Electromagnetic fields in cased borehole

PDF Version Also Available for Download.

Description

Borehole electromagnetic (EM) measurements, using fiberglass-cased boreholes, have proven useful in oil field reservoir characterization and process monitoring (Wilt et al., 1995). It has been presumed that these measurements would be impossible in steel-cased wells due to the very large EM attenuation and phase shifts. Recent laboratory and field studies have indicated that detection of EM signals through steel casing should be possible at low frequencies, and that these data provide a reasonable conductivity image at a useful scale. Thus, we see an increased application of this technique to mature oilfields, and an immediate extension to geothermal industry as well. ... continued below

Physical Description

vp.

Creation Information

Lee, Ki Ha; Kim, Hee Joon & Uchida, Toshihiro July 20, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsors

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Borehole electromagnetic (EM) measurements, using fiberglass-cased boreholes, have proven useful in oil field reservoir characterization and process monitoring (Wilt et al., 1995). It has been presumed that these measurements would be impossible in steel-cased wells due to the very large EM attenuation and phase shifts. Recent laboratory and field studies have indicated that detection of EM signals through steel casing should be possible at low frequencies, and that these data provide a reasonable conductivity image at a useful scale. Thus, we see an increased application of this technique to mature oilfields, and an immediate extension to geothermal industry as well. Along with the field experiments numerical model studies have been carried out for analyzing the effect of steel casing to the EM fields. The model used to be an infinitely long uniform casing embedded in a homogeneous whole space. Nevertheless, the results indicated that the formation signal could be accurately recovered if the casing characteristics were independently known (Becker et al., 1998; Lee el al., 1998). Real steel-cased wells are much more complex than the simple laboratory models used in work to date. The purpose of this study is to develop efficient numerical methods for analyzing EM fields in realistic settings, and to evaluate the potential application of EM technologies to cross-borehole and single-hole environment for reservoir characterization and monitoring.

Physical Description

vp.

Notes

OSTI as DE00789994

Source

  • The 5th SEGJ International Symposium--Imaging Technology, Tokyo (JP), 01/24/2001--01/26/2001

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--47005-Ext.-Abs.
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 789994
  • Archival Resource Key: ark:/67531/metadc719709

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 20, 2001

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • April 4, 2016, 3:10 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Lee, Ki Ha; Kim, Hee Joon & Uchida, Toshihiro. Electromagnetic fields in cased borehole, article, July 20, 2001; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc719709/: accessed August 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.