The Mechanics of Creep Deformation in Polymer Derived Continuous Fiber-Reinforced Ceramic Matrix Composites

PDF Version Also Available for Download.

Description

The objective of this Cooperative Research and Development Agreement between Lockheed Martin Energy Research Corporation and Dow Corning Corporation was to study the effects of temperature, stress, fiber type and fiber architecture on the time-dependent deformation and stress-rupture behavior of polymer-derived ceramic matrix composites developed by the Dow Corning Corporation. Materials reinforced with CG-Nicalon{trademark}, Hi-Nicalon{trademark} and Sylramic{reg_sign} fibers were evaluated under fast fracture, stress-relaxation, and stress-rupture conditions at temperatures between 700 C and 1400 C in ambient air and for stresses between 50 and 200 MPa. Some of the stress-rupture tests conducted as part of this program are among the ... continued below

Physical Description

12 pages

Creation Information

Lara-Curzio, E. January 30, 2001.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 127 times , with 9 in the last month . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The objective of this Cooperative Research and Development Agreement between Lockheed Martin Energy Research Corporation and Dow Corning Corporation was to study the effects of temperature, stress, fiber type and fiber architecture on the time-dependent deformation and stress-rupture behavior of polymer-derived ceramic matrix composites developed by the Dow Corning Corporation. Materials reinforced with CG-Nicalon{trademark}, Hi-Nicalon{trademark} and Sylramic{reg_sign} fibers were evaluated under fast fracture, stress-relaxation, and stress-rupture conditions at temperatures between 700 C and 1400 C in ambient air and for stresses between 50 and 200 MPa. Some of the stress-rupture tests conducted as part of this program are among the longest-duration experiments ever conducted with these materials. The possibility of using accelerated test techniques to evaluate the very-long term stress-rupture/creep behavior of these materials was investigated by means of stress-relaxation experiments. However it was found that because these materials exhibit non-linear stress-strain behavior at stresses larger than the matrix cracking stress and because of environmentally-induced changes in the micro and mesostructure of the material, particularly at elevated temperatures, this approach is impractical. However, the results of stress-relaxation experiments will be useful to predict the behavior of these materials in applications where stresses are thermally-induced and therefore driven by strains (e.g., when components are subjected to thermal gradients). The evolution of the microstructure of the fibers, matrix and fiber-matrix interface was studied as a function of stress and temperature, using analytical electron microscopy. The results from these analyses were essential to understand the relationships between environment, stress, temperature and processing on the microstructure and properties of these materials.

Physical Description

12 pages

Source

  • Other Information: PBD: 30 Jan 2001

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: C/ORNL93-0242
  • Grant Number: AC05-96OR22464
  • DOI: 10.2172/777651 | External Link
  • Office of Scientific & Technical Information Report Number: 777651
  • Archival Resource Key: ark:/67531/metadc719157

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 30, 2001

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • March 30, 2016, 1:04 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 9
Total Uses: 127

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Lara-Curzio, E. The Mechanics of Creep Deformation in Polymer Derived Continuous Fiber-Reinforced Ceramic Matrix Composites, report, January 30, 2001; Tennessee. (digital.library.unt.edu/ark:/67531/metadc719157/: accessed November 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.