A MODEL TO ESTIMATE VOLUME CHANGE DUE TO RADIOLYTIC GAS BUBBLES AND THERMAL EXPANSION IN SOLUTION REACTORS

PDF Version Also Available for Download.

Description

Aqueous homogeneous solution reactors have been proposed for the production of medical isotopes. However, the reactivity effects of fuel solution volume change, due to formation of radiolytic gas bubbles and thermal expansion, have to be mitigated to allow steady-state operation of solution reactors. The results of the free run experiments analyzed indicate that the proposed model to estimate the void volume due to radiolytic gas bubbles and thermal expansion in solution reactors can accurately describe the observed behavior during the experiments. This void volume due to radiolytic gas bubbles and fuel solution thermal expansion can then be used in the ... continued below

Physical Description

291 Kilobytes pages

Creation Information

SOUTO, F. & HEGER, A February 1, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 16 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Aqueous homogeneous solution reactors have been proposed for the production of medical isotopes. However, the reactivity effects of fuel solution volume change, due to formation of radiolytic gas bubbles and thermal expansion, have to be mitigated to allow steady-state operation of solution reactors. The results of the free run experiments analyzed indicate that the proposed model to estimate the void volume due to radiolytic gas bubbles and thermal expansion in solution reactors can accurately describe the observed behavior during the experiments. This void volume due to radiolytic gas bubbles and fuel solution thermal expansion can then be used in the investigation of reactivity effects in fissile solutions. In addition, these experiments confirm that the radiolytic gas bubbles are formed at a higher temperature than the fuel solution temperature. These experiments also indicate that the mole-weighted average for the radiolytic gas bubbles in uranyl fluoride solutions is about 1 {micro}m. Finally, it should be noted that another model, currently under development, would simulate the power behavior during the transient given the initial fuel solution level and density. The model is based on Monte Carlo simulation with the MCNP computer code [Briesmeister, 1997] to obtain the reactor reactivity as a function of the fuel solution density, which, in turn, changes due to thermal expansion and radiolytic gas bubble formation.

Physical Description

291 Kilobytes pages

Source

  • Conference title not supplied, Conference location not supplied, Conference dates not supplied

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-01-673
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 774453
  • Archival Resource Key: ark:/67531/metadc719233

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 1, 2001

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • March 25, 2016, 12:37 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 16

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

SOUTO, F. & HEGER, A. A MODEL TO ESTIMATE VOLUME CHANGE DUE TO RADIOLYTIC GAS BUBBLES AND THERMAL EXPANSION IN SOLUTION REACTORS, article, February 1, 2001; New Mexico. (digital.library.unt.edu/ark:/67531/metadc719233/: accessed April 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.