Disposal of Draeger Tubes at Savannah River Site

by

N. P. Malik
Westinghouse Savannah River Company
Savannah River Site
Aiken, South Carolina 29808

J. O. Burgess

K. R. Liner

DOE Contract No. DE-AC09-96SR18500

This paper was prepared in connection with work done under the above contract number with the U. S. Department of Energy. By acceptance of this paper, the publisher and/or recipient acknowledges the U. S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper, along with the right to reproduce and to authorize others to reproduce all or part of the copyrighted paper.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced directly from the best available copy.

Available for sale to the public, in paper, from: U.S. Department of Commerce, National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161
phone: (800) 553-6847
fax: (703) 605-6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm

Available electronically at http://www.doe.gov/bridge
phone: (865)576-8401
fax: (865)576-5728
email: reports@adonis.osti.gov
DISPOSAL OF DRAEGER TUBES AT SAVANNAH RIVER SITE

Jennifer O. Burgess, Keith R. Liner, and Narinder P.S. Malik
Westinghouse Savannah River Company
Aiken, South Carolina 29802

INTRODUCTION

The Savannah River Site (SRS) is a Department of Energy (DOE) facility located in Aiken, South Carolina that is operated by the Westinghouse Savannah River Company (WSRC). At SRS Draeger tubes are used to identify the amount and type of a particular chemical constituent in the atmosphere. Draeger tubes rely on a chemical reaction to identify the nature and type of a particular chemical constituent in the atmosphere.

Disposal practices for these tubes were identified by performing a hazardous waste evaluation per the Resource Conservation and Recovery Act (RCRA). Additional investigations were conducted to provide guidance for their safe handling, storage and disposal. A list of Draeger tubes commonly used at SRS was first evaluated to determine if they contained any material that could render them as a RCRA hazardous waste. Disposal techniques for Draeger tubes that contained any of the toxic contaminants listed in South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79.261.24 (b) and/or contained an acid in the liquid form were addressed.

EVALUATION

A hazardous waste evaluation was performed per the Resource Conservation and Recovery Act (RCRA) on the Draeger tubes used at the SRS as listed in Attachment #1. The purpose of this evaluation was to identify those Draeger tubes that are considered RCRA hazardous waste when sent for disposal. Additional investigations were conducted to provide guidance for their safe handling, storage and disposal.

The list of Draeger tubes on Attachment #1 was first evaluated to determine if they contained any material that could render them a RCRA hazardous waste. Tubes that contained any of the toxic contaminants listed in South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79.261.24 (b) Table 1 and/or contained an acid in the liquid form were identified.

Calculations were performed to determine the concentration of toxic material present in the tubes. Attachment #1 identifies those tubes that contain a toxic contaminant listed in (SCHWMR) R.61-79.261.24 (b) Table 1. The following steps were evaluated and considered:

- A calculation for the tubes that contain an acid in the liquid form is not required as outlined below.
- The amount of toxic material in the tube was first calculated based on the chemical reaction equation.
- The tubes were then weighed to determine their weight.
The amount of toxic material in the tube was then divided by the total weight of the tube to arrive at a concentration of toxic material per tube. The toxic material concentration was divided by a factor of 20 to obtain the maximum theoretical leachate concentration. The division factor represents the 20 to 1 ratio of the extraction fluid to the solid used in the Toxic Characteristic Leaching Procedure (TCLP). The maximum theoretical leachate concentration was compared to the RCRA TCLP regulatory concentration limit in SCHWMR R.61-79.261.24 (b) Table 1, to identify those tubes that would exceed the RCRA toxicity limit and would be considered hazardous waste when sent for disposal.

Based on a per tube analysis, all but three of the tubes identified in Attachment #1 as containing a toxic contaminant listed in SCHWMR R.61-79.261.24 (b) Table 1 exceed the RCRA toxicity limit and were considered RCRA characteristically hazardous due to toxicity.

Attachment #2 lists those tubes that exceed the RCRA toxicity limit and are therefore considered characteristically hazardous waste due to toxicity when sent for disposal as a waste stream. The tubes that contain acid may also be characteristically hazardous due to corrosivity. Due to depletion of free liquid, it is difficult to analyze the acid contents. Therefore, those tubes were considered corrosive, as they had acid in them at one time.

Based on the above findings, guidance were developed for three specific situations with regard to used and unused Draeger tube management:

1. Newly generated used Draeger tubes
2. Used Draeger tubes that had been accumulated; and
3. Draeger tubes that are unused and are past their expiration date

GUIDANCE FOR MANAGING DRAEGER TUBES

Guidance for the safe handling and disposal of Draeger tubes is given as follows:

(1) Newly Generated Used Draeger Tubes

All Draeger tubes, hazardous or non-hazardous, that are routinely used and that have not been accumulated can be put in the sanitary waste for disposal. As with other characteristically hazardous waste, a few tubes in the larger routine sanitary waste stream should not render the whole waste stream hazardous. At SRS, it is an acceptable practice that has been used for items such as batteries, cadmium plated screws, lead washers, etc. (WSRC-IP-90-138). For the safety and protection of workers, the tube ends shall be taped. The tubes shall then be put into a small bag with an absorbent and sealed to prevent any cuts from the glass tubes. The tubes can then be put into a sanitary waste container for disposal.

All tubes that originate from a radiological area that cannot be free released from the radiological area by Radiological Controls-Operations personnel can
be handled as low level waste. If the tubes have not been accumulated they can be put into the appropriate low-level waste container for disposal. As with other characteristically hazardous waste, a few tubes in the larger routine low-level waste stream should not render the whole waste stream hazardous.

For the safety and protection of workers, the tube ends shall be taped. The tubes shall then be put into a small bag with an absorbent and sealed to prevent any leak of free liquid and cuts from the glass tubes. The tubes can then be put into a low-level waste container for disposal.

(2) Used Draeger Tubes That Have Been Accumulated

Draeger tubes that have been accumulated must first be evaluated to determine if any of the tubes listed in Attachment #2 are present.

If tubes listed in Attachment #2 are present in the accumulated quantity, the tubes shall be placed in a hazardous waste satellite accumulation area and managed as characteristically hazardous waste in accordance with WSRC Manual 3Q, "Environmental Compliance Manual", Procedure 6.9, "Hazardous or Mixed Waste Management at Satellite Accumulation Areas." The tubes should be disposed of in a labpack or could be sent to the Hazardous Waste Storage Facility in accordance with WSRC Manual 1S, "Waste Acceptance Criteria Manual," Procedure 3.18, "Hazardous, Mixed, and Polychlorinated Biphenyl Waste Acceptance Criteria."

If none of the tubes listed in Attachment #2 are present in the accumulated quantity, the waste should be considered as nonhazardous and disposed of as special waste (a category of sanitary waste used at SRS). At SRS, it is required to complete a special waste form due to the accumulation of tubes.

The same process should be used for accumulated tubes that Radiological Controls-Operations personnel free release from a radiological area. If tubes listed in Attachment #2 are present, the tubes should be placed in a mixed waste satellite accumulation area and managed as a mixed waste in accordance with WSRC Manual 3Q, "Environmental Compliance Manual", Procedure 6.9, "Hazardous or Mixed Waste Management at Satellite Accumulation Areas." Those tubes should be sent to the Mixed Waste Storage Facility in accordance with WSRC Manual 1S, "Waste Acceptance Criteria Manual," Procedure 3.18, "Hazardous, Mixed, and Polychlorinated Biphenyl Waste Acceptance Criteria."

If none of the tubes as listed in Attachment #2 are present in the accumulated quantity, the tubes should be handled as low-level waste and placed in the appropriate low-level waste container. No special forms would be required for disposal.

(3) Draeger Tubes That are Unused and are Past Their Expiration Date

At SRS the most desirable method to handle unused Draeger tubes past their expiration date is to make them available to the Chemical Commodities Management Center (CCMC). If possible, the CCMC will excess the tubes for
reuse. The CCMC may not be able to take the unused tubes for excess at the
desired time.

Once the decision is made to discard the tubes they can be managed as
follows:

- Nonhazardous tubes identified as listed in Attachment #1 should be
disposed of as special waste. If the accumulated quantity of tubes is large
a special waste form must be completed
- Hazardous tubes identified in Attachment #2 shall be placed in a hazardous
waste satellite accumulation area waste in accordance with WSRC Manual
3Q, "Environmental Compliance Manual", Procedure 6.9, "Hazardous or
Mixed Waste Management at Satellite Accumulation Areas." The tubes can
be disposed of in the next available labpack or can be sent to the
Hazardous Waste Storage Facility in accordance with WSRC Manual 1S,
"Waste Acceptance Criteria Manual," Procedure 3.18, "Hazardous, Mixed,
and Polychlorinated Biphenyl Waste Acceptance Criteria."

ACKNOWLEDGEMENT

Authors wish to express their sincere thanks to P. K. Smith for her constant
encouragement. Appreciation is also extended to S. Jahn of WSRC Industrial
Programs for his valuable advice. Messers Hal Morris, Larry Haney and Monte
Hawkins of Environmental Protection Department and Johnny Price of High Level
Waste Division are acknowledged for their valuable review. This work was
performed under DOE contract No. DE-AC09-96SR185000.

REFERENCES

i. Draeger Tube Handbook
ii. SC R.61-79, "South Carolina Hazardous Waste Management Regulations"
iv. WSRC Manual 3Q, "Environmental Compliance Manual", Procedure 6.9,
"Hazardous or Mixed Waste Management at Satellite Accumulation Areas (U)"
"Hazardous, Mixed, and Polychlorinated Biphenyl Waste Acceptance Criteria (U)"
ATTACHMENT #1: List Of Draeger Tubes That Contain Toxic Contaminants

<table>
<thead>
<tr>
<th>Draeger Tubes used at SRS</th>
<th>Additional Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetic Acid 5/a</td>
<td></td>
</tr>
<tr>
<td>Acetone 100 B</td>
<td></td>
</tr>
<tr>
<td>Air Current Tubes</td>
<td></td>
</tr>
<tr>
<td>Air Current Smoke Tube</td>
<td></td>
</tr>
<tr>
<td>Alcohol 100/a</td>
<td></td>
</tr>
<tr>
<td>Ammonia 0.5%/a</td>
<td>Contains Chromium</td>
</tr>
<tr>
<td>Ammonia 0.25/a</td>
<td></td>
</tr>
<tr>
<td>Ammonia 2/a</td>
<td></td>
</tr>
<tr>
<td>Ammonia 5/a</td>
<td></td>
</tr>
<tr>
<td>Benzene 0.5/a</td>
<td>Free liquid contains sulfuric acid.</td>
</tr>
<tr>
<td>Benzene* 0.6/c</td>
<td></td>
</tr>
<tr>
<td>Benzene* 0.05</td>
<td></td>
</tr>
<tr>
<td>Benzene* 15/a</td>
<td></td>
</tr>
<tr>
<td>Carbon Dioxide 100/a</td>
<td></td>
</tr>
<tr>
<td>Carbon Dioxide 100/a-P</td>
<td></td>
</tr>
<tr>
<td>Carbon Monoxide 2/a</td>
<td></td>
</tr>
<tr>
<td>Carbon Monoxide 5/a p</td>
<td></td>
</tr>
<tr>
<td>Carbon Monoxide 6/c</td>
<td></td>
</tr>
<tr>
<td>Carbon Monoxide 50/a D</td>
<td></td>
</tr>
<tr>
<td>Carbon Monoxide 50/a-l</td>
<td>Selenium may be present if the incomplete reaction</td>
</tr>
<tr>
<td>Chlorine 0.2/a</td>
<td></td>
</tr>
<tr>
<td>Formaldehyde 0.2/a</td>
<td>Free liquid contains sulfuric acid.</td>
</tr>
<tr>
<td>Formic Acid 1/a</td>
<td></td>
</tr>
<tr>
<td>Hydrazine 0.2/a</td>
<td>Contains Silver in the form of silver nitrate</td>
</tr>
<tr>
<td>Hydrocarbons 2</td>
<td>Selenium may be present if the incomplete reaction</td>
</tr>
<tr>
<td>Hydrocarbon (Petroleum)</td>
<td></td>
</tr>
<tr>
<td>Hydrochloric Acid 1/a</td>
<td></td>
</tr>
<tr>
<td>Hydrochloric Acid 10/a-d</td>
<td></td>
</tr>
<tr>
<td>Hydrochloric Acid/Nitric Acid 1/a</td>
<td></td>
</tr>
<tr>
<td>Hydrogen Fluoride 1.5/B</td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide 1/d</td>
<td></td>
</tr>
<tr>
<td>Mercaptan 0.5/a</td>
<td></td>
</tr>
<tr>
<td>Mercury Vapor 0.1/b</td>
<td>Contains Mercury in form of a mercury complex</td>
</tr>
<tr>
<td>Methylene Chloride 100/a</td>
<td>Chromium is considered a toxic</td>
</tr>
<tr>
<td>Monostyrene (Styrene Monomer) 10/a</td>
<td></td>
</tr>
<tr>
<td>Nitric Acid 1/a</td>
<td></td>
</tr>
<tr>
<td>Nitrogen Dioxide 0.5/c</td>
<td>Contains Chromium</td>
</tr>
<tr>
<td>Nitrous Fumes 0.5/a</td>
<td>Free liquid contains sulfuric acid.</td>
</tr>
<tr>
<td>Oil 10/a P</td>
<td></td>
</tr>
<tr>
<td>Ozone 0.05/b</td>
<td></td>
</tr>
<tr>
<td>Perchloroethylene 10/b</td>
<td></td>
</tr>
<tr>
<td>Phenol 1/b</td>
<td></td>
</tr>
<tr>
<td>Phosgene 0.02/a</td>
<td></td>
</tr>
<tr>
<td>Simultaneous Test Set I</td>
<td>Contains a Mercury Chloride and a lead containing compound</td>
</tr>
<tr>
<td>Simultaneous Test Set II</td>
<td>Contains Selenium Dioxide and a chromium containing compound</td>
</tr>
<tr>
<td>Simultaneous Test Set III</td>
<td>Contains a chromium contains compound</td>
</tr>
<tr>
<td>Sulfuric Acid 1/a</td>
<td>Contains a mercury containing compound</td>
</tr>
<tr>
<td>Sulfur Dioxide 1/a</td>
<td>Contains a chromium compound</td>
</tr>
<tr>
<td>Toluene 5/b</td>
<td>Contains barium</td>
</tr>
<tr>
<td>Toluene Diisocyanate 0.02/a</td>
<td></td>
</tr>
<tr>
<td>Trichloroethane 50/d</td>
<td></td>
</tr>
<tr>
<td>Trichloroethylene 2/a</td>
<td>Contains chromium</td>
</tr>
<tr>
<td>Trichloroethylene* 10/a</td>
<td>Contains chromium</td>
</tr>
<tr>
<td>Triethylamine 5/a</td>
<td></td>
</tr>
<tr>
<td>Water Vapor 0.1/a</td>
<td></td>
</tr>
<tr>
<td>Water Vapor 1/b</td>
<td></td>
</tr>
<tr>
<td>Water Vapor 5/a-p</td>
<td></td>
</tr>
<tr>
<td>Xylene 10/a</td>
<td>Contains selenium</td>
</tr>
</tbody>
</table>
ATTACHMENT #2: List Of Draeger Tubes That Exceed RCRA Toxic Limits

<table>
<thead>
<tr>
<th>Draeger Tubes</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Current Tube</td>
<td>MUST BE MANAGED AS HAZARDOUS DUE TO SULFURIC ACID</td>
</tr>
<tr>
<td>Alcohol 100/a</td>
<td>MUST BE MANAGED AS HAZARDOUS DUE TO CHROMIUM CONTENT</td>
</tr>
<tr>
<td>Benzene 0.5/a</td>
<td>MUST BE MANAGED AS HAZARDOUS DUE TO SULFURIC ACID</td>
</tr>
<tr>
<td>Carbon Monoxide 50/a-I</td>
<td>MUST BE MANAGED AS HAZARDOUS DUE TO SelenIum CONTENT</td>
</tr>
<tr>
<td>Formaldehyde 0.2/a</td>
<td>MUST BE MANAGED AS HAZARDOUS DUE TO SULFURIC ACID</td>
</tr>
<tr>
<td>Hydrocarbons 2</td>
<td>MUST BE MANAGED AS HAZARDOUS DUE TO SelenIum CONTENT</td>
</tr>
<tr>
<td>Methylene Chloride 100/a</td>
<td>MUST BE MANAGED AS HAZARDOUS DUE TO CHROMIUM CONTENT</td>
</tr>
<tr>
<td>Nitrous Furnes 0.5/a</td>
<td>MUST BE MANAGED AS HAZARDOUS DUE TO CHROMIUM CONTENT</td>
</tr>
<tr>
<td>Oil 10/a P</td>
<td>MUST BE MANAGED AS HAZARDOUS DUE TO SULFURIC ACID</td>
</tr>
<tr>
<td>Simultaneous Test Set I</td>
<td>MUST BE MANAGED AS HAZARDOUS DUE TO MERCURY, CHROMIUM, AND LEAD CONTENT</td>
</tr>
<tr>
<td>Simultaneous Test Set II</td>
<td>MUST BE MANAGED AS HAZARDOUS DUE TO MERCURY CONTENT</td>
</tr>
<tr>
<td>Simultaneous Test Set III</td>
<td>MUST BE MANAGED AS HAZARDOUS DUE TO CHROMIUM CONTENT</td>
</tr>
<tr>
<td>Sulfuric Acid 1/a</td>
<td>MUST BE MANAGED AS HAZARDOUS DUE TO CHROANILIC ACID</td>
</tr>
<tr>
<td>Toluene Disocyanate 0.02/a</td>
<td>MUST BE MANAGED AS HAZARDOUS DUE TO SULFURIC ACID</td>
</tr>
<tr>
<td>Water Vapor 5/a-p</td>
<td>MUST BE MANAGED AS HAZARDOUS DUE TO SelenIum CONTENT</td>
</tr>
</tbody>
</table>
Westinghouse Savannah River Company

Document Approval Sheet

Title: DISPOSAL OF DRAEGER TUBES AT SAVANNAH RIVER SITE

Primary Author/Contact (Must be WSRC): NARINDER P.S. MALIK
Location: 704-15S
Phone No.: 208-7111
Organization Code: WB210
Organization (No Abbreviations): HIGH LEVEL WASTE / ENGINEERING / ENVIRONMENTAL COMPLIANCE

Other Authors: JENNIFER O. BURGESS AND KEITH R. LINER
Key Words (list 3): DRAEGER TUBES, RCRA, DISPOSAL, TOXIC

Has an invention disclosure, patent application or copyright application been submitted related to this information? ☐ Yes ☐ No If yes, date submitted __________
Disclosure No. (If Known) __________ Title __________
If no, do you intend to submit one? ☐ Yes ☐ No If yes, projected date __________

Information Product Description
☐ Technical Report
☐ Semiannual ☐ Annual ☐ Final ☐ Topical ☐ Other
☐ Administrative Report
☐ Semiannual ☐ Annual ☐ Final ☐ Topical ☐ Other
☐ Videotape/Multimedia
☐ External Web Page URL
☐ Brochure/Booklet
☐ Procedure/User Guide
☐ Drawing
☐ Software Package (for submission to ESTSC)

☐ Journal Article Journal Name __________
☐ Book/Book Chapter Book Name __________
☐ Conference Submission
☐ Abstract ☐ Conf. Paper ☐ Conf. Proceeding
☐ Slides/poster/display ☐ Other __________
*Conference Title __________
*Conference Date 11/9/2000 m/d/y
*Conference Location (City, State, Country) SAVANNAH RAPIDS, MARTINEZ, GEORGIA

References ☐ Approved for Release/Publicly Available ☐ Included as Attachment(s) ☐ Routing Concurrently ☐ Other

I understand that for the information in this material to be given external distribution, approvals by both WSRC and, as appropriate, DOE-SR are required. Distribution (verbally or published) must be in accordance with policies set forth in WSRC management requirements and procedures (MRP 3.25) and in DOE-SR orders, and the content of the external distribution must be limited to that actually approved.

Author's Signature __________ Date __________

Derivative Classifier
MISHEE, E. RARER Classification Topic N/A

Intended Distribution
☐ Unlimited (release to public)
☐ Limited (see explanation)
☐ Site Use Only ☐ Corporate/University Partner
☐ Other DOE facility(ies) only ☐ Other

I understand and have considered whether any potential intellectual property rights (patents, copyrights, etc.) in accordance with MP 1.09 and MRP 1.07) or any contractual barriers (CRADAS, Work for Others, etc.) may be involved before authorizing that this document be proposed for public release. If any concerns were identified, these have been discussed and resolved with General Counsel.

Manager's Name (Print) __________ Signature __________ Date __________

Classification Information (To be Completed by WSRC Classification Office)
Classification (Check one for each)
☐ S ☐ C ☐ UCNI ☐ U
Abstract ☐ S ☐ C ☐ UCNI ☐ U

WSRC Classification Officer's Name (Print) __________ Classification Guide Topics __________
WSRC Classification Officer's Signature __________ Date __________

Export Control Review (To be Completed by Export Control Reviewing Official)
Export Control Related Limitations
☐ Yes ☐ No
Export Control Reviewer's Name (Print) __________ Signature __________ Date __________

SII Program Use Only
OSTI Subj. Category No. SC-11
Routing __________ Editor/Illustrator/On-line Support __________ MSD Project No. __________
Ms. W. F. Perrin, Technical Information Officer
U.S. Department of Energy - Savannah River Operations Office

Dear Ms. Perrin:

REQUEST FOR APPROVAL TO RELEASE SCIENTIFIC/TECHNICAL INFORMATION

The attached document is submitted for classification and technical approvals for the purpose of external release. Please complete Part II of this letter and return the letter to the undersigned by 10/16/2000. The document has been reviewed for classification and export control by a WSRC Classification staff member and has been determined to be Unclassified.

Kevin Schmidt, WSRC STI Program Manager

I. DETAILS OF REQUEST FOR RELEASE

Document Number: WSRC-MS-2000-00642
Author's Name: N. P. Malik
Location: 704-15S Phone 8-7111
Department: High-Level Waste/Engineering/Environmental Compliance
Document Title: Disposal of Draeger Tubes at Savannah River Site

Presentation/Publication:
Meeting/Journal: SEMA Conference-Environmental Management
Location: Martinez GA USA

II. DOE-SR ACTION

Date Received by TIO 10/12/2000

☑ Approved for Release ☐ Not Approved
☐ Approved Upon Completion of Changes ☐ Revise and Resubmit to DOE-SR
☐ Approved with Remarks

Remarks: [Signature] W. F. Perrin, Technical Information Officer, DOE-SR

Date 10/13/00
ANNOUNCEMENT OF U. S. DEPARTMENT OF ENERGY (DOE)
SCIENTIFIC AND TECHNICAL INFORMATION (STI)

RECORD STATUS (select one):
X New Revised Data Revised STI Product

Part I: STI PRODUCT DESCRIPTION

A. STI PRODUCT TYPE (select one)

1. Technical Report
 a. Type: ☐ Topical ☐ Semiannual ☐ Annual ☐ Final ☐ Other (specify)
 b. Reporting Period (mm/dd/yyyy) thru (mm/dd/yyyy)

X 2. Conference
 a. Product Type: ☐ Conference Proceedings ☐ Conference Paper or Other (abstracts, excerpts, etc.)
 b. Conference Information (title, location, dates)

X 3. Software Manual (The actual software package should be made available simultaneously. Follow instructions provided with ESTSC F1 and ESTSC F2)

4. Journal Article
 a. Type: ☐ Announcement citation only ☐ Preprint ☐ Postprint
 b. Journal Name
 c. Volume _______ d. Issue _______ e. Serial identifier (e.g., ISSN or CODEN)

5. S&T Accomplishment Report

6. Book

7. Patent Application
 a. Date Filed (mm/dd/yyyy) ______/_____/_______
 b. Date Priority (mm/dd/yyyy) ______/_____/_______
 c. Patent Assignee

8. Thesis/Dissertation

B. STI PRODUCT TITLE Disposal of Draeger Tubes at Savannah River Site

C. AUTHOR(s)
 N. P. Malik
 E-mail Address(es): ________________________________

D. STI PRODUCT IDENTIFIER

1. Report Number(s) WSRC-MS-2000-00642
2. DOE Contract Number(s) DE-AC09-95SR18500
3. R&D Project ID(s)
4. Other Identifying Number(s)

E. ORIGINATING RESEARCH ORGANIZATION Savannah River Site

F. DATE OF PUBLICATION (mm/dd/yyyy) 10/13/2000

G. LANGUAGE (if non-English) English

(Grantees and Awardees: Skip to Description/Abstract section at the end of Part I)

H. SPONSORING ORGANIZATION

I. PUBLISHER NAME AND LOCATION (if other than research organization)

Availability (refer requests to [if applicable])

J. SUBJECT CATEGORIES (list primary one first) 11
 Keywords Draeger Tubes, RCRA, Disposal, Toxic

K. DESCRIPTION/ABSTRACT

The Savannah River Site (SRS) is a Department of Energy (DOE) facility located in Aiken, South Carolina that is operated by the Westinghouse Savannah River Company (WSRC). At SRS Draeger tubes are used to identify the amount and type of a particular chemical constituent in the atmosphere. Draeger tubes rely on a chemical reaction to identify the nature and type of a particular chemical constituent in the atmosphere. Disposal practices for these tubes were identified by performing a hazardous waste evaluation per the Resource Conservation and Recovery Act (RCRA). Additional investigations were conducted to provide guidance for their safe handling, storage and disposal. A list of Draeger tubes commonly used at SRS was first evaluated to determine if they contained any material that could render them as a RCRA hazardous waste. Disposal techniques for Draeger tubes that contained any of the toxic contaminants listed in South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79.261.24 (b) and/or contained an acid in the liquid form were addressed.
US DEPARTMENT OF ENERGY
ANNOUNCEMENT OF U. S. DEPARTMENT OF ENERGY (DOE)
SCIENTIFIC AND TECHNICAL INFORMATION (STI)

Part II: STI PRODUCT MEDIA/FORMAT and LOCATION/TRANSMISSION

A. MEDIA/FORMAT INFORMATION

1. Medium of STI product is: Paper ___ Electronic document ___ Computer medium ___ Audiovisual material ___

2. Size of STI product

3. File format:
 a. If electronic document is posted at site, indicate: html ☑ pdfn ☑ sgml ☑ xml
 b. If electronic document is transmitted to OSTI, indicate: html ☑ pdfn ☑ pdfl ☑ msword

 TIFF4 ☑ WP—Indicate Version (5.0 or greater) ___ platform/operating system ___
 MS Word—Indicate Version (5.0 or greater) ___ platform/operating system ___
 Postscript ___

4. If computer medium or audiovisual material:
 a. Quantity/type (specify) ___
 b. Machine compatibility (specify) ___
 c. Sound: ___(yes) d. Color: ___(yes) e. Tables/Graphics ___(yes)
 f. Other information about product format a user needs to know:

B. LOCATION/TRANSMISSION INFORMATION

1. STI Product is available at site: Unique URL (of specific STI Product) http://www.srs.gov/general/sci-tech/fulltext/ms2000642/m
 s2000642.html

2. STI Product is being transmitted to OSTI:
 a. Electronically via FTP ___
 b. Via Mail or shipment (e.g., Federal Express) ___

3. Information Product Filename (of transmitted electronic format)

C. ADDITIONAL INFORMATION (concerning media/format or location/transmission; for OSTI internal use only):

(Grantees and Awardees: Skip to Contact section at the end of Part III)

Part III: STI PRODUCT REVIEW? RELEASE INFORMATION

A. ACCESS LIMITATION

 1. Unlimited Announcement (available to U.S. and non-U.S. public) ___
 2. OpenNet (use OpenNet guidance for below):
 a. OpenNet Document Type ___
 b. OpenNet Document Keywords ___
 c. Accession Number ___
 d. Field Office Acronym ___
 e. Declassification date (mm/dd/yyyy) ___/___/___
 f. OpenNet Address ___
 g. Declassification Status: ___ Classified ___ Sanitized ___ Never classified ___
 3. U.S. Dissemination Only ___
 4. Copyrighted material: Are there any restrictions based on copyright? ___ yes ___ no. If yes, list the restrictions ___

 5. Small Business Innovation Research (SBIR) Release date (mm/dd/yyyy) ___
 6. Small Business Technology Transfer (STTR) Release date (mm/dd/yyyy) ___
 7. Proprietary/Trade Secret ___
 8. Patent Pending ___
 9. Protected data ___ CRADA ___ Other (specify) ___

 10. Official Use Only (OUO) ___
 11. Program-Directed Special Handling (specify) ___
 12. Export Control/EATAR/EAR ___
 13. Unclassified Controlled Nuclear Information (UCNI) ___
 14. Classified Classification Level/Category of:
 a. This form ___
 b. The STI Product ___
 15. Other information relevant to access (specify; for OSTI internal use only) ___

B. OTHER (Information useful to include in published announcement record which is not suited for any other field on this form)

C. CONTACT AND RELEASING OFFICIAL

 1. Contact (if appropriate, the organization or site contact to include in published citations who would receive any external questions about the content of the STI Product or the research information contained therein)
 Name and/or Position ___
 E-mail ___
 Organization ___
 Phone ___

 2. Releasing Official ___ I verify that all necessary reviews have been completed (e.g. Patent, Copyright, ECI, UCNI, etc.)
 Released by (name) ___
 Date (mm/dd/yyyy) ___
 E-mail ___
 Phone ___

 Kevin Schmidt, Manager STI Program & Site Support ___
 (803) 725-2765 ___

 Westinghouse Savannah River Company ___

 10/13/2000 ___ (803) 725-2765 ___