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Fractional power-law conductivity in SrRuO3 and its consequences
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We combine the results of terahertz time-domain spectroscopy with far-infrared transmission
and reflectivity to obtain the conductivity of SrRuO3 over an unprecedented continuous range
in frequency, allowing us to characterize the approach to zero frequency as a function of temper-
ature. We show that the conductivity follows a simple phenomenological form, with an analytic
structure fundamentally different from that predicted by the standard theory of metals.
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One of the most exciting proposals to emerge from the
study of high-Tc superconductors is that Landau’s Fermi
liquid theory (FLT) breaks down in the metallic state
above Tc [1]. This would have profound implications,
since FLT provides the foundation for our current un-
derstanding of metals, together with systems as diverse
as liquid 3He and nuclear matter [2]. Evidence for its
breakdown in high-Tc superconductors comes from a va-
riety of experiments, including photoemission, electrical
transport and optics [3]. More recently similar evidence
has been found in other compounds [4]. Here we show
that the complex optical conductivity σ(ω, T ) of one such
material, the ferromagnetic metal SrRuO3 [5, 6, 7, 8], be-
haves according to a remarkably simple power-law form,
which deviates sharply from the prediction of FLT. This
observation provides valuable insight into the nature of
charge scattering in unconventional metals.

According to FLT, the qualitative properties of an in-
teracting electron gas are the same as those of a non-
interacting gas, if probed on a sufficiently low-energy
scale. The optical conductivity of a system of noninter-
acting, charge e carriers obeys the Drude form, σ(ω) =
(ne2/m)/(1/τ − iω), where n is the carrier density and
m and τ are the effective mass and scattering time of
the carriers. FLT predicts that σ at low ω remains of
the Drude form in the presence of interactions, with a
spectral weight which decreases as interactions increase.
The f -sum rule dictates that the total spectral weight is
conserved, so that spectral weight must shift to higher
energies. This additional component to σ(ω) is known as
the incoherent part of the intraband conductivity.

Infrared reflectivity studies indicate that both high-
Tc superconductors and SrRuO3 exhibit conductivity
with an anomalous power-law dependence on frequency,
σ1(ω) ∝ ω−α, with α ∼ 0.5 for SrRuO3 [8] and α ∼ 0.7
in the high-Tc materials [9, 10]. The Drude form yields
σ1 ∝ ω−2 at comparable frequencies. If FLT is valid, the
conductivity in excess of Drude must be identified with
interband transitions or the incoherent component of the
spectrum, and there must be a crossover at lower fre-

quency to the renormalized Drude conductivity [11, 12].
Recently, Ioffe and Millis suggested that the entire con-

ductivity spectrum of the high-Tc materials could be un-
derstood as a single component, rather than two, as in
FLT [13]. The spectrum they derived was generalized by
van der Marel to the following useful form [14],

σ(ω) =
A

(1/τ − iω)α
, (1)

where A is a parameter with units that depend on the
value of α. Ioffe and Millis obtained α = 1/2 by as-
suming that the carrier lifetime depends strongly on its
direction of motion [15, 16, 17, 18]. In the limit 1/τ → 0,
Eq. 1 is similar to one derived by Anderson [19], un-
der different assumptions. Note that Eq. 1 includes the
Drude form as a special case, with α = 1. In allowing
α to deviate from unity, we obtain the observed power
law dependence of the conductivity on frequency. How-
ever, we also subvert a standard assumption of transport
physics, that the conductivity at ω = 0 is proportional to
a scattering time. Instead, the dc conductivity is propor-
tional to a fractional power of a scattering time, that is,
σdc = Aτα. Moreover, the analytical structure of σ(ω)
changes, from having a simple pole at ω = −i/τ , to being
multiple-valued with a branch point there.

Although the models described above are distinct,
they may be difficult to distinguish experimentally if the
Drude component predicted by FLT is masked by the in-
coherent conductivity. The most stringent test of FLT is
at low temperature, where the Drude component, if one
exists, would be sharpest. In the cuprates, the tempera-
ture range over which the normal state conductivity can
be studied is limited by the onset of superconductivity.
The absence of superconductivity in SrRuO3 permits a
much more meaningful test of FLT than previously avail-
able.

We find that σ(ω, T ) of SrRuO3 at low temperature is
described well by Eq. 1 over nearly three decades in ω (6–
2400 cm−1) with α ∼ 0.4, in strong disagreement with
FLT. Our results at frequencies below 100 cm−1 were
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obtained from transmission measurements on thin film
samples of SrRuO3 grown epitaxially on NdGaO3 sub-
strates [20, 21]. To probe the region where ω ∼ 1/τ ,
we used conventional Fourier-transform infrared spec-
troscopy to measure the transmittance (T ). For the
range ω � 1/τ , we used time-domain terahertz spec-
troscopy (TDTHz) to measure the complex transmission
amplitude t(ω, T ) in the millimeter wave region of the
spectrum. The residual resistivity in these films is typ-
ically 50 µΩ−cm. SrTiO3 substrates produce SrRuO3

films with lower resistance, but this substrate material
has such a large temperature-dependent dielectric con-
stant that an accurate determination of the conductivity
from transmission measurements is prohibitively difficult.
At frequencies above 100 cm−1, we measure the reflectiv-
ity from a thick film of SrRuO3 deposited on a SrTiO3

substrate [8]. We have derived σ(ω, T ) from each of these
measurements, as described below.

We use TDTHz to measure the complex transmission
amplitude t(ω) of SrRuO3 in the range 0.2–1.2 THz (6–36
cm−1) [22]. We compared the SrRuO3 film on its sub-
strate to a bare NdGaO3 substrate at each temperature,
using a vapor flow cryostat with a translating sample
mount. The ratio of the two complex transmission ampli-
tudes, tsr(ω) = tsample(ω)/tref (ω), is a simple function
of the substrate index n, σ(ω) of the film, and the film
thickness d:

tsr(ω) =
n+ 1

n+ 1 + σ(ω)Z0d
. (2)

Z0 is the impedance of free space. We inverted Eq. 2
to obtain both the amplitude and phase of the complex
conductivity as a function of temperature and frequency,
which we show in Fig. 1 for our most thoroughly stud-
ied SrRuO3 film. Also shown are the results of the best
fit to Eq. 1 with α = 0.4, following the procedure de-
scribed below. The statistical error on a typical measure-
ment of the conductivity phase φσ(ω, T ) = arg[σ(ω, T )]
is ±0.02 rad at 1 THz, two orders of magnitude better
than that obtained in typical reflectivity measurements
at this frequency. The temperature dependence of the ef-
fective path length in the substrate and cryostat windows
provides the largest source of systematic error, which we
estimate to be less than ±0.03 rad at 1 THz. Errors
in the measurement of the conductivity amplitude are
dominated by statistical uncertainty in the transmission
amplitude, which is typically ±3%.

To obtain an objective best fit of Eq. 1 to the TDTHz
measurements, we first perform a least-squares fit of the
measured conductivity phase to φ(ω) = α tan−1(ωτ ) at
each temperature, for several values of α. This allows
us to determine τ (T ;α), the best fit value of τ for each
temperature, with different assumed values of α. Unlike
a global fit to σ(ω), this procedure is independent of the
conductivity amplitude. Next we performed a separate
least-squares fit of the amplitude to |σ(ω)| = A/(1/τ 2 +
ω2)α/2, using the τ = τ (T ;α) from the phase fits and
allowing only A to vary. The quality of these fits [23] are
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FIG. 1: Measured amplitude (upper panel) and phase
(lower panel) of σ(ω, T ) in SrRuO3 at four representative
temperatures. 4: T = 8 K, ©: 40 K, 2: 60 K, and 5:
80 K. Lines are fits to the data using Eq. 1, with α = 0.4.
The inset shows the reduced χ2 error associated with
the phase (solid line) and amplitude (dashed line) fits to
Eq. 1, as a function of α.

shown as a function of α in the inset to Fig. 1. The phase
fits exhibit a weak optimum at α = 0.4, with a sharp
decrease in quality below α = 0.3 but with relatively little
change in quality as α increases from 0.4 to unity. The
amplitude fits, on the other hand, worsen dramatically
as α changes from 0.3 to unity. Taken together, these
fits allow us to limit the range of acceptable values for α
to 0.2–0.5.

We develop this analysis further in Fig. 2, which shows
a logarithmic plot of the conductivity amplitude at our
lowest frequency, ω1/2π = 0.2 THz, versus [τ (T ;α)]α,
with τ in femtoseconds. The plot is parametric in tem-
perature for several different values of α. In Eq. 1,
σ(ω → 0) = Aτα; if A remains constant with tempera-
ture, Eq. 1 will yield a straight line with unity slope on
this plot, indicated by the dotted line. The best fit to
this slope is obtained for α = 0.4, and already at α = 0.6
a clear deviation is observed. At higher values of α the
slope decreases yet further, so the case α = 1 correspond-
ing to Drude conductivity requires A to increase strongly
with temperature. Thus, α = 0.4± .1 provides not only
the best fit to Eq. 1, but also the most compact descrip-
tion of the data.

In Fig. 3 we show σ1(ω) of SrRuO3 over two and a half
decades in frequency, obtained in three separate mea-
surements. Data in the lowest frequency range is taken
from TDTHz measurements at the same four represen-
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FIG. 2: Logarithmic plot demonstrating the scaling re-
lationship of σ(ω1, T ), ω1/2π = 0.2 THz, and τ (T ;α)
obtained by fitting to Eq. 1. The plot is parametric in
temperature from 5–92.5 K in steps of 2.5 K, for various
choices of α: 3, 0.2; 4, 0.3; ,©, 0.4; 2, 0.5; and 5, 0.6.
The dotted line is given by σ(ω = 0) ∝ τα.

tative temperatures shown in Fig. 1, and extends from
6–36 cm−1. In the intermediate frequency range 26–
80 cm−1, we have measured T (ω, T ), which is a real
quantity and therefore incapable of providing the com-
plex conductivity without further analysis. Using the
τ (T ) obtained from TDTHz for α = 0.4, we have calcu-
lated the conductivity phase expected in this frequency
range at each temperature, then used these phase val-
ues to calculate the conductivity amplitude directly from
T (ω, T ). The results of this procedure are shown for the
same four temperatures as the TDTHz data. The con-
tinuity of the results at the crossover frequency of these
two distinct measurements may be taken as an indication
of the high accuracy with which we have determined the
conductivity. At frequencies probed by infrared reflectiv-
ity, the conductivity is relatively temperature indepen-
dent below 100 K, and we show only one measurement
taken at 40 K [8].

With the parameters obtained from the TDTHz data,
Eq. 1 may be used to predict the behavior of the con-
ductivity at all frequencies and temperatures. The dot-
ted lines in Fig. 3 show the conductivity calculated from
Eq. 1, using the parameters obtained from TDTHz. With
a single global parameter A and a single temperature-
dependent parameter τ (T ), this model fits the data ex-
ceptionally well, at frequencies two orders of magnitude
higher than those at which the parameters were obtained.
As we increase the temperature above 95 K, both our
measurements and earlier reflectivity measurements be-
gin to deviate from the form discussed here, and develop
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FIG. 3: Logarithmic plot of the conductivity obtained
by three methods, in three ranges of frequency. The con-
ductivity obtained from the infrared reflectivity at 40 K
is indicated by the long dashed line. Results from far-
infrared transmission measurements, as described in the
text, are indicated by solid lines, and TDTHz measure-
ments by short dashed lines, with both sets ordered in
temperature from top to bottom with T = 8 K, 40 K,
60 K, and 80 K. Least-squared fits to Eq. 1 using only
TDTHz data are shown by dashed lines. Inset: tem-
perature dependence of τ obtained for α = 0.4 (closed
circles), compared to Eq. 3 (solid line).

a pseudogap structure which may be related to the tran-
sition from ferromagnetism to paramagnetism [8]. We
leave a detailed discussion of this behavior to a later
publication, limiting our discussion here to temperatures
below 95 K, deep within the ferromagnetic state.

As shown in Fig. 3, 1/τ sets the frequency scale at
which the ω−α divergence is cut off, forcing σ1 ∝ τα in
the dc limit. Thus the ubiquitous practice of inferring
scattering times from electrical transport via σdc ∝ τ is
erroneous, whenever the conductivity behaves as Eq. 1
with α 6= 1. The resistivity of SrRuO3 for 25 K .
T . 120 K exhibits approximately linear temperature de-
pendence, which then crosses over at lower temperatures
to become constant as impurity scattering dominates [7].
In our analysis, this implies a scattering rate with at least
a quadratic dependence on temperature.

A simple form which approximates the observed be-
havior is

~
τ (T )

=
~
τ0

+
kBT

2

T0
, (3)

with a temperature independent, or elastic, scattering
time τ0 and a characteristic temperature T0 [13]. Here,
~ is Planck’s constant, and kB Boltzmann’s constant.
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This gives a temperature dependent resistivity, ρ(T ) =
A + BT 2, observed in the highest quality films at low
temperatures [24]. The inset to Fig. 3 shows τ (T ; 0.4)
together with the best fit to Eq. 3, with τ0 = 198 fs and
T0 = 40 K. The agreement is quite good over the entire
temperature range, although in the region T > 95 K τ is
comparable to our measurement accuracy.

It is interesting to note that despite the discrepancy of
Eq. 1 with FLT, the functional form of Eq. 3 is exactly
what FLT would predict for τ , though with T0 at least
two orders of magnitude larger than 40 K. The origin
of this temperature dependence, and of the low energy
scale T0 which controls it, remains one of the important
open questions raised by these measurements. Similar
behavior has recently been observed in the normal state
of Bi2Sr2CaCu2O8 [25], and we expect that a consider-
able body of transport work will require reanalysis in
light of the observations presented here. For example,
Shubnikhov-de Haas oscillations have been observed in
SrRuO3, with amplitudes that display the temperature
dependence of a Fermi liquid [24]. It would be interesting
to develop theories which produce Eq. 1, to address the
existence of these quantum oscillations.

In summary, we have studied in detail the complex
conductivity of SrRuO3 at low frequencies and temper-
atures, and shown that it agrees well with the simple
phenomenological form given in Eq. 1. The difference
between α ∼ 0.4 observed here and the Drude form ex-
pected from FLT, with α = 1, is reflected in the in-
terpretation of τ , one of the fundamental parameters in
the transport theory of metals. We have described how
this quantity influences the measured conductivity, but
proper interpretation of its microscopic meaning must
await further analysis. In particular, careful studies of
the dependence of τ on substitutional impurities or struc-
tural disorder would help to reveal its physical origin [13].
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