Nitrogen-Induced Modification of the Electronic Structure of Group III-N-V Alloys: Preprint

PDF Version Also Available for Download.

Description

Incorporation of nitrogen in conventional III-V compound semiconductors to form III-N-V alloys leads to a splitting of the conduction band into two nonparabolic sub-bands. The splitting can be described in terms of an anticrossing interaction between a narrow band of localized nitrogen states and the extended conduction-band states of the semiconductor matrix. The downward shift of the lower sub-band edge is responsible for the N-induced reduction of the fundamental band-gap energy. The modification of the conduction-band structure profoundly affects the optical and electrical properties of the III-N-V alloys.

Physical Description

vp.

Creation Information

Walukiewicz, W.; Shan, W.; Ager, J. W., III; Chamberlin, D. R.; Haller, E. E. (Lawrence Berkeley National Laboratory); Geisz, J. F. et al. April 1, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 29 times. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Incorporation of nitrogen in conventional III-V compound semiconductors to form III-N-V alloys leads to a splitting of the conduction band into two nonparabolic sub-bands. The splitting can be described in terms of an anticrossing interaction between a narrow band of localized nitrogen states and the extended conduction-band states of the semiconductor matrix. The downward shift of the lower sub-band edge is responsible for the N-induced reduction of the fundamental band-gap energy. The modification of the conduction-band structure profoundly affects the optical and electrical properties of the III-N-V alloys.

Physical Description

vp.

Source

  • Electrochemical Society International Symposium, Seattle, WA (US), 05/02/1999--05/06/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: NREL/CP-520-29583
  • Grant Number: AC36-99GO10337
  • Office of Scientific & Technical Information Report Number: 789281
  • Archival Resource Key: ark:/67531/metadc719897

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 1, 1999

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • Jan. 20, 2024, 2:49 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 29

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Walukiewicz, W.; Shan, W.; Ager, J. W., III; Chamberlin, D. R.; Haller, E. E. (Lawrence Berkeley National Laboratory); Geisz, J. F. et al. Nitrogen-Induced Modification of the Electronic Structure of Group III-N-V Alloys: Preprint, article, April 1, 1999; Golden, Colorado. (https://digital.library.unt.edu/ark:/67531/metadc719897/: accessed March 19, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen