical results for the realistic model of
quantum computer, suggested in [1]. We consider both stationary and dynamical approaches
to the model in the region of a non-selective excitation which prepares a homogeneous
superposition of N = 2% states needed for the implementation of both Shor and Grover
algorithms.

The model describes a 1-dimensional chain of L interacting 1/2-spins in the constant
magnetic field B?, subjected to a sum of p = 1, ..., P time-dependent rectangular pulses of
a circular polarized magnetic field rotating in the z,y-plane. Each of the pulses has the
amplitude ¥ , frequency v, phase ¢,, and lasts during the period T}, = t,41 —t,. Therefore,

the Hamiltonian has the form,

L-1 P L—1 . . . .
H=—> (wlf+2 Y T lil7) — % > 0,(1)8 X (e“’f’t“h’fk_ + ez”f’t’L“"PI,j), (1)
k=0 n>k p=1 k=0

where the “pulse function” ©,(¢) equals 1 during the p-th pulse. The quantities J, stand
for the Ising interaction between two qubits , wy are the frequencies of spin’s precession in
the B*—field, and €, is the Rabi frequency corresponding to the p-th pulse. The operators
I are defined by the relations I = IF +4I7, and I7¥* = (1/2)o7"*, the latter being the
Pauli matrices.

The Hamiltonian for a single pulse can be written in the coordinate system, rotating
around z-axes with the frequency v,. Thus, for one pulse the model is described by the
stationary Hamiltonian (below, ¢, = 7/2,Q, = Q,v, = v). We mainly study the nearest
neighbor interaction (N-interaction) between qubits for the dynamical case, Ji,, = J 0p 41,
and when all J; 41 are random. In contrast to the model [2] with homogeneous magnetic
field, we consider the constant gradient magnetic field with a linear dependence on the
position of the k-th qubit, 6, = |wk1 — wi| K wi = ak, with Q, < Ji,, € dwy K wy. Thus,

for the dynamical N—interaction the Hamiltonian reads,

L-1 L-2
H=Y -6+ QI -2 Y I 6 =wp—v. )
k=0 k=0

For this Hamiltonian we have developed the theory [6,7] which predicts two transitions
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in dependence on the interaction J. The first one was termed in [7] the delocalization border
which corresponds to the transition to a weak chaos for

2

da
J > Jcr ~ ﬁ (3)

By the weak chaos we mean a kind of randomness in many-body states, together with
the absence of the Wigner-Dyson (WD) distribution P(s) for the spacings between energy
levels of the Hamiltonian (2). The latter distribution is a strong evidence of the quantum
chaos in the energy spectra of chaotic quantum systems, and typically it emerges above the
delocalization border [5]. Instead, the form of P(s) in our model is very close to the Poisson
which is known to occur in integrable systems. Our analytical approach allows one to explain
this unexpected result by showing that, indeed, the model (2) is close to an integrable one,
even in the case of completely random N-interaction [7].

The estimate (3) turns out to be very different from that obtained in [2] for the homo-
geneous magnetic field. Indeed, according to (3), the (weak) chaos border is independent of
the number of qubits. Therefore, magnetic field with a constant gradient strongly reduces
dangerous effects of the quantum chaos. Numerical data show that one needs to have a rela-
tively weak interaction, J < J,,, in order to avoid big errors in the structure of many-body
states, which appear as a result of weak chaos.

Another unexpected analytical prediction which is confirmed by the numerical data, is
that the delocalization border (3) remains the same for the case when all qubits interact one
to each other. However, in this case, the delocalization border (3) coincides with the onset
of strong chaos. The latter is characterized by strong (almost gaussian) fluctuations of the
components of eigenstates, and by the WD-distribution for P(s).

A theoretical analysis, supported by numerical computations ( [6,7]), predict a transition
to strong haos in presence of N-interaction too. Nevertheless it should be noticed that in
this case strong chaos is due to a strong overlap of energy bands.

We have also studied the errors that arise when preparating the uniform many-body

state from the ground one. For this, we computed the evolution of the wave function in the



model (1), during one pulse with ¢ = 7/2. Without the interaction, J, at the end of the
pulse all components of the wave function are the same ¢2 = 1/ V/N. The interaction results
in some errors in amplitude and phase which can be characterized by n = {||¢n| — ¥2|), and
¢ = (arctan(Imap, /Re,,))n, where (...), means the average over the different n components.

Numerical data show that the errors decrease with an increase of {2 respectively as
n o Q2% and ¢ o« Q! in agreement with simple analytical estimates. As one can see,
the delocalization border does not influence the errors. This means that the weak chaos
is not important for this kind of the evolution of our system. Indeed, this evolution lasts
quite short time compared with the inverse distance between nearest levels inside the energy
band. Therefore, until the bands are non-overlapped, the weak chaos does not influence the
dynamics. On the other hand, with the decrease of {2, the bands start to overlap which
could strongly increase errors in the wave function.
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