CDF: Run II Physics Projections

Masashi Tanaka for the CDF Collaboration

Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki, 305, Japan

In March 2001, the Fermilab Tevatron will start a new physics run of \(p\bar{p} \) collisions at \(\sqrt{s} = 2.0 \text{ TeV} \). The CDF experiments will collect a data sample of 2 fb\(^{-1} \) in the first two years. In this paper we describe the \(B \) physics prospects at CDF during the upcoming run.

1. Introduction

In this paper we describe the \(B \) physics prospects at CDF (Collider Detector at Fermilab). The CDF detector collected a data sample of 110 pb\(^{-1} \) of \(p\bar{p} \) collisions at \(\sqrt{s} = 1.8 \text{ TeV} \) during 1992-96 (Run I). A large number of \(B \) physics measurements have been performed with the data sample [1]. The measurement of the CP violation parameter \(\sin 2\beta \) [2] is still competitive with the first preliminary results of Babar [3] and Belle [4] experiments. Moreover, it is the unique feature to exploit the \(B^0_s \) and \(B^+_c \) mesons, and \(b \) baryons which is not produced at the \(\Upsilon(4S) \) machines.

The Tevatron will commence \(p\bar{p} \) collisions again in March 2001. The currently named Run II will provide 20 times greater luminosity than Run I, at a center of mass energy of 2 TeV. The goal of the first phase of Run II is the accumulation of 2 fb\(^{-1} \) in the first two years. Although a second step will provide a total luminosity higher than 15 fb\(^{-1} \) before the turn-on of the LHC. The main goals of the \(B \) physics for Run II are a precision measurement of the angles \(\beta \) and \(\gamma \), and observation of the \(B^0_s \) flavor oscillation as well as the rare \(B \) decay searches and studies of the heavier \(B \)-hadron states, \(B^+_c, \Lambda^0_c, \) etc.

2. Detector and Trigger Upgrade

The CDF detector has been upgraded [5] to prepare for the high radiation and the high crossing rate under Run II Tevatron environment. There are also several upgrades to improve the sensitivity of the CDF detector to the \(B \) physics:

- The acceptances of new silicon vertex detectors and new muon detector system for \(B \) decay signals are improved factors by of \(\sim 1.4 \) and \(\sim 2 \), respectively.

- A new silicon layer (L00) located immediately outside of the beam pipe at a radius of 1.6 cm improves the vertex resolution. The typical time resolution for \(B \) decays is 45 fs with the L00 and 60 fs without the L00.

- A new time of flight system (TOF) with a 100 ps of the flight time resolution provides a 2\(\pi \) separation of kaons and pions for charged tracks with momentum less than 1.6 GeV/c.

A new trigger system with a 3-level architecture will be installed. In Run II the Tevatron will be operated with 36 and 121 bunches, and the beam crossing occurs every 396 ns and 132 ns, respectively. The Level-1 system will reduce the rate to 50kHz. Inside the calorimeter and muon triggers, this include a tracking trigger (XFT) for tracks with transverse momentum \(p_T > 1.5 \text{ GeV/c} \). The L1 trigger system will allow us to lower the \(p_T \) threshold of the muon trigger from 2.2 GeV/c in Run I to 1.5 GeV/c, and increase the acceptance for the \(J/\psi \to \mu^+\mu^- \) trigger by a factor of \(\sim 2 \). The level-2 system will work at a rate of 300 Hz, and include a displaced track trigger (SVT) which uses the silicon detector information and measures the track impact parameter with a 35 \(\mu \text{m} \) precision.

In Run I, all the \(B \)-physics analyses are based on the data set triggered with on one or two leptons. However, the new trigger system allows...
us to record the hadronic B decay events without requiring any leptons. We designed dedicated triggers for the hadronic B decay events, which required two XFT tracks and two SVT tracks at Level 1 and Level 2, respectively. For example, we expect ~ 20000 and 10000 reconstructed events of the $B_s^0 \rightarrow D_\pi^- n\pi^+$ and $B_d^0 \rightarrow \pi^+\pi^-$ decays, respectively, in the 2 fb$^{-1}$ of the two track trigger data.

3. Flavor Tagging

The determination of the initial B hadron flavor (B or \bar{B}) is important for observing the mixing and CP asymmetries. In Run II, we will employ four flavor tagging methods. One of the methods, same-side tagging, uses charge correlation between a B hadron and its fragmentation tracks. Other three methods, opposite-side taggings use the charge correlation between a B hadron and second \bar{B} hadron: 1) the lepton tagging uses the charged lepton from the semileptonic $b \rightarrow \ell^-\nu\ell^+c$ decay; 2) the kaon tagging uses the charged kaon from the sequential $b \rightarrow c \rightarrow K^-\pi^+$ decay; 3) the jet charge tagging uses the fact that charge of the b quark to be less than zero.

Table 1 shows prediction of the effective tagging efficiency (ϵD^2). The $K-\pi$ separation with the TOF detector helps the flavor taggings such as the same side tagging for the B_s^0, and opposite side kaon tagging. For the $B_s^0 \rightarrow D^-\pi^+$ channel the TOF almost doubles the effective tagging efficiency ($5.7\% \rightarrow 11.3\%)$.

4. B_s mixing from $B_s^0 \rightarrow D^-\pi^+$

For measuring the $B_s^0\bar{B}_s^0$ mixing frequency x_s, Fourier analysis has been usually employed [6], and significance for the analysis is written by

$$
\text{Sig}(x_s) = \frac{1}{\sqrt{2}} \frac{1}{\sigma x_s} \left(\frac{S}{S+B} - e^{-\frac{(x_s-\sigma x_s)^2}{\sigma x_s^2}} \right) \quad (1)
$$

where N is number of the signal events, S/B is signal-to-background ratio, σx_s is life time of the B_s^0 meson, and σ_t is decay time resolution. It is interesting to note that a 5σ measurement corresponds to $\sigma x_s/x_s = 0.5\%$ with $x_s = 30$. Thus, once we observe the B_s^0 mixing, the statistical uncertainty for the x_s measurement is very small.

The two track trigger will collect a large number of the $B_s^0 \rightarrow D^- n\pi$ events, and the new silicon strip detector (LO0) significantly improves the decay time resolution. Figure 1 shows the required luminosity for a five sigma observation of the B_s^0 mixing with two different S/B cases. Thus a few hundred pb$^{-1}$ (the first few month) of the Run II data will be enough to observe the B_s mixing with $x_s = 20 \sim 30$. Also the maximum reach of our detector is $x_s \sim 65$.

5. $\sin 2\beta$ from $B_d \rightarrow J/\psi K_S^0$

In Run I, CDF measures the $\sin 2\beta$ to be $0.79 \pm 0.39 \pm 0.16$ in the 400 events of the $B_d^0 \rightarrow J/\psi K_S^0$ sample [2]. The Run II prospect of the statistical uncertainty is obtained by scaling the Run I measurement according to the equation,

$$
\sigma(\sin 2\beta) \propto \frac{1}{\sqrt{\epsilon D^2} N} \quad (3)
$$

The upgraded CDF II detector and the trigger system improve the acceptance for the $B_d^0 \rightarrow J/\psi K_S^0$ events by a factor of 2~3, and we will collect a 20000\sim30000 of signal samples in the 2 fb$^{-1}$ of the data. Systematic uncertainty of the $\sin 2\beta$ measurement is mainly caused by the dilution measurement by using $B_s^0 \rightarrow J/\psi K^{*0}$ for the same-side tagging and $B_u^+ \rightarrow J/\psi K^+$ for the opposite-side taggings.
Figure 1. Required luminosity for a 90.6% confidence level of detecting a peak in the CP asymmetry signal. The CP asymmetry signal is divided into two regions: 1) the region with the CP asymmetry signal above the 90.6% confidence level and 2) the region with the CP asymmetry signal below the 90.6% confidence level. The CP asymmetry signal is calculated using the formula:

\[
\frac{1}{N} \sum_{i=1}^{N} (S_i - B_i)
\]

where \(N\) is the number of events and \(S_i\) and \(B_i\) are the signal and background events, respectively.

Figure 2. Expected statistical uncertainty for each CP asymmetry signal region.

Figure 3. Required luminosity for a 90.6% confidence level of detecting a peak in the CP asymmetry signal.
Figure 3. Expected uncertainty for measuring the $A_{FB}(m_{\mu^+\mu^-})$ distribution with 50 events (2 fb$^{-1}$) and 400 events (15 fb$^{-1}$) of the data.

The solid lines in the plots correspond to the standard model prediction [11].

8. Other Studies

- The $B^0 \rightarrow J/\psi \phi$ decays are sum of the CP-even and CP-odd states, and we can extract difference of their width ($\Delta \Gamma$) by fitting the decay time distribution to two exponential components. The Run I CDF experiment observed a 50 events of the $B^0 \rightarrow J/\psi \phi$ decays and measured the CP-even fraction to be 0.77 ± 0.19 [12]. In Run II, we will obtain 4k events of the $B^0 \rightarrow J/\psi \phi$ sample per 2 fb$^{-1}$ of data and measure the $\Delta \Gamma$ with a precision of $\pm(0.03 \text{ to } 0.08)$ depending on the CP-even fraction.

- The angle γ can be probed the $B^0_s \rightarrow D^+_s K^- \bar{K}^+$ decay [13] which we will collect $\sim 850k$ signals in the 2 fb$^{-1}$ of the data. The expected error for $\sin \gamma$ depends on the signal-to-background ratio and approximately 0.7 and 0.4 for the case with $S/B = 1/6$ and $S/B = 1$, respectively.

- B_c meson was first observed in Run I CDF data with ~ 20 events of the $B_c^+ \rightarrow J/\psi \ell^+ \nu$ decay [14]. In Run II, we expect ~ 800 $B_c^+ \rightarrow J/\psi \ell^+ \nu$ events, 360 $B_c^+ \rightarrow J/\psi \pi^+$ events, and 30 $B_c^+ \rightarrow B_s^0 \ell^- \nu$ events per 2 fb$^{-1}$.

9. Conclusions

CDF has a rich program to exploit the data of Run II Tevatron. The main goals of the B physics in the 2 fb$^{-1}$ of the data are: the measurement of the B_s oscillation with sensitivity up to $x_s \sim 65$; the measurement of the $\sin 2 \beta$ with an error of 0.07; the measurement of the γ with an error of 102; the studies of the rare B decays and the B_c^+ decays. These are a compatible programs with those at $\Upsilon(4S)$ B factories and CDF will significantly contribute to B physics before the turn-on of B TeV and LHC-b.

10. Acknowledgement

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and the National Science Foundation; the Natural Sciences and Engineering Research Council of Canada; the Istituto Nazionale di Fisica Nucleare of Italy; the Ministry of Education, Science, Sports and Culture of Japan; the National Science Council of the Republic of China; and the A. P. Sloan Foundation.

REFERENCES

1. Stephen Bailey, these proceedings.
4. H. Aihara [BELLE Collaboration], Proceedings for 30th International Conference On

5. Jack Cranshaw, these proceedings.