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ABSTRACT

The dynamic response of a jointed beam was measured in
laboratory experiments. The data were analyzed and the
system was mathematically modeled to establish plausible
representations of joint damping behavior. Damping is
examined in an approximate, local linear framework using
log decrement and half power bandwidth approaches. in
addition, damping is modeled in a nonlinear framework
using a hybrid surface irregularities model that employs a
bristles-construct. Experimental and analytical resu/ts are
presented.

NOMENCLATURE

[c] Viscous damping matrix
[k] Stiffness matrix
[m] mass matrix
[Ark] Number of bristles times stiffness

[91 Forcing function vector
{R(x, x)} Vector on nonlinear restoring force

{4 Displacement
Average fraction of bristles in contact

;7 %.x Bristle model parameters

1. INTRODUCTION

The effects of sliding friction in bolted lap joints are of great
importance to the structural design community. Friction may
be desirable in a mechanical design, because it dissipates
energy, thereby diminishing response levels, or it may be
undesirable because it dissipates energy where that effect is
unwanted or makes structural control more difficult. In order
to increase the utility of joint @tion in the design process, it
is imperative that we establish predictive models of joint
(f@ion behavior. Most structural dynamic analyses performed
today require experiments to calibrate the damping in

models, or they simply select damping based on
speculation.

Friction occurs in all mechanical systems that execute
structural dynamic response. Damping effects occur as the
result of (1) energy dissipation at the microscopic level in
materials, (2) radiation of energy into the medium that
surrounds a structure (air, water, soil, or other mechanical
components), (3) the interactions between elements in a
structure, and (4) components that that are designed to
remove energy from a system in a controlled manner.

Numerous models that characterize the behavior of frictional
joints are described in the literature. These range from
simple models that are used for computational convenience
or to describe phenomenology in a simple manner, to more
complex non-phenomenological models that match energy
dissipation characteristics seen in experimental settings, to
phenomenological models that seek to mimic supposed
behavior at joint intetiaces.

The simplest model for damping is the viscous damping
model described in practically all texts on structural
vibrations. (see , for example, Inman, 1996). The simplest
phenomenological model for friction is the Coulomb model
described for example in Haug (1 992).

Non-phenomenological models for friction seek to model
damping behavior based on experimental laboratory of field
observation. Examples are Stribeck’s model (1902). Masing-
Element models (Ottl, 1981) and the Valanis model (1971).

Phenomenological models seek to simulate damping
behavior by mathematically characterizing physical behavior
of a joint. Examples are the elasto-slip model (Gaul and
Nitsche) and the bristle model (Haessing and Friedland,
1991 ). A form of the latter will be considered in this
investigation.
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Gaul and Nitsche present a thorough and ~ide-ranging
summary of friction modets.

This paper presents an investigation into friction damping
and vibrations of beams with bolted lap joints. Two
geometrically identical specimens with different
characteristics are considered. The specimens are shown
schematically in Figure 1. The first specimen is a built-up
beam. It consists of two long beam segments joined at the
center by symmetric plates. The plates connect to the
beams in a lap joint configuration, fastened with a bolt. The
second specimen has geometry identical to the first, but it is
a monolithic structure machined from a single piece of steel.

Jointed Beam
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Monolithic Beam
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Figure 1. Schematics of Beam Specimens

During vibration the jointed beam system assumes shapes
like that shown in Figure 2. At the interface between each
beam segment and the plates that support it, longitudinal
stress in the beam is great and longitudinal stress in the
plates that form the joint is near zero. In view of this slippage
(sometimes too small to measure accurately) occurs.
Because the surface of any real structure element is rough
to some extent, energy dissipation occurs. It is the effects of
this energy dissipation that we seek to characterize through
experiments and to model mathematically.
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Figure 2. Jointed Beam Schematic.

following sections we will (1) describe the
experimental con~guration and the experiments (2) describe
experimental measures of system damping, and show how
they can be estimated using measured data, (3) describe an
approximate finite element model of the system, and show
how it can be used to test friction models for their

plausibility, and (4) present numerical and experimental
results. Finally, conclusions will be presented and
recommendations offered.

2. EXPERIMENTAL CONFIGURATION

The two test structures shown in Figure 1 were evaluated in
the experiment. The first structure consisted of two ten inch
long steel beams connected by a lap joint. Dimensions are
provided in Figure 3. The beam thickness and width are M
inch and 1.0 inch respectively. Two % inch steel bolts with
washers were used to sandwich the ends of the ten inch
beams between two 3 M inch long plates of steel. The bolts
were tightened to 85 in-lbs. A !4 inch “space was left

between the ends of the 10“ beams.
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Figure 3. Segmented Beam Geometry

The second structure is an approximate geometric replica of
the jointed beam. It is to be used as an experimental control.
It was machined from a single piece of steel and shown in
Figure 4. Bolts were tightened through the holes in the
structure as was done on the jointed beam. This was not
required structurally in the solid beam, however, it was done
to maintain similarity of the geometry and mass of the two
beams.

3 1/4”

ETl1 1/2” 4“
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Figure 4. Solid Beam Geometry

During testing the beams were suspended from two
approximately 3 ft. long sections of medical tubktg in order
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to simulate a free-free boundary condition. The beams were
supported approximately 2 inches from each end. The
beams were suspended so that the flexibi’e plane’ of
vibrations was oriented horizontally (Figure 5).

Figure 5. Test Configuration

The beams were instrumented with one Endevco Isotror?
2250A-1 O accelerometer fixed with wax to the beam, outside
the joint near the center (Figure 6). The accelerometer
sensitivity and range were 10.01 mV/g and +/- 500 g
respectively. A PCB impact. impacts were applied on the
beam center axis, one inch from the end. The force
transducer on the hammer (PCB 086C03) has a range of O-
500 Ibf. and sensitivity of 10 mV/lbf.

Figure 6. Beam Instrumentation

Force and acceleration data were collected through the Data
Physics Corporation ACE DP104 FFT Analyzer two channel
data acquisition system using SignalCalc ACE Dynamic
Signal Analyzer software on a laptop computer running
Microsoft Windows98. Data were recorded for 4.096 s at a
rate of 2000 samples/s. This indicates a Nyquist frequency
of 1000 Hz. The data were lowpass filtered (for anti-
aliasing) at 781 Hz. The AC filter was set to 5 Hz. The data
acquisition system was triggered when the hammer force
surpassed 5 Ibf. A 20 sample buffer was included at the
beginning of each run. Twenty runs were averaged to
estimate the beam frequency response functions. However,

each time response was saved individually. The time
histories were exported as ASCII text files to be analyzed in
MATLAB. Figure 7 shows estimated frequency response
functions for the beams.
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Figure 7. Sample Frequency Response Functions of Jointed
and Solid Beams

Though substantial differences in some aspects of the two
beams’ behavior were anticipated, there are some clearly
noticeable similarities. Specifically, the modal frequencies of
the two experimental specimens are fairly close. The first
three modal frequencies of the jointed beam are 125, 326,
and 689 Hz. The first three modal frequencies of the
monolithic beam are 137, 339 and 750 Hz. This indicates
that the two structures have similar mass and stiffness
characteristics. It is expected for the jointed beam to have
lower frequencies due to frictional losses at the joint. More
variation may have been introduced by slight geometric
differences. It is shown later that this rough similarity does
not extend to the dissipative characteristics of the beams.

3. ANALYSIS OF EXPERIMENTAL DATA

Two approaches are used in this investigation to
characterize energy dissipation in the beam systems under
consideration. First, linear models are used to describe
energy dissipation realized in the experimental systems.
Later, linear and nonlinear models are used to describe
energy dissipation in mathematical models of the physical
systems.

Two linear frameworks are used to characterize the beams’
damping observed in the laboratory. They are the log
decrement and half power bandwidth. The log decrement
approach is implemented in a local linear construct to
approximate energy dissipation in both beams. This is the
primary approach to characterize damping in the beams.

To apply the log decrement approach, the beam was excited
as described in the previous section and the free decay of
the beam was recorded. From a separate analysis, the
modal frequencies of each beam were assessed. Then each
oscillatory decaying acceleration signal was low pass filtered
between the first and second oscillatory modes to eliminate
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higher mode contributions. (Note that two very low frequency
rigid body-type modes associated with motion of the beam
on its very soft elastic supports did not appea? in the data
because, as mentioned previously, the measured data were
high pass filtered at about 5 Hz.)

To establish the system decay characteristics accurately, the
analytic function of the Hilbert transform was computed for
each filtered oscillatory signal. This function is an
approximate envelope of the signal. In all cases it forms a
decaying, approximately exponential curve.

An analysis program divides the decay curve into twelve
segments that overlap 50 percent. It retains data whose
amplitudes are greater than 10 percent of the peak
amplitude. The program estimates the average amplitude of
the decay envelope over each segment. It then takes the
natural logarithm of each data segment and fits a straight
line to the data using a least squares approach. The system
damping factor in the first oscillatory mode is inferred from
the parameters of the straight line. The damping factor in
each segment is associated with the average amplitude of
motion during that segment. Damping versus amplitude is
plotted using measurements from several tests. Some
results are shown in the experimental results section (5).

The plots described above supply a visual means for
determining system linearity. When the estimates of
damping factor plotted as a function of amplitude form a
horizontal line, the system mode can be inferred to be linear
with damping factor that is constant over all response
amplitudes. When the estimates of damping factor plotted
as a function of amplitude form a curve with variable
ordinate, then the damping coefficient is a nonlinear
function of amplitude. When such a curve appears to have a
simple form it may be possible to approximate the amplitude
dependence of damping factor on displacement or velocity
amplitude. The manner in which the damping factors were
established implies that these experimental systems can be
treated as local linear.

The half power bandwidth estimate uses MATLAB’s
Transfer Function Estimate (TFE) program to determine the
system’s frequency response function (FRF). It takes
multiple measured acceleration vectors, windows them, and
concatenates them to create one continuous vector. Except
for windowing, the same is done for the impulsive forces.
The excitation and response vectors are inputs to the TFE
program. The resulting FRF is input to a, modal frequency
approximation program, which records the modal
frequencies and the corresponding magnitudes of the FRF.
The first mode is used for the half power bandwidth
analysis. The damping coefficient is estimated in the usual
manner. This approach is only used to check the results of
the log decrement analysis.

4. MATHEMATICAL MODEL

Simple finite element models of the jointed and monolithic
beams were created. The FE models use the structural

dynamic framework of the simultaneous ordinary differential
equation given by

[mKi}+{m,i)}= {!2] (1)

where x is displacement at the system degrees of freedom,
dot denote differentiation with respect to time, [m] is the
mass matrix, {R) is the vector of nonlinear restoring force
functions (dependent on displacement and velocity), and {q)
is the forcing function vector. Initial conditions must be
specified to solve the equation of motion.

The monolithic beam was modeled in the linear framework.
The restoring force governing the system is

{R(x,i)}= [c~i}+[k~x} (2)

where [c] and [k] are the viscous damping and stiffness
matrices.

The operations of the FE code include (among other things)
synthesis of the mass and stiffness matrices, eigenvalue
analysis (for linear problems), and solution of the system of
ordinary differential equations. The code is implemented in
MATLAB. Beam elements with two degrees of freedom
(rotational and translational) are used to construct the
stiffness and mass matrices. The mass matrix is diagonal.
The built in eigenvalue analysis (eig) is used to solve the
eigenvaiue problem. The results are presented later.

Jointed beam analysis requires the capability to solve
nonlinear ordinary differential equations. The nonlinear
behavior is approximated by simplifying equation 1 by -
constraining system motion to a single linear mode.
Specifically, the vector displacement and velocity responses
of the system were approximated using

where g,(t) is displacement in the kth modal coordinate, <.,(~

is the corresponding velocity and q, is the kth orthonormal
mode shape. It is recognized that this approximation can
never converge to the exact solution. However,
experimental observations indicate that this is an accurate
approximation. Thus the restoring force for the nonlinear
system is modeled as

{R(x,i)}= [C]{i} + [k]{x] + {Rn,(x,i)} (4)

General system damping is modeled as viscous. {Rn,(x, k) }

is zero except where degrees of freedom are attached with
nonlinear elements.

Figure 7 shows a schematic of part of the FE model. Beam
elements are shown as blocks. The nonlinear connections
are included in {Ro,(x, i) }.
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Figure 7. Nonlinear Finite Element Model Schematic

Friction is modeled using a form of the bristles construct
often referred to as the Lu-Gre model (see Gaul and Nitche
and Haessing and Friedland, 1991). The assumptions
underlying the model follow. Opposing frictional surfaces
are irregular and the irregularities can be modeled with
bristles. When opposing surfaces move relative to one
another some bristles establish and/or maintain contact
while others lose contact. The bristles in contact and this
results in a displacement related motion resistance. Based
on experimental evidence, it is assumed that the fraction of
bristles in contact is a function of velocity. Based on these
assumptions the restoring force, opposing motion at the
frictional joint is

R = ctNk Axl (4)

where a = average fraction of bristles in contact, N = number

of bristles, k = bristle stiffness, AX= change in displacement

over time interval of interest. For this investigation a was
given the form

a = yoe-v2’2p2+ y, (5)

where ~, yO,and y, are parameters of the model and v is the

velocity. A typical example of a is shown in Figure 8.

0.65 I
-2 -1.5 -1 -0.5 0 0,5 1 1.5 2

Velocity

Figure 8. Percentage of bristles in contact, a(v)

Our experimental results (summarized in the following
section(5) ) showed that the bristle model incorrectly predicts
the qualitative behavior of the lap jointed beam. The model
can be modified by inserting explicit dependence on velocity.
When this is done, energy dissipation in the mathematical
model of the beam can be made to match the experimental
results. The model we chose to use is

R = vizNklAxl (6)

This restoring force equals zero at zero velocity. A graph
showing the relationship of the restoring force to velocity and
change in displacement, R(v, AX), is shown in Figure 9.

Velocity -2 0 “-
delta x

Figure 9. Absolute value of restoring force, R(v, AX)

5. EXPERIMENTAL RESULTS

The experiments described in a previous section were
performed and system excitations and responses were
measured. Two measured acceleration response time
histories are shown in Figures 10 and 11. In Figure 10, the
first graph is the low pass filtered acceleration response of
the jointed beam with filter cutoff frequency of 240 Hz. The
first graph in Figure 11 is the low pass filtered acceleration
response of the monolithic beam with filter cutoff frequency
of 240 Hz. Below each time history is the envelope formed
by the analytic function of the Hilbert transform of the
response time history. Though not apparent from the time
histories, the fundamental frequency of response of the
jointed beam is 125 Hz, and that of the monolithic beam is
137 Hz. It is clear from the graphs that the average decay
rates of the jointed and monolithic beams differ greatly.
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Figure 10. Typical response time histoty and its envelope for
the jointed beam.
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Figure 11, Typical response time history and its envelope for
the monolithic beam.

The amplitude decay signals were analyzed as specified in
the Analysis of Experimental Data Section(3). Local linear
estimates of damping factors were computed for both beams
and are shown in Figures 12 and 13. Both figures depict
local linear estimates of damping factors as a function of
velocity amplitude. Velocity amplitudes were determined by
dividing the acceleration amplitudes by the natural frequency
and multiplying by 386 (ir?/#)/g. The former presents this
information for the monolithic beam; the latter for the jointed
beam. Each figure presents the results of 20 tests. The data
are scattered because (1) the measurements include
random noise, and (2) the system, environment, and
boundary conditions vary slightly from one test to the next.
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Figure 12. Estimates of local linear damping factor versus
velocity amplitude for the monolithic beam.
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Figure 13. Estimates of local linear damping factor versus
velocity amplitude for the jointed beam.

The data in Figure 12 appear to indicate that damping level
is constant with respect to amplitude, for the monolithic
beam, over the range of amplitudes considered in these
experiments. The sample mean of the damping factor
estimates in Figure 12 is 0.22 percent.

In contrast, the data in Figure 13 show that damping
increases with velocity amplitude in the jointed beam. Over
the range of amplitudes considered in those experiments
local linear damping factor estimates vary from about 0.3
percent at an amplitude of 0.5 inls to about one percent at
an amplitude of 3.5 in/s. It is clear that the slope of the mean
of the damping factors diminishes with increasing velocity
amplitude. This is to be expected because (1) damping
effects cannot increase without bound, and (2) the physical
phenomena may restrict damping effects to some upper
limit.

The average damping factor of the two systems was
estimated using the half power bandwidth approach. The
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damping factor of the monolithic beam was estimated to be
0.24 percent, and that of the jointed beam was ~stimated to
be 0.64 percent. These values tend to confirm the resblts
shown in Figures 12 and 13, because they represent
averages formed using responses at all levels.

6. ANALYTICAL RESULTS

The linear and nonlinear analyses described in the
Mathematical Model Section (4) were performed with the
objective of simulating the behavior of the two experimental
systems. Both linear and nonlinear analyses are modal-
based. The response in a single mode is considered. This
modal analysis is exact for the linear system, but only an
approximation for the nonlinear system.

Using the FE model, modal frequencies for the linear system
were estimated as 134, 333, and 730 Hz (versus 137, 339,
and 750 Hz, for the monolithic experimental system). The
modal analysis that forms the basis of the finite element
model for the nonlinear beam yielded modal frequencies of
116, 339, and 624 Hz (versus 125, 326, and 689 for the
jointed experimental system). The reason for the differences
between the analyzed modal frequencies and those
experimentally obtained is primarily the imperfection of the
mathematical models. The form of the friction model is
given in Eq. (5). The parameters used in this investigation

are: ~ = 0.2, X = 0.3, y, = 0.7 and Nk= 2.5x 10’.

The finite element velocity response time histories of the
linear and nonlinear beams in their first oscillatory modes
are shown in Figures 14 and 15, along with their envelopes
as represented by the analytic function of the I-iilbert
transform. (Velocity is shown because only displacement
and velocity are computed.)
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Figure 15. Computed velocity response of nonlinear system,
and its envelope.

The finite element generated time histories clearly mimic the
experimental measurements. That is, the simulated motion
in the jointed beam decays more rapidly than the
corresponding motion in the monolithic beam. Further, the
frequencies of motion accurately duplicate the fundamental
frequencies of the experimental beams, but this should be
expected because the modal approximation forces motion to
occur at a particular frequency.

As for the experimental data, local linear damping factor
estimates from the analyzed responses were computed. The
results are shown in Figures 16 and 17.

0.012

0.01-

0.008 -

~ 0.006
N

t

0.004

0.002

I
01

0 1 2 3 4 5 6
Velocity Ampiiides {in/s)

Figure 16. Estimates of local linear damping factor versus
velocity amplitude for the linear beam model.

Figure 14. Computed velocity response of linear system, and
its envelope.
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Figure 17. Estimates of local linear damping factor versus
velocity amplitude for the nonlinear beam model (solid line).
The data from Figure 13 are also shown for reference.

Figure 16 shows that damping in the linear model is a
constant. This is appropriate because it is constrained to be
so.

Figure 17 shows that the local linear damping factor in the
nonlinear beam model is variable and resembles the mean
of the experimental data obtained from experiments on the
jointed beam. This shows that the mathematical model for
friction given by Eq. (6) plausibly explains energy dissipation
in the jointed beam. Though Figure 17 demonstrates the
plausibility of the modified bristle model, much more
experimentation and analysis are required to demonstrate its
optimalit y.

7. CONCLUSIONS

Experiments were performed on two simple geometrically
identical beams to characterize nonlinear lap joint behavior.
The beams were impact tested and response decay
characteristics were used to infer modal damping. The
experimental results were cast as local linear damping factor
versus velocity amplitude. A monolithic beam displayed
constant damping behavior. A lap jointed beam displayed
damping that is an increasing function of amplitude.

Approximate analyses were performed to test the plausibility
of a model for joint friction. Both linear and approximate
nonlinear finite element models for beam behavior were
developed. The modal frequencies of the linear model
matched the corresponding values for the monolithic system
closely. The approximate nonlinear analysis was used to
develop the relation between local linear damping factor and
velocity amplitude. The analytical results matched the
experimental results closely. This demonstrates the
plausibility of the bristle model.

Though the bristle construct appears to offer a plausible,
phenomenological alternative for modeling joint friction, the
authors recommend that further study be conducted prior to
adoption in specific applications. Physical systems and their
mathematical models should be exercised and validated
using other methods and forms of excitation.

Finally, to establish a useful mathematical model for friction,
predictive rules for designing and analyzing joints in complex
systems are required.
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