Minimize Boiler Short Cycling Losses

Boiler "short cycling" occurs when an oversized boiler quickly satisfies process or space heating demands, and then shuts down until heat is again required. Process heating demands can change over time. Boilers may have been oversized for additions or expansions that never occurred. Installing energy conservation or heat recovery measures may also reduce the heat demand. As a result, a facility may have multiple boilers, each rated at several times the maximum expected load.

Boilers used for space heating loads are often oversized, with their capacity chosen to meet total building heat losses plus heating of ventilation and infiltration air under extreme or design-basis temperature conditions. No credit is taken for thermal contributions from lights, equipment, or people. Excess capacity is also added to bring a facility to required settings quickly after a night setback.

Cycling Losses

A boiler cycle consists of a firing interval, a post-purge, an idle period, a pre-purge, and a return to firing. Boiler efficiency is the useful heat provided by the boiler divided by the energy input (useful heat plus losses) over the cycle duration. This efficiency decreases when short cycling occurs or when multiple boilers are operated at low-firing rates.

This decrease in efficiency occurs, in part, because fixed losses are magnified under lightly loaded conditions. For example, if the radiation loss from the boiler enclosure is 1% of the total heat input at full-load, at half-load the losses increase to 2%, while at one-quarter load the loss is 4%. In addition to radiation losses, pre- and post-purge losses occur. In the pre-purge, the fan operates to force air through the boiler to flush out any combustible gas mixture that may have accumulated. The post-purge performs a similar function. During purging, heat is removed from the boiler as the purged air is heated.

Example

A 1,500 hp (1 hp = 33,475 Btu/hr) boiler with a cycle efficiency of 72.7% (E_1) is replaced with a 600 hp boiler with a cycle efficiency of 78.8% (E_2). Calculate the annual cost savings.

Fractional Fuel Savings = \((1 - \frac{E_1}{E_2}) \)

= \((1 - 72.7/78.8) \times 100 = 7.7\% \)

If the original boiler used 200,000 MMBtu of fuel annually, the savings from switching to the smaller boiler (given a fuel cost of $3.00/MMBtu) are:

Annual Savings = 200,000 MMBtu x 0.077 x $3.00/MMBtu = $46,200

Suggested Actions

- Determine the efficiency and operating cost of each of your boilers and adopt a control strategy for maximizing overall efficiency of multiple boiler operations. (See sidebar)
- Avoid short cycling by adding small boilers to your boiler facility to provide better flexibility and high efficiency at all loads. (See sidebar: Boiler Downsizing)
BestPractices is part of the Office of Industrial Technologies’ (OIT’s) Industries of the Future strategy, which helps the country’s most energy-intensive industries improve their competitiveness. BestPractices brings together the best-available and emerging technologies and practices to help companies begin improving energy efficiency, environmental performance, and productivity right now.

BestPractices focuses on plant systems, where significant efficiency improvements and savings can be achieved. Industry gains easy access to near-term and long-term solutions for improving the performance of motor, steam, compressed air, and process heating systems. In addition, the Industrial Assessment Centers provide comprehensive industrial energy evaluations to small and medium-size manufacturers.

FOR ADDITIONAL INFORMATION, PLEASE CONTACT:

Eric Lightner
Office of Industrial Technologies
Phone: (202) 586-8130
Fax: (202) 586-1658
Eric.Lightner@ee.doe.gov
www.oit.doe.gov/bestpractices

OIT Clearinghouse
Phone: (800) 862-2086
Fax: (360) 586-8303
clearinghouse@ee.doe.gov

Please send any comments, questions, or suggestions to webmaster.oit@ee.doe.gov

Visit our home page at www.oit.doe.gov

Office of Industrial Technologies
Energy Efficiency
and Renewable Energy
U.S. Department of Energy
Washington, D.C. 20585

DOE/OE-102000-1116
December 2000
Steam Tip Sheet #16