RSAP - A Code for Display of Neutron Cross Section Data and SAMMY Fit Results

February 2001

R. O. SAYER
DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge:

Web site: http://www.osti.gov/bridge

Reports produced before January 1, 1996, may be purchased by members of the public from the following source:

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone: 703-605-6000 (1-800-553-6847)
TDD: 703-487-4639
Fax: 703-605-6900
E-mail: info@ntis.fedworld.gov
Web site: http://www.ntis.gov/support/ordernowabout.htm

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange (ETDE) representatives, and International Nuclear Information System (INIS) representatives from the following source:

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831
Telephone: 865-576-8401
Fax: 865-576-5728
E-mail: reports@adonis.osti.gov
Web site: http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
RSAP – A Code for Display of Neutron Cross Section Data and SAMMY Fit Results

R. O. Sayer

Date Published: February 2001
CONTENTS

LIST OF FIGURES .. iv
LIST OF TABLES .. iv

1. Overview .. 1

2. Use of RSAP ... 2
 2.1 Getting Started .. 2
 2.2 ODF Files .. 2
 2.3 DAT Files .. 3
 2.4 Multiple Plots in a Window ... 3
 2.5 Overlay of 2 or more Plots .. 4
 2.6 Plot File Formats .. 4

3. RSAP Specifiers and Plot Requests ... 5
 Table 1. RSAP Plot Types .. 5
 Table 2. RSAP Specifiers and Arguments ... 6

4. Example Input Files ... 8

5. Peak Search and Fitting .. 26

6. Automatic Spin Group Variation ... 29
 6.1 Resonances treated sequentially .. 32
 6.2 Two Resonances treated simultaneously ... 32

Acknowledgements .. 35

References .. 35

Appendices .. 36

A. Example Script for SAMMY + RSAP Run ... 36
B. Example rsap.ratepth File .. 36
C. Example rsap.parcom File .. 37
D. PLPLOT Metafiles and plrender ... 38
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>/home/ros/axp/RSAP/EXAMPLE/1/inx</td>
</tr>
<tr>
<td>2</td>
<td>/home/ros/axp/RSAP/EXAMPLE/2/inx</td>
</tr>
<tr>
<td>3</td>
<td>/home/ros/axp/RSAP/EXAMPLE/3/inxs2</td>
</tr>
<tr>
<td>4</td>
<td>/home/ros/axp/RSAP/EXAMPLE/4/alortrantot</td>
</tr>
<tr>
<td>5</td>
<td>/home/ros/axp/RSAP/EXAMPLE/5/incolxpsc</td>
</tr>
<tr>
<td>6</td>
<td>/home/ros/axp/RSAP/EXAMPLE/6/incap</td>
</tr>
<tr>
<td>7</td>
<td>/home/ros/axp/RSAP/EXAMPLE/7/in3odf</td>
</tr>
<tr>
<td>8</td>
<td>/home/ros/axp/RSAP/EXAMPLE/8/inpl_231</td>
</tr>
<tr>
<td>9</td>
<td>/home/ros/axp/RSAP/EXAMPLE/9/inovr6</td>
</tr>
<tr>
<td>10</td>
<td>/home/ros/axp/RSAP/EXAMPLE/10/intxt</td>
</tr>
<tr>
<td>11</td>
<td>/home/ros/axp/RSAP/EXAMPLE/11/transxps</td>
</tr>
<tr>
<td>12</td>
<td>/home/ros/axp/RSAP/EXAMPLE/12/dosgv25</td>
</tr>
</tbody>
</table>

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RSAP Plot Types .. 5</td>
</tr>
<tr>
<td>2</td>
<td>RSAP Specifiers and Arguments... 6</td>
</tr>
</tbody>
</table>
RSAP – A Code for Display of Neutron Cross Section Data
and SAMMY Fit Results

R. O. Sayer

1. Overview

RSAP is a computer code for display of neutron cross section data and selected SAMMY output. SAMMY [1] is a multilevel R-matrix code for fitting neutron time-of-flight cross-section data using Bayes' method. RSAP, which runs on the Digital Unix Alpha platform, reads ORELA Data Files (ODF) created by SAMMY and uses graphics routines from the PLPLOT [2] package. In addition, RSAP can read data and/or computed values from ASCII files with a format specified by the user.

Plot output may be displayed in an X window, sent to a postscript file (rsap.ps), or sent to a color postscript file (rsap.psc). Thirteen plot types are supported, allowing the user to display cross section data, transmission data, errors, theory, "Bayes" fits, and residuals in various combinations. In this document the designations “theory” and "Bayes" refer to the initial and final theoretical cross sections, respectively, as evaluated by SAMMY. Special plot types include Bayes/Data, Theory - Data, and Bayes - Data. Output from two SAMMY runs may be compared by plotting the ratios Theory2/Theory1 and Bayes2/Bayes1 or by plotting the differences (Theory2 - Theory1) and (Bayes2 - Bayes1).

The term "plot" is used to denote a graphical representation of a combination of data, theory, errors, and Bayes from one ODF file. Several plots may be stacked in a single frame in a window (or page) with a common x-axis. RSAP also supports multiple frames in a window with each frame containing a separate plot. Up to 8 plots may be superposed, or overlaid, in one window with a separate normalization factor applied to each data set. The term "data set" denotes the numerical values of data, theory, etc. in one ODF file.

Data may be plotted as histograms, points, small circles, or large circles. Theoretical values may be displayed as solid or dashed lines. Each axis may be linear or logarithmic. Any one of the colors red, blue, green, cyan, yellow, magenta, or white may be specified for data, theory, Bayes, axes, and text. For example, the specifier:

\texttt{col y r g}

indicates colors yellow for theory, red for Bayes, and green for data. These are the defaults. Note that white ("w") shows well on the screen and in postscript plots, but white is invisible in color postscript plots. A detailed example is presented in section 4.5.

Plots may be annotated in several ways:

- values of resonance energies and widths read from a user-specified "PAR" file.
- user-specified X- and Y-axis label strings.
- User-specified annotation strings may be written at user-specified locations.
- A title string may be written above the plot.
Two text fonts, Simple and Roman, are supported. The default Simple font draws faster on the screen, and the Roman font is more readable for hard copy and publication quality plots.

RSAP produces an ASCII file "rsap.parcom" containing a formatted comparison of the user-specified PAR file with the file "SAMMY.PAR" and an ASCII file "rsap.ratexpth" in which energies, data, errors, theory, results of a SAMMY Bayes run, and percentage differences are listed. If SAMMY.LPT exists, the final value of the conventional CHISQ/N will be written on the plot.

RSAP reads input from either the keyboard or a file, and produces plots as specified by input quantities. To run RSAP on a DEC Alpha machine in the ORNL CAD farm:

rsap

or

rsap < inputfile

where "inputfile" is the name of your input file. Sample RSAP input files are listed and explained in section 4, Example Input Files. Each example corresponds to one of the sample plots displayed in Figures 1-10.

The following sections include discussion of RSAP usage, plot types, RSAP specifiers, example input files, peak search and fitting, and automatic spin group variation.

2. Use of RSAP

This section provides a brief introduction to some of the features of RSAP as well as descriptions of input data files and output plot file formats. More detail is given in sections 3-6.

2.1. Getting Started

A good place to begin is Example 1, which plots data, errors, and the Bayes fit in one frame. Read the documentation in section 4 and run this simple case. Then copy the input file to your directory, and try different options, types of plots, etc. Try one of your ODF files. Run example 2 to stack two frames in one window and example 3 to plot from two ODF files. All example cases may be run sequentially with the script:

/home/ros/axp/RSAP/v5/EXAMPLE/doexamples

Typing "h" at the RSAP prompt will list plot types and specifiers.

2.2. ODF Files

RSAP reads ORELA Data Files (ODF) created by SAMMY runs on Digital Unix Alpha workstations. A maximum of 60000 data points is allowed. Data points may be averaged before plotting by using the avg specifier.
All ODF files in the user's current directory may be opened by following the `odf` specifier with a space and asterisk e.g., "odf *".

SAMMY writes ODF files with energies in units of eV (keV) if the maximum energy is less (greater) than 1 keV. The ODF file structure does not include information on energy units. Thus, the user must specify the energy units, either by the default (keV), or by selecting eV with the specifier "ev 2".

2.3. DAT Files

RSAP can read data and/or computed values from an ASCII "DAT" file with a user-specified format. Five quantities are read per record: x, y1, err1, y2, and y3. These quantities can be any set of numerical data; however, in order to use the same RSAP commands as those used for ODF files, the code makes the correspondences x ⇔ energy, y1 ⇔ data, err1 ⇔ error, y2 ⇔ theory, and y3 ⇔ Bayes. Note that the initial and final theoretical cross sections evaluated by SAMMY are denoted by the terms "theory" and "Bayes", respectively. Thus the RSAP plot request "1 dt" will plot y1 (data) and y2 (theory) vs. x (energy). The user may specify axes labels pertaining to the actual information in the DAT file; for example

```
xlb  time
ylb  pressure and temperature
```

The default format is `(5e11)`, corresponding to the `csisrs` data format. Other formats are selected with the `fmt` specifier; for example `fmt (5e20.6)`. A maximum of 60000 data records is allowed. Data points may be averaged before plotting by using the `avg` specifier.

2.4. Multiple Plots in a Window

Multiple plots in a window may be accomplished by specifying more than 1 frame in either the x- or the y-direction through the "ops" command. Each frame will contain a plot with unique x- and y-axes. For example, use "ops 2 3" to plot 6 data sets in a 2 x 3 matrix in x and y.
Two to eight plots may be "stacked" in the same frame using a common x-axis. A given plot may include any combination of data, theory, and Bayes values. Examples 2 and 3 illustrate the use of the "ops 1 1 2" command to stack 2 plots in one frame (see Figures 2 and 3). To plot 8 data sets, stacking 4 plots per frame in a 2 x 1 matrix in x and y:

\[
\text{ops 2 1 4}
\]

\[
\text{ops 2 1 4}
\]

2.5. Overlay of 2 or more Plots

RSAP allows up to 8 "plots" to be overlaid in the same frame using common x- and y-axes. A particular plot may include any combination of data, theory, and Bayes values. A normalization factor may be applied to each data set via the "nrm" specifier as defined in section 3. This overlay feature is most useful for showing general features of fits to several data sets. Example 9 illustrates the use of normalization factors in an overlay.

2.6. Plot File Formats

The color (monochrome) postscript file \textit{rsap.psc (rsap.ps)} produced by RSAP may be converted to GIF, JPEG, or TIFF format with the \texttt{xv} program. For example, the command

\[
\text{xv -rot 90 -cmap rsap.psc}
\]

displays both \texttt{rsap.psc} and the xv control window. Click on "SAVE" in the control window and choose the file format in the "SAVE" window.

RSAP also produces a PLPLOT metafile, \textit{rsap.meta}, that may be rendered with the \texttt{plrender} procedure described in Appendix D. For example, to make a color postscript file, \textit{rsap_port}, in portrait orientation:

\[
\text{plrender –dev psc –o rsap_port –ori 3 rsap.meta}
\]
3. RSAP Specifiers and Plot Requests

RSAP input consists of "specifier" cards and plot request cards. At least one "odf" or "dat" specifier is required to define an input file. Other specifiers such as "ops" may be included to set various input parameters. A device specifier (x, ps, or psc) is required to set the output device to (X-window, postscript file, or color postscript file).

Note that the device specifier "x" sends the plot to an X plot window, the color postscript file rsap.psc, the monochrome postscript file rsap.ps, and the PLPLOT metafile rsap.meta. Specifiers ps and psc send output to postscript files only.

After a device specifier, RSAP expects one or more plot request cards. Plot request input consists of the ODF file number, plot type, emin, emax, ymin, ymax in (a2, a4, 4f10) format. X- and Y-axis limits are denoted by (emin, emax) and (ymin, ymax), respectively. Axes limits default to the data limits. RSAP plot types and specifiers are listed in Tables 1 and 2, respectively.

<table>
<thead>
<tr>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 d</td>
<td>CROSS SECTION Data from ODF file 1</td>
</tr>
<tr>
<td>2 d</td>
<td>CROSS SECTION Data from ODF file 2</td>
</tr>
<tr>
<td>1 de</td>
<td>Data, Errors</td>
</tr>
<tr>
<td>1 dt</td>
<td>Data, Theory (INITIAL theoretical cross section)</td>
</tr>
<tr>
<td>1 db</td>
<td>Data, Bayes (FINAL theoretical cross section)</td>
</tr>
<tr>
<td>1 det</td>
<td>Data, Errors, Theory</td>
</tr>
<tr>
<td>1 deb</td>
<td>Data, Errors, Bayes</td>
</tr>
<tr>
<td>1 lt</td>
<td>Residuals, Theory</td>
</tr>
<tr>
<td>1 rb</td>
<td>Residuals, Bayes</td>
</tr>
<tr>
<td>1 bld</td>
<td>Bayes/Data</td>
</tr>
<tr>
<td>1 dlt</td>
<td>Data, Theory, Bayes</td>
</tr>
<tr>
<td>1 etb</td>
<td>Data, Errors, Theory, Bayes</td>
</tr>
<tr>
<td>1 tmd</td>
<td>Theory - Data</td>
</tr>
<tr>
<td>1 bmd</td>
<td>Bayes - Data</td>
</tr>
<tr>
<td>a d</td>
<td>TRANSMISSION Data from ODF file 1</td>
</tr>
<tr>
<td>b d</td>
<td>TRANSMISSION Data from ODF file 2</td>
</tr>
<tr>
<td>a de</td>
<td>TRANSMISSION Data, Errors</td>
</tr>
<tr>
<td>a dt</td>
<td>Data, Theory</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>12tot</td>
<td>(Theory from file 2) / (Theory from file 1)</td>
</tr>
<tr>
<td>12bob</td>
<td>(Bayes from file 2) / (Bayes from file 1)</td>
</tr>
<tr>
<td>12tmt</td>
<td>Theory2 - Theory1</td>
</tr>
<tr>
<td>12bmb</td>
<td>Bayes2 - Bayes1</td>
</tr>
</tbody>
</table>
Table 2. RSAP Specifiers and Arguments

<table>
<thead>
<tr>
<th>SPECIFIER</th>
<th>ARGUMENTS</th>
<th>FORMAT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ann</td>
<td>kpl, ka,</td>
<td>i1, i1,</td>
<td>Plot # for this string</td>
</tr>
<tr>
<td></td>
<td>kacol</td>
<td>i2</td>
<td>1,2,3 for left, center, right above frame top</td>
</tr>
<tr>
<td></td>
<td>ann_string</td>
<td>a40</td>
<td>4,5,6 for left, center, right below frame top</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>color</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>annotation string</td>
</tr>
<tr>
<td>avg</td>
<td>kaverage</td>
<td>i2</td>
<td># of data points to average before plotting</td>
</tr>
<tr>
<td>bug</td>
<td>kdebug</td>
<td>i2</td>
<td>> 0 says print debug information</td>
</tr>
<tr>
<td>cap</td>
<td>capt_string</td>
<td>a64</td>
<td>Caption string - up to 64 characters</td>
</tr>
<tr>
<td>cmf</td>
<td>cmf_name</td>
<td>a72</td>
<td>Command file name - up to 72 characters</td>
</tr>
<tr>
<td>col</td>
<td>kt,kb,kd,ka,kt</td>
<td>5a2</td>
<td>colors for theory,Bayes,data,axes,text one of "y","r","g","c","b","m","w"</td>
</tr>
<tr>
<td>dat</td>
<td>dat_name</td>
<td>a72</td>
<td>DAT file name - up to 72 characters</td>
</tr>
<tr>
<td>ev</td>
<td>kplev</td>
<td>i2</td>
<td>= 2 says ODF energies are in eV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>> 0 says resonance energies, widths in eV</td>
</tr>
<tr>
<td>fmt</td>
<td>fmt_string</td>
<td>a72</td>
<td>format string for dat files</td>
</tr>
<tr>
<td>fnt</td>
<td>kfont</td>
<td>i2</td>
<td>1 (2) says SIMPLE (ROMAN) font</td>
</tr>
<tr>
<td>h</td>
<td></td>
<td></td>
<td>prints "help" messages</td>
</tr>
<tr>
<td>lab</td>
<td>kodf, kdate, kchi</td>
<td>3i2</td>
<td>= 0 : don't write odf name, date, chisq/n</td>
</tr>
<tr>
<td>log</td>
<td>kx, ky</td>
<td>2i2</td>
<td>kx (ky) > 0 says logarithmic x (y) axis</td>
</tr>
<tr>
<td>lpr</td>
<td></td>
<td></td>
<td>sends rsap.ps to default printer</td>
</tr>
<tr>
<td>nrm</td>
<td>Anorm(1-8)</td>
<td>8f</td>
<td>Normalize ODF File i by Anorm(i)</td>
</tr>
<tr>
<td>odf</td>
<td>Odfname</td>
<td>a72</td>
<td>ODF file name - up to 72 characters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a1</td>
<td>Reads up to 8 ODF files in current directory</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>odf /home/xyz/u235/total.odf</td>
</tr>
<tr>
<td>ops</td>
<td>nx,ny,kstack, kpts, keres,kgamr</td>
<td>6i2</td>
<td># x frames, # y frames, # plots stacked, 0=histogram, 1=dots, 20(21)=small(big) circles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>> 0 says write res. Energies, Widths</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ops 1 2 1 1 1 1</td>
</tr>
<tr>
<td>ovr</td>
<td>kover</td>
<td>i2</td>
<td>Overlay kover plots in 1 window (kover < 9)</td>
</tr>
<tr>
<td>oxp</td>
<td>exp_string</td>
<td>a72</td>
<td>String for plot request specifier</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Default: oxp 1 dtb</td>
</tr>
</tbody>
</table>
Table 2, RSAP Specifiers and Arguments, cont.

<table>
<thead>
<tr>
<th>SPECIFIER</th>
<th>ARGUMENTS</th>
<th>FORMAT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>par</td>
<td>inparfile</td>
<td>a72</td>
<td>PAR file name - up to 72 characters</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>par my_par_file_name</td>
</tr>
<tr>
<td>pks</td>
<td>fwhm, bias, a2targ, ltarg, Jtot, gamgam, fwhmax</td>
<td>7f</td>
<td>see section on Peak Search and Fitting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pks 1.1,3.0, 235.,0.,0.5,0.5,1.2</td>
</tr>
<tr>
<td>q</td>
<td></td>
<td></td>
<td>tells RSAP to quit</td>
</tr>
<tr>
<td>rat</td>
<td>kratout</td>
<td>i2</td>
<td>> 0 says write values to file "rsap.ratexpth"</td>
</tr>
<tr>
<td>sam</td>
<td></td>
<td></td>
<td>run SAMMY using PAR file rsap.peaks</td>
</tr>
<tr>
<td>sgi</td>
<td>sgi_name</td>
<td>a72</td>
<td>SAMMY input file name - up to 72 characters</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sgi my_SAMMY_input_file_name</td>
</tr>
<tr>
<td>sgd</td>
<td>sgd_name</td>
<td>a72</td>
<td>SAMMY data file name - up to 72 characters</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sgd my_SAMMY_data_file_name</td>
</tr>
<tr>
<td>sgr</td>
<td>numres, jsg1, ..., jsg8</td>
<td>9i4</td>
<td>SGV resonance number, spin group list</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sgr 25, 4, 5, 6</td>
</tr>
<tr>
<td>sgv</td>
<td>esglo, esghi</td>
<td>2f8</td>
<td>min and max energies for SGV fit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sgv 380.,430.</td>
</tr>
<tr>
<td>sgp</td>
<td></td>
<td></td>
<td>Automatic plot of SGV fit results</td>
</tr>
<tr>
<td>sym</td>
<td>ksymoff(1-8)</td>
<td>8i4</td>
<td>ksymoff(i) = symbol for ODF file i</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sym 1,20,21,0,22</td>
</tr>
<tr>
<td>sys</td>
<td>command</td>
<td>a72</td>
<td>execute Unix "command"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sys mv oldname newname</td>
</tr>
<tr>
<td>tit</td>
<td>title_string</td>
<td>a32</td>
<td>32-character title string</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>tit my plot title</td>
</tr>
<tr>
<td>txt</td>
<td>kt, ktcol, xt,yt, sizet, angle, txtstring</td>
<td>2i4, 4f8.1, a40</td>
<td>Odf #, text color, position (xt, yt), size, angle, 40-character text string</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>txt 1,9,250.3,200.,2.0,,MyText</td>
</tr>
<tr>
<td>xlb</td>
<td>xaxlabel</td>
<td>a24</td>
<td>24-character X-axis label</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>xlb my X-axis label</td>
</tr>
<tr>
<td>ylb</td>
<td>yaxlabel</td>
<td>a24</td>
<td>24-character Y-axis label</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ylb my Y-axis label</td>
</tr>
<tr>
<td>x</td>
<td></td>
<td></td>
<td>output to X-window, rsap.ps, rsap.psc, rsap.meta</td>
</tr>
<tr>
<td>ps</td>
<td></td>
<td></td>
<td>output to file rsap.ps</td>
</tr>
<tr>
<td>psc</td>
<td></td>
<td></td>
<td>output to file rsap.psc</td>
</tr>
<tr>
<td>###</td>
<td></td>
<td></td>
<td>Comment - ignored by RSAP</td>
</tr>
</tbody>
</table>
4. Example Input Files

Ten sample RSAP input files are described in this section. Each example corresponds to one of the sample plots displayed in Figures 1-10. The specifier "###" introduces a comment line that is ignored by RSAP.

Note that the device specifier "x" sends the plot to four devices: an X plot window, a PLPLOT metafile `rsap.meta`, the color postscript file `rsap.psc`, and the monochrome postscript file `rsap.ps`. The postscript files may then be sent to the default printer:

```
lpr -h rsap.ps  or  lpr -h rsap.psc
```

A postscript file may be viewed via "ghostview -seascape rsap.psc".

A postscript file may be created without plotting to an X window by replacing the specifier "x" with "ps" or "psc".

Example 1. One Plot in One Window

This input compares `JohnFowl235_990203.par` and the final SAMMY parameter file `SAMMY.PAR`, reads `JohnFowl235_990203.odf`, and plots one frame (nxp=nyp=1) to an X window. The "deb" card specifies a plot of cross section data with error bars and the Bayes fit for 2200 < E < 2500 keV with y-axis limits of 0 and 1.0 b. If axis limits are not specified, the plot will span the range of data values. Resonance energies and widths are displayed (keres=1, kgamres=1) on the plot. A blank card ends the input for this particular plot sequence and causes the plot to be drawn on the output device. The "q" in column 1 tells RSAP to quit. The "###" comment card is ignored by the code.

```
par /home/ros/axp/RSAP/v5/EXAMPLE/1/JohnFowl235_990203.par     (a4,a72)
odf /home/ros/axp/RSAP/v5/EXAMPLE/1/JohnFowl235_990203.odf     (a4,a72)
tit JohnFowl235_990203 3.784                                   (a4,a32)
### ops: nxp=1,nyp=1, kstack=0, kpoints=1, keres=1, kgamres=1
ops 1 1 0 1 1 1                   (a4,6i2)
x            output device    (x  , ps, psc)
1 deb 2200.,2500.,0.0,1.00                                  (a2,a4,4f10)
q
```

To make the above plot on your X terminal, type:

```rsap < /home/ros/axp/RSAP/v5/EXAMPLE/1/inx```

You should see a plot like the one in Figure 1. On your screen the background should be black. After RSAP reads the "deb" card and sends the plot to your screen, the code waits for a "RETURN" before reading the next input card.

Alternately, the "x" and "1 deb" cards could be replaced by one "oxp" card:

```oxp 1 deb 2200.,2500.,0.0,1.00                                (a4,a2,a4,4f10)```
The "par" , "tit" , and "ops" specifiers are optional. The default "ops" values are:

- \(nxp = nyp = 1 \) (1 plot in x direction, 1 plot in y direction),
- \(kstack = 1 \) (1 plot per frame),
- \(kpoints = 0 \) (plot data as histograms),
- \(keres = kgamres = 0 \) (no display of resonance energies, widths).

Above the plot the ODF file name, title, date, and time are listed. If the SAMMY output file SAMMY.LPT exists, the conventional CHISQ/NDAT is also listed above the plot. If \(keres = 1 \), spin group numbers are listed just above the bottom x axis, and resonance energies are listed just below the top x axis. Resonance energies greater than the x-axis maximum are listed to the right of the plot.
Example 2. Stack 2 frames in 1 window

To see an example of stacking 2 plots in a window (Figure 2), type:

```
rsap < /home/ros/axp/RSAP/v5/EXAMPLE/2/inx
par /home/ros/axp/RSAP/v5/EXAMPLE/2/bcjav3ndsh_990203.par
odf /home/ros/axp/RSAP/v5/EXAMPLE/2/bcjav3ndsh_990203.odf
tit cjav3/C 990203 3.78, 6.5    Title (a32)
### ops: n xp=1, n yp=1, k stack=2, k points=1, k eres=1, k gamres=1
ops 1 1 2 1 1 1
x
1 db 4000.,4700.,0.5,3.5
1 rb 4000.,4700.
```

The upper plot in Figure 2 shows both the residuals (dots) and the Bayes fit.
Example 3. Plot from 2 ODF files

Plots from two ODF files may be stacked in one window:

```plaintext
par /home/ros/axp/RSAP/v5/EXAMPLE/3/o16/990203/JohnFowl235_990203.par
odf /home/ros/axp/RSAP/v5/EXAMPLE/3/o16/990203/JohnFowl235_990203.odf
odf /home/ros/axp/RSAP/v5/EXAMPLE/3/o16/990203/duanesh_990203.odf
tit 990203. JohnFowl235 + duanesh
### ops: nxp=1, nyp=1, kstack=2, kpoints=0, keres=1, kgamres=1
ops 1 1 2 0 1 1                                      (a4, 6i2)
x
  1 deb 2250.,2450.,0.0,0.80                       (i2,a3, 4f10)
  2 dtb 2250.,2450.,0.0,1.5
```

To make the above plot on your X terminal (see Figure 3), type:

```plaintext
rsap < /home/ros/axp/RSAP/v5/EXAMPLE/3/inxs2
```

Note that the code will terminate properly when the end of the input file is reached.
Example 4. Transmission plots

Transmission data may be displayed by plot requests that begin with "a" or "b" instead of "1" or "2" as shown in the following sample input which contains two plot sequences. In the first sequence, transmission ("a det 0.,400.,0.0,1.0") and total cross section data ("1 det 0.,400.") from the first ODF file are stacked in one frame in an X plot window (see Fig. 4A). The second sequence produces a similar plot (Fig. 4B) for the second ODF file. Note that the "lpr" specifier automatically sends the monochrome postscript file rsap.ps to the default printer.

```
    odf /home/ros/axp/RSAP/v5/EXAMPLE/4/bal27orthin_990309.odf
    odf /home/ros/axp/RSAP/v5/EXAMPLE/4/bal27orthick_990309.odf
    tit  A127 ORELA thin,thick.  AV 5        Title  a32
    avg  5
    col r g b
    ops  1 1 2 1 0 0
    x
      a det 0.,400.,0.0,1.0
      1 det 0.,400.,0.,40.
    lpr
    x
      b det 0.,400.,0.0,1.0
      2 det 0.,400.,0.,40.
    lpr
    q
```

To make the above plots on your X terminal (see Figures 4a, 4b), type:

```
    rsap < /home/ros/axp/RSAP/v5/EXAMPLE/4/alortrantot
```

In this example the plot contains the text "<5>" at the top of the frame, indicating that 5 data points were averaged before plotting.
Figure 4A. /home/ros/exp/RSAP/v5/EXAMPLE/4/alortractot
Figure 4B. /home/ros/exp/RSAP/v5/EXAMPLE/4/alortrantot
Example 5. Colors, Fonts, and Annotation

Colors, fonts, and annotation with a character string are illustrated by the following input file:

```
ev  2
avg  2
log  0 1
odf /home/ros/axp/RSAP/v5/EXAMPLE/5/233b10trn.odf
ops 1 1 1 0 0 0
tit "col y r g" (DEFAULT COLORS)
col y r g
x
1 etb 250.0,270.0,10.,200.

### switch to Roman font for postscript output
fnt 2
psc
1 etb 250.0,270.0,10.,200.

### rename color postscript file to “rsapyrg.psc”
sys mv rsap.psc rsapyrg.psc
tit "col b m c - blue, magenta, cyan"
### blue, magenta, cyan for theory, Bayes, data
col b m c
### switch back to Simple font for screen
fnt 1
### put annotation at location 5 (center)
ann  5  Annotation_string
x
1 etb 250.0,270.0,10.,200.

### switch to Roman font for postscript output
fnt 2
psc
1 etb 250.0,270.0,10.,200.

sys mv rsap.psc rsapbmc.psc
q
```

To make the above plots on your X terminal (see Figure 5), type:

```
rsap < /home/ros/axp/RSAP/v5/EXAMPLE/5/incolxpsc
```
Example 6. Figure Captions using "cap"

A 64-character figure caption string may be written at the bottom edge of the plot window with the \texttt{cap} specifier. Vertical axes are scaled to fit plots and caption in the window. An example is given in Figure 6, which was produced by the file:

```
/home/ros/axp/RSAP/v5/EXAMPLE/6/incap
par /home/ros/axp/RSAP/v5/EXAMPLE/1/JohnFowl235_990203.par
odf /home/ros/axp/RSAP/v5/EXAMPLE/2/bcjav3ndsh_990203.odf
ops 1 1 0 1 1 0
cap Figure 6. /home/ros/axp/RSAP/v5/EXAMPLE/6/incap
fnt 2
x
1 dtb 4100.,4700.,0.5,3.5
q
```

Figure captions are supported for the case of one plot per page in the x-direction, i.e. nxp = 1 (ops 1).
Example 7. Plotting from 3 ODF Files and Annotation Strings

Plotting from 3 ODF files and annotation strings are illustrated in Figure 7, which was produced by the command:

```
rsap < /home/ros/axp/RSAP/v5/EXAMPLE/7/in3odf

par /home/ros/axp/RSAP/v5/EXAMPLE/7/JohnFowl235_990203.par
odf /home/ros/axp/RSAP/v5/EXAMPLE/7/JohnFowl235_990203.odf
odf /home/ros/axp/RSAP/v5/EXAMPLE/7/duanesh_990203.odf
odf /home/ros/axp/RSAP/v5/EXAMPLE/7/FJF73lows6_990824.odf

tit Plot from 3 odf files
### odf#, pos, col, txtstring       (a4, i1, i1, i2, a40)
ann 14  PLOT 1 JohnFowl235. Position 4
ann 25  PLOT 2 duanesh. Position 5.
ann 36  PLOT 3 FJF73lows6.  Position 6
###  nxp,nyp, kstack, kpoints,keres,kgamres
ops  1 1 3 1 0 0
x
1 etb 2250.,2450.,0.0,0.80
2 etb 2250.,2450.,0.0,1.5
3 det 2250.,2450.,0.0,1.5
q
```

The ann specifier can be used to position a text string at the left (4), center (5), or right (6) of the plot.
Figure 7. /home/rosp/exp/RSAP/v5/EXAMPLE/7/in3odf
Example 8. Place 6 Plots in 1 Window

To put plots from 6 ODF files in a single window in a 2x3 xy matrix and send the file rsap.ps to the default printer:

```
rsap < /home/ros/axp/RSAP/v5/EXAMPLE/8/inpl_231
par /home/ros/axp/RSAP/v5/EXAMPLE/8/FJF73lows6_991005.par
odf /home/ros/axp/RSAP/v5/EXAMPLE/8/DROTnob_991005.odf
odf /home/ros/axp/RSAP/v5/EXAMPLE/8/bBH_aftercj_991005.odf
odf /home/ros/axp/RSAP/v5/EXAMPLE/8/bcjav3ndsh_afterBH_991005.odf
odf /home/ros/axp/RSAP/v5/EXAMPLE/8/FJF73lows6_991005.odf
odf /home/ros/axp/RSAP/v5/EXAMPLE/8/JohnFowl235_991005.odf
odf /home/ros/axp/RSAP/v5/EXAMPLE/8/duanesh_991005.odf
tit Plot from 6 odf files
###    odf#, pos, col, txtstring         (a4, i1, i1, i2, a40)
ann 15  PLOT 1 DROTnob_991005 POS 5
ann 25  PLOT 2 JohnFowl235_991005 POS 5.
ann 35  PLOT 3 bBH_aftercj_991005 POS 5.
ann 45  PLOT 4 FJF73lows6_991005 POS 5
ann 55  PLOT 5 bcjav3ndsh_afterBH_991005 POS 5
ann 65  PLOT 6 duanesh_991005 POS 5
ops 2 3 1 1 0 0
x 1 etb 3200.,4000.
5 etb 2250.,2450.,0.0,0.80
2 etb 3200.,4000.
4 etb 2250.,2450.,0.0,1.5
3 det 3200.,4000.
6 det 2250.,2450.,0.0,1.5
lpr
q
```

Other sample input files in the EXAMPLE/8 directory will plot in a 3x2 xy matrix (in6odf_321), and in a 6x1 xy matrix (in6odf_stack6).
Example 9. Overlay 6 Plots in 1 Window

The number of plots to be overlaid is determined by the ovr specifier. To overlay plots from 6 ODF files in a window (see Figure 9):

```
rsap < /home/ros/axp/RSAP/v5/EXAMPLE/9/inovr6
```

```
par /home/ros/axp/RSAP/v5/EXAMPLE/8/FJF73lows6_991005.par
odf /home/ros/axp/RSAP/v5/EXAMPLE/8/DROTnob_991005.odf
odf /home/ros/axp/RSAP/v5/EXAMPLE/8/bBH_aftercj_991005.odf
odf /home/ros/axp/RSAP/v5/EXAMPLE/8/bcjav3ndsh_afterBH_991005.odf
odf /home/ros/axp/RSAP/v5/EXAMPLE/8/FJF73lows6_991005.odf
odf /home/ros/axp/RSAP/v5/EXAMPLE/8/JohnFowl123S_991005.odf
odf /home/ros/axp/RSAP/v5/EXAMPLE/8/duanesh_991005.odf

tit RSAP v.5. OVERLAY 6 odf files
### omit odf name, write date, omit CHISQ/N
lab 0 1 0
ylb Cross Section in barns
ovr 6
### Normalization factors for odf files 1 - 6.
nrm 1.0,1.0,3.0,0.2,10.,1.
log 0 1
### Roman Font
fnt 2
ops 1 1 1 0 0
x
1 etb 0000.,6300.,0.02,20.
2 etb 3200.,4000.
3 det 3200.,4000.
4 etb 2250.,2450.
5 etb 2250.,2450.
6 det 2250.,2450.
```

Normalization factors were applied to each plot with the nrm specifier, and the lab specifier was used to inhibit output of the odf name and CHISQ/NDAT to the plot.
Example 10. Text Strings using “txt”

Text strings may be written at user (x,y) locations with the *txt* specifier. String size, orientation, and color may be specified as illustrated in Figure 10, which was produced by the file:

```
/home/ros/axp/RSAP/v5/EXAMPLE/10/intxt
```

```
ev 2
odf /home/ros/axp/RSAP/v5/EXAMPLE/5/233b10trn.odf
/odf /home/ros/axp/RSAP/v5/EXAMPLE/5/233b10trn.odf
/odf /home/ros/axp/RSAP/v5/EXAMPLE/5/233b10trn.odf
/odf /home/ros/axp/RSAP/v5/EXAMPLE/5/233b10trn.odf
/odf /home/ros/axp/RSAP/v5/EXAMPLE/5/233b10trn.odf
/odf /home/ros/axp/RSAP/v5/EXAMPLE/5/233b10trn.odf
ops 2 1 3 1
tit text string test
lab
### Roman font
fnt 2
### red yellow green blue cyan magenta white
###    1      2     3    9   11      13    15
###
### nodf, col, xt, yt, sizet, angle, string (2i4, 4f8, a40)
txt 1, 9, 250.3, 200., 2.0, ,Double Size-------20--------30
txt 2, 3, 250.5, 220., 1.0, ,Normal Size-------20--------30-------40
txt 3, 1, 251., 200., 0.5, ,Half Size---------20--------30--------40
txt 4,13, 250.5, 200., 1.0,-45.,****TEXT STRING AT -45 DEGREES****
txt 5,13, 250.4, 20., 1.1, 45.,****TEXT STRING AT 45 DEGREES****
txt 6,13, 251., 10., 0.9, 90.,****TEXT AT 90 DEGREES****
x
1 db 250.0,255.,0.0,250.
2 db 250.0,255.,0.0,250.
3 db 250.0,255.,0.0,250.
4 db 250.0,255.,0.0,250.
5 db 250.0,255.,0.0,250.
6 db 250.0,255.,0.0,250.
sys mv rsap.psc rsaptxt.psc
q
```
Figure 10. /home/ros/axp/RSAP/v5/EXAMPLE/10/intxt
5. Peak Search and Fitting

A peak search procedure has been implemented in RSAP to provide an initial PAR file for use with SAMMY. The procedure, an adaptation of the method of Mariscotti [3], is based on computation of the second derivative of the data averaged over a width parameter, fwhm. A second parameter, bias, is approximately the number of standard deviations above background for a peak to be found. A peak search is requested with the "pks" specifier.

\[\text{pks fwhm, bias, a2targ, Itarg, Jtot, gamgam, fwhmax (a4,7f10)} \]

where fwhm is the full width at half-maximum (FWHM) in eV, bias is the sensitivity parameter, a2targ is the mass number of the target, Itarg is the target spin (I), Jtot is the total spin (J), gamgam is the capture width in eV (default 1.0), and fwhmax is the maximum value in eV allowed for the FWHM of a peak.

RSAP searches for peaks in the total cross section data in the energy range specified and estimates the width, height, and area of each peak found. The data and a sum of SLBW (single-level Breit-Wigner) shapes are then plotted. RSAP writes an output file, rsap.peaks, containing a list of energy, gamma width \(\Gamma_{\gamma} \), neutron width \(\Gamma_{n} \), fission widths, and flags in the format of the SAMMY PARameter file. Estimates of the peak height \(\sigma_{o} \), total width \(\Gamma \), statistical factor \(g \), and wave number \(k \), are used to estimate \(\Gamma_{n} \) and the fission width, \(\Gamma_{f} \).

\[
4\pi g \Gamma_{n} = \sigma_{o} k^2 \Gamma \\
\Gamma_{f} = \Gamma - \Gamma_{\gamma} - \Gamma_{n}
\]

After a peak search, the "sam" specifier will tell RSAP to create a SAMMY input file, rsap.samin, do a SAMMY Bayes run with the input PAR file rsap.peaks, and plot the results. An example input file is reproduced below.

```
ev 2
odf /home/ros/axp/RSAP/v5/EXAMPLE/11/u233temp.odf
tit PKFIND FWHM 1.1, BIAS 3
ops 1 1 1 0 1 1
### fwhm, bias, a2targ, Itarg, Jtot, gamgam, fwhmax
pks 1.1, 3.0, 235., 0.,0.5, 0.5, 1.2
x
l etb 500.,516.,0.0,70.
sam
q
```

To run this example and plot on your X terminal (see Figure 11), type:

```
rsap < /home/ros/axp/RSAP/v5/EXAMPLE/11/tranxps
```

On the first plot (Fig. 11A) the solid line is the sum of SLBW shapes, and the dashed line is the SLBW sum plus a linear background computed from the first and last data points. On the second plot (Fig. 11B) the solid line is the SAMMY Bayes fit, and the dashed line is the SAMMY theory (initial theoretical value).
Figure 11A. /home/ros/axp/RSAP/v5/EXAMPLE/11/tranxps
Figure 11B. /home/ros/axp/RSAP/v5/EXAMPLE/11/tranxps
6. Automatic Spin Group Variation (SGV)

The process of fitting neutron cross section data with SAMMY often requires the user to try several spin values in order to obtain the best fit for a given resonance or group of neighboring resonances. Each trial requires several steps: a) editing the PAR file to change the spin group number, b) running SAMMY, c) viewing the results, and d) comparison with results from other trials.

An automatic spin group variation (SGV) procedure has been implemented in RSAP to facilitate the determination of spin group values for resonances. A simple RSAP input file allows the user to specify SAMMY input and PAR files, one or more resonances, an energy range for the fit, and up to 8 spin groups for each resonance. For each specified spin group, RSAP automatically edits the PAR file, runs SAMMY, and writes out CHISQ/NDAT and final resonance parameters. The required specifiers and their arguments are:

```
par  SAMMY_PAR_file_name
sgi  SAMMY_input_file_name
sgd  SAMMY_data_file_name
sgr  resonance_number, jsg1, jsg2, ..., jsg8       (a4, 9i4)
sgv  esglo,    esghi                             (a4, 2f8)
```

The `resonance_number` corresponds to the record number in the PAR file, and `jsgi` is the spin group number to be used for the i-th SAMMY fit. The action specifier `sgv` tells RSAP to loop over the indicated spin groups, fitting over the energy range (eV) from `esglo` to `esghi`. If a plot is wanted, the user should insert `sgp` after `sgv`. An example file with resonance 25 and spin groups 3, 5, and 6 is reproduced below.

```
/home/ros/axp/RSAP/v5/EXAMPLE/12/dosgv25
```

```
par  /home/ros/axp/RSAP/v5/EXAMPLE/12/o16/FINAL326.par
###          SAMMY input file
sgi  /home/ros/axp/RSAP/v5/EXAMPLE/12/o16/cjav3ndsh_M5.in
###          SAMMY data file
sgd  /home/ros/NUCDATA/sammy/o16/DATA/cj20742avg3normdsh.dat
###          resonance number, spin group numbers
sgr  25, 3, 5, 6
###
sgv  4500000., 4610000.
###           automatic plot:
sgp
```

All parameters flagged in the user's original PAR file are varied in the SAMMY fits. RSAP does not modify the original PAR and INP files.

ODF and final PAR files for each spin group fit are saved in the subdirectory `00_00`, which is created by RSAP. A repeat SGV run causes `00_00` to be deleted and re-created. For the above example, the saved files are:

```
./00_00/SG_25_03.PAR  ./00_00/SG_25_03.ODF
./00_00/SG_25_05.PAR  ./00_00/SG_25_05.ODF
./00_00/SG_25_06.PAR  ./00_00/SG_25_06.ODF
```

The file names are written on the "sgp" plot as shown in Figure 12.A.
Figure 12A. /home/rosp/axp/RSAP/v5/EXAMPLE/12/dosgv25

Fit results are written to files *rsap.chi* and *rsap.sgvout*:

RSAP SGV : Here is file rsap.chi

<table>
<thead>
<tr>
<th>Resonance Group</th>
<th>CHISQ/NDAT</th>
<th>Eres(eV)</th>
<th>Ggamma</th>
<th>Gneutron</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 3</td>
<td>8.9857</td>
<td>4524740.526</td>
<td>2.5000E+02</td>
<td>6.3516E+06</td>
</tr>
<tr>
<td>25 5</td>
<td>0.6202</td>
<td>4527389.229</td>
<td>2.5000E+02</td>
<td>4.9415E+06</td>
</tr>
<tr>
<td>25 6</td>
<td>4.1012</td>
<td>4528243.660</td>
<td>2.5000E+02</td>
<td>4.6382E+06</td>
</tr>
</tbody>
</table>

RSAP SGV : Here is file rsap.sgvout:

<table>
<thead>
<tr>
<th>Eres(eV)</th>
<th>Ggamma</th>
<th>Gneutron</th>
<th>Gfiss1</th>
<th>Gfiss2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4524740.526</td>
<td>2.5000E+02</td>
<td>6.3516E+06</td>
<td>8.8506E+05</td>
<td>1 0 1 1 3 200.00</td>
</tr>
<tr>
<td>4527389.229</td>
<td>2.5000E+02</td>
<td>4.9415E+06</td>
<td>1.1957E+06</td>
<td>1 0 1 1 5 200.00</td>
</tr>
<tr>
<td>4528243.660</td>
<td>2.5000E+02</td>
<td>4.6382E+06</td>
<td>1.1648E+06</td>
<td>1 0 1 1 6 200.00</td>
</tr>
</tbody>
</table>
An alternate way of indicating sequential spin groups is illustrated by the command

```
sgr 25, -3, -7
```

This command tells RSAP to do SAMMY fits for spin groups 3 through 7 for resonance 25. Figure 12.B. shows output produced with the RSAP input file

```
/home/ros/axp/RSAP/v5/EXAMPLE/12/dosgv25_3thru7
```

![Graphs showing various fits and data points](image)

Figure 12B. /home/ros/axp/RSAP/v5/EXAMPLE/12/dosgv25_3thru7

<table>
<thead>
<tr>
<th>Resonance Group</th>
<th>CHISQ/NDAT</th>
<th>Eres(eV)</th>
<th>Ggamma</th>
<th>Gneutron</th>
<th>Gfiss1</th>
<th>Gfiss2</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>3</td>
<td>5.4591</td>
<td>4524764.278</td>
<td>2.5000E+02</td>
<td>5.9355E+06</td>
<td>7.4464E+05</td>
</tr>
<tr>
<td>25</td>
<td>4</td>
<td>11.9090</td>
<td>4525554.599</td>
<td>2.5000E+02</td>
<td>5.4117E+06</td>
<td>4.7090E+05</td>
</tr>
<tr>
<td>25</td>
<td>5</td>
<td>0.5497</td>
<td>4527397.612</td>
<td>2.5000E+02</td>
<td>4.9908E+06</td>
<td>1.1212E+06</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>2.9556</td>
<td>4528284.932</td>
<td>2.5000E+02</td>
<td>4.7568E+06</td>
<td>1.1009E+06</td>
</tr>
<tr>
<td>25</td>
<td>7</td>
<td>2.0291</td>
<td>4528261.389</td>
<td>2.5000E+02</td>
<td>3.6589E+06</td>
<td>2.2829E+06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eres(eV)</th>
<th>Ggamma</th>
<th>Gneutron</th>
<th>Gfiss1</th>
<th>Gfiss2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4524764.278</td>
<td>2.5000E+02</td>
<td>5.9355E+06</td>
<td>7.4464E+05</td>
<td>1 0 1 1 3 200.00</td>
</tr>
<tr>
<td>4525554.599</td>
<td>2.5000E+02</td>
<td>5.4117E+06</td>
<td>4.7090E+05</td>
<td>1 0 1 1 4 200.00</td>
</tr>
<tr>
<td>4527397.612</td>
<td>2.5000E+02</td>
<td>4.9908E+06</td>
<td>1.1212E+06</td>
<td>1 0 1 1 5 200.00</td>
</tr>
<tr>
<td>4528284.932</td>
<td>2.5000E+02</td>
<td>4.7568E+06</td>
<td>1.1009E+06</td>
<td>1 0 1 1 6 200.00</td>
</tr>
<tr>
<td>4528261.389</td>
<td>2.5000E+02</td>
<td>3.6589E+06</td>
<td>2.2829E+06</td>
<td>1 0 1 1 7 200.00</td>
</tr>
</tbody>
</table>
6.1 Resonances treated sequentially.

Several resonances may be treated sequentially in one RSAP input file. An example RSAP input file for 2 sequential resonances is:

```
/home/ros/axp/RSAP/v5/EXAMPLE/12/dosgv__25then27
par /home/ros/axp/RSAP/v5/EXAMPLE/12/o16/FINAL326.par
sgi /home/ros/axp/RSAP/v5/EXAMPLE/12/o16/cjav3ndsh_M5.in
sgd /home/ros/NUCDATA/sammy/o16/DATA/cj20742avg3normdsh.dat
### 1st resonance #, spin group numbers
sgr 25, 4, 5, 6
### esglo, esghi
sgv 4500000., 4610000.
### automatic plot:
sgp
### save ps file for 1st resonance
sys mv sgv1.ps sgv25.ps
### 2nd resonance #, spin group numbers
sgr 27, 6, 7, 8, 9
sgv 4600000., 4660000.
sgp
### save ps file for 2nd resonance
sys mv sgv1.ps sgv27.ps
q
```

Fit results for the 2nd and subsequent resonances are appended to `rsap.chi` and `rsap.sgvout`. The above example file produces a total of 7 SAMMY runs, 3 for resonance 25 and 4 for resonance 27. Note also that a different energy range is used for each resonance.

6.2 Two Resonances treated simultaneously.

Two resonances may be treated simultaneously in one RSAP input file. In this mode RSAP does nested loops over spin groups:

```
Do j2=1,j2max ! spin group loop for resonance 2
  Do j1=1,j1max ! spin group loop for resonance 1
    Edit PAR file and run SAMMY
  enddo
enddo
```

By specifying the maximum of 8 spin groups for each resonance, 64 SAMMY runs could be performed.
An example RSAP input file for "simultaneous" resonances is:

```
/home/ros/axp/RSAP/v5/EXAMPLE/12/dosgv25and26
###       Vary spin groups for both res. 25 and res. 26
par /home/ros/axp/RSAP/v5/EXAMPLE/12/o16/FINAL326.par
sgi /home/ros/axp/RSAP/v5/EXAMPLE/12/o16/cjav3ndsh_M5.in
sgd /home/ros/NUCDATA/sammy/o16/DATA/cj20742avg3normdsh.dat
### resonance number, spin group numbers
sgr 25, 4, 5, 6, 7, 10
sgr 26, 8, 9
### esglo,    esghi
sgv 4500000., 4610000.
sgp
```

For this example, ODF and final PAR files for each spin group fit are saved in the subdirectories `26_08` and `26_09`. The saved files are:

```
./26_08/SG_25_04.PAR ./26_08/SG_25_04.ODF
./26_08/SG_25_05.PAR ./26_08/SG_25_05.ODF
./26_08/SG_25_06.PAR ./26_08/SG_25_06.ODF
./26_08/SG_25_07.PAR ./26_08/SG_25_07.ODF
./26_08/SG_25_10.PAR ./26_08/SG_25_10.ODF
./26_09/SG_25_04.PAR ./26_09/SG_25_04.ODF
./26_09/SG_25_05.PAR ./26_09/SG_25_05.ODF
./26_09/SG_25_06.PAR ./26_09/SG_25_06.ODF
./26_09/SG_25_07.PAR ./26_09/SG_25_07.ODF
./26_09/SG_25_10.PAR ./26_09/SG_25_10.ODF
```

The file names are written on the "sgp" plot as shown in Figures 12.C and 12.D.

Fit results are written to files `rsap.chi` and `rsap.sgvout`:

```
Resonance 25
Resonance 26
CHISQ/NDAT    Eres(eV)    Ggamma    Gneutron
---------------    ---------------    ----------   ----------     ------   --------
8  25  4  17.8380  4525472.200  2.5000E+02  4.8743E+06  5.7239E+04
8  25  5  0.6202  4527389.229  2.5000E+02  4.9415E+06  5.6229E+05
8  25  6  4.1012  4528243.660  2.5000E+02  4.8799E+06  4.8197E+05
8  25  7  3.9712  4528323.287  2.5000E+02  3.5306E+06  2.8238E+05
8  25 10  6.0854  4527360.848  2.5000E+02  2.7106E+06  3.1953E+05
9  25  4  19.2822  4525403.442  2.5000E+02  4.7154E+06  5.6229E+05
9  25  5  0.6204  4527412.089  2.5000E+02  4.9870E+06  5.6229E+05
9  25  6  4.0904  4528266.812  2.5000E+02  4.6799E+06  4.8197E+05
9  25  7  3.9109  4528318.713  2.5000E+02  3.5743E+06  2.3120E+05
9  25 10  6.1926  4527358.600  2.5000E+02  2.7273E+06  3.1474E+05
```
Figure 12C. /home/ros/exp/RSAP/v5/EXAMPLE/12/dosgv25and26

Figure 12D. /home/ros/exp/RSAP/v5/EXAMPLE/12/dosgv25and26
ACKNOWLEDGEMENTS

The author acknowledges with pleasure discussions with L. C. Leal, N. M. Larson, H. Derrien, and R. Q. Wright. These and other RSAP users contributed many ideas for enhancement of the code as well as invaluable assistance in the process of finding and correcting code errors.

REFERENCES

APPENDICES

A. Example Script for SAMMY + RSAP Run

```bash
set sammy=/home/nml/m5/exe/sammy
set rsap=/home/ros/axp/RSAP/v5/gorsap5
#
##########                   make rsap input file for device x
cat <<eod> inx
par JohnFowl235_990203.par
odf SAMMY.ODF
tit JohnFowl235_990203 3.784              Title (a32)
ops 1 100 1 1 l l x
1 deb 2200.,2500.,0.0,1.00        (a2, a4, 4f10)
q
eod
##########                   make SAMMY input file
cat <<eod> input
/home/ros/NUCDATA/sammy/o16/990203/JohnFowl235.in
/home/ros/NUCDATA/sammy/o16/990203/JohnFowl235_990203.par
/home/ros/NUCDATA/sammy/o16/DATA/JohnFowl235_HC981111.dat 2285000.0,2490000.
eod
$sammy < input > output
#
$rsap < inx
```

B. Example `rsap.ratexpth` File

```
<table>
<thead>
<tr>
<th>E(keV)</th>
<th>SigmaExp(b)</th>
<th>Error(b)</th>
<th>Theory(b)</th>
<th>BAYES(b)</th>
<th>100*</th>
<th>100*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.8193</td>
<td>3.4680E+00</td>
<td>0.02500</td>
<td>3.50496E+00</td>
<td>3.50464E+00</td>
<td>1.066</td>
<td>1.056</td>
</tr>
<tr>
<td>201.8257</td>
<td>3.4620E+00</td>
<td>0.02570</td>
<td>3.50363E+00</td>
<td>3.50331E+00</td>
<td>1.203</td>
<td>1.193</td>
</tr>
<tr>
<td>202.8397</td>
<td>3.4020E+00</td>
<td>0.02550</td>
<td>3.50198E+00</td>
<td>3.50166E+00</td>
<td>2.949</td>
<td>2.939</td>
</tr>
<tr>
<td>203.8613</td>
<td>3.4740E+00</td>
<td>0.02500</td>
<td>3.49968E+00</td>
<td>3.49935E+00</td>
<td>0.777</td>
<td>0.768</td>
</tr>
<tr>
<td>204.8908</td>
<td>3.4410E+00</td>
<td>0.02500</td>
<td>3.49837E+00</td>
<td>3.49804E+00</td>
<td>1.373</td>
<td>1.363</td>
</tr>
<tr>
<td>205.9279</td>
<td>3.4510E+00</td>
<td>0.02440</td>
<td>3.49837E+00</td>
<td>3.49804E+00</td>
<td>1.373</td>
<td>1.363</td>
</tr>
<tr>
<td>6200.874</td>
<td>9.6110E-01</td>
<td>0.13790</td>
<td>9.40398E-01</td>
<td>9.41881E-01</td>
<td>-2.154</td>
<td>-2.000</td>
</tr>
<tr>
<td>6242.253</td>
<td>9.5580E-01</td>
<td>0.13670</td>
<td>9.25973E-01</td>
<td>9.27403E-01</td>
<td>-3.121</td>
<td>-2.971</td>
</tr>
<tr>
<td>6233.404</td>
<td>9.9550E-01</td>
<td>0.13940</td>
<td>9.19679E-01</td>
<td>9.21084E-01</td>
<td>-7.616</td>
<td>-7.475</td>
</tr>
</tbody>
</table>
```
C. Example rsap.parcom File

Wed Jan 27 14:46:35 EST 1999
duanesh_990126.par

1 1 -12024.00 -12021.00 9106.20 9126.20 1 0 1 10.0
2 1 -4469.30 -4469.20 5469.30 5485.00 1 0 1 1.0
3 3 434.30 434.30 44.17 44.40 1 0 1 0.2
4 4 1000.28 1000.25 99.64 100.43 1 0 1 0.2
5 3 1309.36 1309.36 43.17 43.35 1 0 1 0.2

...
37 6 6076.13 6076.13 4.76 4.81 2.00 2.00 1 0 1 0.2
38 2 6087.91 6087.90 14.53 14.57 4.51 4.51 1 0 1 0.2
39 7 6387.66 9.91 10.01 35.98 36.01 0 0 0 0.2

...
40 3 10980.19 10989.91 14338.00 14369.00 1 0 1 100.0
41 2 18777.06 18755.84 27453.00 27495.00 1 0 1 100.0
42 4 16158.63 16146.03 1926.00 1930.90 1 0 1 100.0

RADIUS PARAMETERS FOLLOW
3.77736 3.7773611-1 1 2 3 4 5 6 7 8 0 1
6.49920 6.4992011-1 1 2 3 4 5 6 7 8 0 2

NORMALization and "constant" background follow
1.0038828 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1 0 0 0 0

COVARIANCE MATRIX IS IN BINARY FORM

Grp Res er gam samer samgam samgam2
1 1 -12024.000 9106.200 -12021.000 9126.200 0.000 s1/2
1 2 -4469.300 5469.300 -4469.200 5485.000 0.000
1 3 2378.121 160.770 2377.930 160.360 0.000 f7/2

...
7 1 1651.380 4.004 1651.380 4.053 0.000 g7/2
7 2 3766.949 18.148 3766.947 18.350 0.015
7 3 5123.835 22.531 5123.806 22.761 2.016
7 4 6387.658 9.912 6387.658 10.006 36.010

...
8 1 4594.304 1.492 4594.304 1.515 0.203 g7/2
8 2 5918.549 19.342 5918.571 19.624 2.501

CUSTOMARY CHI SQUARED DIVIDED BY NDAT = 1.53943
CUSTOMARY CHI SQUARED DIVIDED BY NDAT = 1.48805
CUSTOMARY CHI SQUARED DIVIDED BY NDAT = 1.48802
D. PLPLOT metafiles and **plrender**

The discussion herein follows closely the information given in the PLPLOT documentation [2]. A PLPLOT metafile is a binary, device-independent stream of bytes that may be rendered with the PLPLOT utility, **plrender**.

To render the metafile, `rsap.meta`, type:

```
plrender [options] rsap.meta
```

where

options (partial list):

- `-dev name`
 Output device name
- `-o name`
 Output filename
- `-px number`
 Plots per page in x
- `-py number`
 Plots per page in y
- `-geometry geom`
 Window size, in pixels (e.g. `-geometry 400x300`)
- `-wplt xl,yl.xr,yr`
 Relative coordinates [0-1] of window into plot
- `-mar margin`
 Margin space – relative coord (0 to 0.5, def 0)
- `-a aspect`
 Page aspect ratio (def: same as output device)
- `-jx justx`
 Page justification in x (-0.5 to 0.5, def 0)
- `-jy justy`
 Page justification in y (-0.5 to 0.5, def 0)
- `-ori orient`
 Plot orientation (0,2=landscape, 1,3=portrait)
- `-bg color`
 Background color (0=black, FFFFFF=white)

All parameters must be white-space delimited. Not all options valid with all drivers.

A complete list of options may be obtained by typing “plrender –h”.

For example, to make a color postscript file, `rsap_port`, in portrait orientation on a white background:

```
plrender –dev psc –bg FFFFFF –o rsap_port –ori 3 rsap.meta
```
INTERNAL DISTRIBUTION

1. H. Derrien
2. F. C. Difilippo
3. M. E. Dunn
4. C. Y. Fu
5. N. M. Greene
6. K. Guber
7. F. B. Guimaraes
8. J. A. Harvey
9. D. M. Hetrick
10. C. M. Hopper
11. H. T. Hunter
12. D. T. Ingersoll
13. B. L. Kirk
14. P. E. Koehler
15. M. A. Kuliasha
16. D. C. Larson
17. N. M. Larson
18. L. C. Leal
19. C. V. Parks
20. S. Raman
21-24. R. O. Sayer
25. M. S. Smith
26. T. Valentine
27. K. N. Volev
28. R. M. Westfall
29. J. E. White
30. R. R. Winters
31. R. Q. Wright
32-35. RSICC
36-37. Laboratory Records (OSTI)
38. Laboratory Records
39. Central Research Library

EXTERNAL DISTRIBUTION

40. S. M. Austin, NSCL/Cyclotron Lab, Michigan State University, East Lansing, MI 48824
41. C. Bastien, Central Bureau for Nuclear Measurements, Steenweg op Retie, 2240 Geel, Belgium
42. H. Beer, Forschungszentrum Karlsruhe, IK, BAV 425, Postfach 3640, D-76021, Karlsruhe, Germany
43. R. Block, Rensselaer Polytechnic Institute, Troy, NY 12180-3590
44. O. Bouland, DER/SPRC/LEPH, Batiment 230, Centre d=Etudes de CADARACHE, 13108, Saint Paul-lez-Durance, France
45. A. Brusegan, Central Bureau for Nuclear Measurements, Steenweg op Retie, 2240 Geel, Belgium
46. David Buchan, Ontario Hydro P41 E1 Pickering Nuclear Generating Station, 1675 Montgomery Park Rd., Pickering Ontario, CANADA L1V 2R5
47. J. Burke, Gaerttner LINAC Laboratory, Rensselaer Polytechnic Institute, Department of Environmental and Energy Engineering, Troy, NY 12180-3590
48. D. E. Carlson, U.S. Nuclear Regulatory Commission, Reactor and Plant System Branch, Division of System Research, Office of Nuclear Regulatory Research, MS T-10 G6, RM T-10, 17, Washington, DC 20555-0001
49. R. F. Carlton, Middle Tennessee State University, Department of Chemistry and Physics, Murfreesboro, TN 37132
50. E. Caro, Lockheed Martin Corporation, P.O. Box 1072, Schenectady, NY 12301-1072
51. M. B. Chadwick, Los Alamos National Laboratory, MS B243 T-16, Los Alamos, NM 87545
52. J. Chang, Korea Atomic Energy Research Inst., Nuclear Data Evaluation Lab., P. O. Box 105, Yusung, Taejon 305-600, Korea
53. Y. Danon, Gaerttner LINAC Laboratory, Rensselaer Polytechnic Institute, Department of Environmental and Energy Engineering, Troy, NY 12180-3590
54. C. Dunford, Brookhaven National Laboratory, Bldg 197D, National Nuclear Data Center, Upton, NY 11973
55. P. Finck, Argonne National Laboratory, Reactor Analysis Division, Bldg 208, Argonne, IL 60439
56. C. M. Frankle, Los Alamos National Laboratory, NIS-6MS J562, Los Alamos, NM 87545
57. W. Furman, Frank Laboratory of Neutron Physics, JINR, Dubna, Russia
58. S. Ganesan, Head, Nuclear Data Section, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu, India
59. V. Gavron, Los Alamos National Laboratory, P.O. Box 1663 NIS-5 MS-E540, Los Alamos, NM 87545
60. Thomas B. Gosnell, Lawrence Livermore National Laboratory, 7000 East Avenue L-175, Livermore, CA 94550
61. F. Gunsing, Centre D’Etudes De Saclay, F-Saclay - 91191, Gif-sur-Yvette Cedex, France
62. G. M. Hale, Los Alamos National Laboratory, T-2, MS B243, Los Alamos, NM 87545
63. A. Hasagawa, Nuclear Data Center Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken 319-11, Japan
64. R. N. Hwang, Argonne National Laboratory, Reactor Analysis Division, Bldg 208, Argonne, IL 60439
65. R. P. Jacqmin, DER/SPRC/LEPH, Batiment 230, Centre d’Etudes de CADARACHE, 13408, Saint Paul-lez-Durance, France
67. N. Janeva, Bulgarian Academy of Sciences, 72, Boul, Tzarigradsko shosse, Sofia 1784, Bulgaria
69. F. Kappeler, Forschungszentrum Karlsruhe, IK, BAV 425, Postfach 3640, D-76021, Karlsruhe, Germany
70. Lambros Lois, U.S. Nuclear Regulatory Commission, 08 E23, 11555 Rockville Pike, Rockville, MD 20852-2746
71. G. Leinweber, Gaerttner LINAC Laboratory, Rensselaer Polytechnic Institute, Dept. of Environmental and Energy Engineering, Troy, NY 12180-3590
72. R. Little, Los Alamos National Laboratory, X-TM, MS B226, Los Alamos, NM 87545
73. M. Lubert, Gaerttner LINAC Laboratory, Rensselaer Polytechnic Institute, Department of Environmental and Energy Engineering, Troy, NY 12180-3590
74. C. Lubitz, Knolls Atomic Power Laboratory, P. O. Box 1072, Schenectady, NY 12301
75. R. E. MacFarlane, Los Alamos National Laboratory, T-2, MS B243, Los Alamos, NM 87545
76. C. Mounier, CEN Saclay, DMT/SERMA/LENR., 91191 Gif Sur Yvette Cedex, France
77. D. Muir, IAEA Nuclear Data Section, Wagramerstr. 5, P. O. Box 100, A-1400, Wien, Austria
78. C. Nordborg, OECDNEA, Le Seine St-Germain 12, Boulevard Iles, 92130, Issy-les-Moulineaux, France
79. A. Nouri, OECD/NEA Data Bank, Le Seine Saint Germain 12 Bd des Iles, 92130 Issy-les-Moulineaux, France
80. S. Y. Oh, Nuclear Data Evaluation Lab., Korea Atomic Energy Research Institute, P. O. Box 105, Yusung, Taejon, 305-600 Korea
81. C. Raepsaet, CEN Saclay, DMT/SERMA/LEPP, 91191, Gif Sur Yvette Cedex, France
82. M. Salvatores, DRN/P, Batiment 707, C. E. CADARACHE, 13108, Saint Paul-lez-Durance, France
83. E. Sartori, OECDNEA, Le Seine St-Germain 12, Boulevard Iles, 92130, Issy-les-Moulineaux, France
84. R. Shelley, Central Bureau for Nuclear Measurements, Steenweg op Retie, 2240 Geel, Belgium
85. P. Siegler, Central Bureau for Nuclear Measurements, Steenweg op Retie, 2240 Geel, Belgium
86. K. Shibata, Japan Atomic Energy Research Institute, Nuclear Data Center, Tokai-mura Naka-gun, Ibaraki-ken 319-11, Japan
87. Mihaela Sin, Bucharest University Nuclear Physics Department, P. O. Box MG-11, RO-76900 Bucharest-Magurele, Romania
88. D. L. Smith, Argonne National Laboratory, TD-360-L106, Argonne, IL 60454
89. H. Takano, Japan Atomic Energy Research Institute, Nuclear Data Center, Tokai-mura, Naka-gun, Ibaraki-ken 319-11, Japan
90. C. Wagemans, Central Bureau for Nuclear Measurements, Steenweg op Retie, 2240 Geel, Belgium
91. J. J. Wagschal, Racah Institute of Physics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
92. H. Weigmann, Central Bureau for Nuclear Measurements, Steenweg op Retie, 2240 Geel, Belgium
93. J. P. Weinman, Lockheed Martin Corporation, P.O. Box 1072, Schenectady, NY 12301-1072
94. C. Werner, Rensselaer Polytechnic Institute, Residence Hall, 1999 Burdette Ave, Troy, NY 12180-3711
95. R. M. White, Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94550
96. K. Yoo, Korea Atomic Energy Research Inst., Nuclear Data Evaluation Lab., P. O. Box 105, Yusung, Taejon 305-600, Korea