Title: MECHANICAL BEHAVIOR OF ERBIUM OXIDE SINGLE CRYSTALS

Author(s): J.J. Petrovic, MST-8
A.A. Sharif, MST-CMS
A.M. Kukla, MST-8
R.S. Romero, MST-8
D. Mendoza, MST-8
F.M. Pitek, MST-CMS

Submitted to: American Ceramic Society
24th Annual Cocoa Beach Conference
24-28 January 2000 - Cocoa Beach, Florida
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
MECHANICAL BEHAVIOR OF ERBIUM OXIDE SINGLE CRYSTALS

J.J. Petrovic, A.A. Sharif, A.M. Kukla, R.S. Romero, D. Mendoza, F.M. Pitek, Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

ABSTRACT

Er₂O₃ single crystals were synthesized by optical floating zone single crystal techniques. The average room temperature hardness of these crystals was 7 GPa, while the average room temperature indentation fracture toughness was 0.86 MPa m¹/². Hardness decreased with increasing temperature, while fracture toughness increased at 1200 °C and above. Cleavage planes observed in erbia were {110} and {111}. Macroscopic compressive deformation occurred in erbia at 1640 °C. The observed slip system was {110}<111>.

INTRODUCTION

Erbium oxide (Er₂O₃) is a rare earth oxide with a high melting point of 2430 °C. This material is very thermodynamically stable. It thus has potential applications where high temperature stability and corrosion resistance are required. Only a limited amount of research has been done on the mechanical properties and behavior of Er₂O₃ (1-5). The crystal structure of Er₂O₃ is body centered cubic, with a lattice constant of 1.055 nm. There are 80 atoms per unit cell, 32 Er and 48 O. Thus, while Er₂O₃ has a relatively simple cubic crystal structure, the unit cell is large and contains many atoms. The coordination on each erbium atom is six-fold, while the coordination on each oxygen atom is four-fold. Erbia can be thought of as a distorted fluorite structure, with one-fourth of the oxygen atoms removed.

MATERIALS AND PROCEDURE

Single crystals of Er₂O₃ were synthesized using a xenon optical floating zone single crystal growth apparatus and the procedures given in Reference 3. It was possible to produce single crystals approximately 5 mm in diameter by 70 mm in length. The growth direction of the single crystals was observed to be <111>.

Because the erbia crystals were grown in a reducing Ar/H₂ atmosphere, the as-grown crystals were black in color. The heating of black erbia in air at
1600 °C caused the erbia to return to its original pink color. This is due to the fact that erbia becomes substoichiometric to a level of Er$_2$O$_{2.978}$ when melted in vacuum or reducing atmosphere due to a loss of oxygen (6).

Microhardness indentation and indentation fracture toughness measurements were performed on stoichiometric erbia single crystals as a function of temperature using a Nikon QM-2 high temperature microhardness apparatus. Vickers indentations were employed at a load of 1 kg. Indentation fracture toughness was calculated using the approach of Anstis et.al. (7).

Elevated temperature compression tests at a temperature of 1640 °C were performed on the erbia single crystals using an Instron interfaced with a MoSi$_2$ element split mechanical testing air furnace.

RESULTS AND DISCUSSION

Single Crystal Hardness and Fracture Toughness as a Function of Temperature

Figure 1 shows the hardness of an erbia single crystal as a function of temperature. The indentation plane was {110} and the erbia was stoichiometric.

![Graph showing Er$_2$O$_3$ single crystal microhardness as a function of temperature.](image-url)
The room temperature hardness of erbia was not particularly high, at a level of 7.5 GPa. Thus, erbia is a relatively soft oxide ceramic. The hardness generally decreased with increasing temperature, reaching a value of 2 GPa at 1400 °C.

Figure 2 shows the indentation fracture toughness of an erbia single crystal as a function of temperature. The indentation plane was {110} and the erbia was stoichiometric.

Figure 2: \(\text{Er}_2\text{O}_3 \) single crystal indentation fracture toughness as a function of temperature.

The room temperature fracture toughness of erbia is relatively low at a value of 0.9 MPa m\(^{1/2}\). This indicates that erbia is a relatively brittle oxide ceramic. The fracture toughness was essentially constant up to 1000 °C, but exhibited a substantial increase by approximately a factor of two at 1200 °C and 1400 °C. This increase in fracture toughness is likely due to the initiation of plastic deformation at crack tips in erbia at high temperatures.
Effects of Crystallographic Orientation on Hardness and Fracture Toughness

Figure 3 shows the effects of crystallographic orientation on the room temperature Vickers microhardness of an erbia single crystal. The hardness was observed to be relatively insensitive to the crystallographic plane of the indentation, as would be expected for a cubic material. The average hardness for the various crystallographic planes was 7.0 GPa.

Figure 3: Room temperature Vickers hardness on different indentation crystallographic planes.

Figure 4 shows the room temperature indentation fracture toughness as measured on different crystallographic planes in erbia. As with the hardness, there was no strong dependence of fracture toughness on the crystallographic plane of the indentation, although the toughness appeared somewhat lower on the \{112\} plane. The average fracture toughness over the crystallographic planes was observed to be 0.86 MPa m^{1/2} at room temperature.
Figure 4: Room temperature indentation fracture toughness measured on different indentation crystallographic planes.

Figure 5 shows typical indentation fracture patterns observed on the different crystallographic planes of erbia.

Figure 5: Typical indentation fracture patterns on the {100}, {110}, {112}, and {111} planes of erbia.
The best-formed indentation fractures occurred for indentations on the \{100\} plane with indentation diagonals oriented in the \(<110>\) directions. This crystallographic orientation showed a distinct tendency for cleavage fractures on the \{110\} planes of erbia. When indentations on the \{100\} plane were rotated such that the indentation diagonals were along the \(<100>\) directions, fracture traces along \(<110>\) directions still predominated the fracture pattern.

The above suggests that \{110\} planes are cleavage fracture planes in erbia. The fracture toughness on the \{110\} planes was calculated to be 0.65 MPa m\(^{1/2}\). However, it should be noted that the \{111\} planes in erbia were also observed to be cleavage planes of low fracture energy (4). The macroscopic erbia single crystals showed a distinct tendency to fracture on \{111\} planes during handling of the crystals. Thus it is interesting that \{111\} plane fracture is not more prominent in Figure 5. It may be that fractures on other \{111\} and \{110\} planes inclined to the indentation surface obscured a distinct \{111\} indentation fracture pattern on the indentation planes.

Elevated Temperature Compressive Deformation

Elevated temperature compression tests were performed at a strain rate of \(3.5 \times 10^{-4} \text{ s}^{-1}\) (4). Attempts to deform single crystals of erbia at temperatures below 1600 °C resulted in brittle fracture in compression, with no evidence of plastic deformation. A small amount of plastic deformation was observed in compression at 1640 °C. The yield stresses for single crystals oriented with \(<112>\) and \(<110>\) directions along the compression axis were 80 MPa and 90 MPa, respectively.

Dislocations produced by plastic deformation in erbia at 1640 °C were observed to have the slip system \{110\}<111> (4). It is thought that the \(1/2<111>\) Burgers vector dissociates into \(1/4<110>\) and \(1/4<112>\) partial dislocations as shown in Figure 6.

![Burgers vector](image)

Figure 6: Burgers vector for \{110\}<111> dislocation slip in Er\(_2\)O\(_3\).
CONCLUSIONS

Er$_2$O$_3$ single crystals approximately 5 mm in diameter by 70 mm in length were synthesized by xenon optical floating zone single crystal growth techniques. The average room temperature Vickers microhardness was 7 GPa, and hardness decreased to 2 GPa at 1400 °C. The average room temperature indentation fracture toughness was 0.86 MPa m$^{1/2}$ and remained constant to 1000 °C, but increased to 1.5 MPa m$^{1/2}$ at 1200 °C and above. Both hardness and fracture toughness were relatively insensitive to the crystallographic indentation plane. Cleavage planes in erbia are {110} and {111}. Erbia single crystals exhibit plastic deformation at a temperature of 1640 °C. The dislocation Burgers vector in erbia is 1/2<111>.

ACKNOWLEDGEMENTS

Student support for this work was provided by the Los Alamos National Laboratory under its University Programs student activity. Support for staff and experimental work was provided by the DOE Office of Basic Energy Sciences, Division of Materials Sciences.

REFERENCES

