
Approved rbrpublic release;
distribution is unlimited.

Title: Softwae Technology for Composition-Based Simulation

Construction A Roadmap

Author(s): Randy E. Michelsen
J. Wayne Anderson
Joe V. Holland

Submitted to: Defense Advance Research Projects Agencies

Los Alamos
NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S.
Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government
reteMs a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S.
Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the
auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to
publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (10/96)

DISCLAIMER

This report was prepared as an account of work sponsored
by an agency.of the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be ilJegibIe
in electronic image products. Images are
produced from the best available original
document.

Software Technology

for

RECEIVED
()~T()42000

0S?/

Composition-Based Simulation Construction

A Roadmap

The reuse of software has been an eagerly sought yet elusive goal of software developers for
decades. Many promising technical approaches have been pursued, but none have yielded the
full potential. Recent advances in software technology R&D have led to substantial progress in
the pursuit of software reusability. One of the more promising avenues of work is composition-
based (component-based) software construction. This paper explores the compositional
approach to the construction of software in general and presents a “technology roadmap” for
software composition. This roadmap depicts the interdependencies and state of the technologies
necessaiy to fully realize software composition.

Introduction

The rapid and pervasive growth of computing technologies in the last decade,
highlighted by the emergence of the Internet, has fundamentally altered the
nature and speed of the evolution of software technologies. For example,
business process reengineering necessitated by the rapidly changing business
environment has increased the need for flexibility and extensibility in related
software products. in partial response, the topic of sof&ware reuse is being
aggressively explored in both academic and industrial settings. One promising
reuse approach is centered on techniques for the composition of a software
system from well-defined, individual software components.

The traditional process for developing large-scale software, including computer-
based simulations, is cumbersome, time consuming, costly, and, measured in
terms of the flexibility of the product, generally inadequate. Composition-based
development approaches are designed to reduce the development cost and time
for individual software products, while still yielding a product that is more
maintainable and extensible. In such systems, the elementary unit of composition
(component) is generally a well delineated, relatively independent, and
replaceable part of a software system performing a specific function. While
composition-based software construction offers obvious benefits, intuitively the
identification of appropriate compositions simply derived from the complete set of
all possible components is intractable [1] in the general case. Though not
surprising, this supports the focus of current research activity in composable
software systems on approaches to describe or constrain the set of “valid”
compositions.

1/24

Many researchers are studying component-based approaches to software
development in general, and a few have focused specifically on simulations. In a

component-based approach for the development of a simulation, functional or
logical elements of simulation entities are represented as coherent collections of
one or more components satisfying explicitly defined interface requirements. A
simulation is a top-level aggregate comprised of a collection of components,
each component representing an individual simulation entity, that interact with
each other within the context of a simulated environment. A component may
represent a simulation artifact (e.g., run-time data collectors), an agent, or any
entity that can generate events affecting itself, other simulated entities, or the
state of the system. The component-based approach promotes code reuse,
contributes to reducing time spent validating or verifyhg models, and promises to
reduce the cost of development while still delivering tailored simulations specific
to analysis questions.

This paper defines a technology roadmap for soflware composition considering
technologies in the broader software development context. The rationale is that
most if not all of these technical issues are directly relevant to the more narrowly
focused simulation community. The roadmap therefore presents the technologies
required to realize the capability in a general setting, though the underlying
motivation for the study is understanding composition in the context of large-
scale computer simulation construction. The roadmap does not include
implementation plans or performance targets. These elements, though otlen
included in typical technology roadmaps, were considered beyond the scope of
the current effort. The assessments of technology areas represented in the
roadmap were based on applicability to broad use in the software development
community. The roadmap remains relevant since the required technologies are
not dependent on the domain of application. In the case of simulation
construction, a “successful” system would enable an individual, whether an
experienced software developer or simply a knowledgeable end user, to
assemble a simulation application from existing software components in a
relatively short time. The paper concludes with an appendix briefly describing the
1995 report of the DoD Software Reuse Initiative and a bibliography of relevant
literature from the general software community published primarily since that
time.

The End-Use Context

Though composition as a development approach is broadly applicable, the focus
of the study was the supporting technology for composition of large-scale
computer simulations. A number of end-use scenarios [2] defining operational
characteristics of the future capability in specific contexts where developed to
provide functional requirements for a composition capability. The scenarios were
defined in operational terms and included the definition of specific capability-
oriented issues. Subsequently, these end-use scenarios guided the specification
of an abstract use case describing the general characteristics of the projected
end-use context.

End-Use Scenario A: Simulation-Based Training Exercise

The current process for the scenario generation and planning of an exercise for a
JTF Commander and his staff can take over a year. The operational requirement
exemplified by this scenario is a Commander completing the planning process for
an exercise in less than four hours. At the end of this four-hour period, the
system would compose the simulation system and supporting initialization files
(synthetic natural environment data, initial conditions for the simulated entities,
force positioning, etc.). Representational and technological issues to be
addressed in this use case include:

Missing or new equipment that would require new doctrine”and
tactics;

Ability to specify interfaces to C41 interfaces;

The exercise may include coalition forces and equipment;

The exercise may include civilian forces (Red Cross,
Department of State, Department of Transportation, etc.);

Changes to the command and control structure that may need
to occur; and

The use of this technique in a closed form solution versus man-
in-the-loop for training.

End-Use Scenario B: Advanced Systems Concept Exploration

Approaches. for simulation-based advanced concept development generally
postulate a computational environment supporting the exploration of various
technological elements in a new system design. An example might be exploring
the utility of a tank incorporating a hovercraft-like capability. For such an
approach to be useful the construction of the computational representation
should ideally require only afew hours and the resulting simulation should
support the ready exploration of alternatives. The simulation environment must
enable the study of issues such as:

■ The development and fielded cost of the addition of this new
system or capability;

■ Benefits of the capability represented by the concept; and

= Impact on doctrine and tactics.

3/24

End-Use Scenario C: Course of Action Analysis

Decision-makers are in need of course of action analysis tools to assist them in
making well-informed and timely decisions in complex situations. An example of
such a situation would be the occupation of a US Embassy by an unknown
terrorist organization. The organization has threatened to detonate weapons
strategically placed in major cities around the world if the Embassy is stormed.
this use case, the on-site military commander needs to understand the risks
associated with the various courses of action available. Because of the time-
critical nature, the analysis must be completed in a short time and provide a

In

credible representation of the various courses of action to be assessed. Issues of
interest in this context include:

= Visualization of information of a non-spatial nature; and

“ Understanding risk associated with specific courses of action.

End-Use Scenario D: Force Structure/ Command & Control Concept Exploration

Traditional force structure analyses often require an assessment of the impact of
organization change with respect to mission effectiveness or other measures. For
example, assume the US Army is studying the removal of Brigade from the Army
echelons. To understand the benefits and disadvantages of this action, the
analysts need an environment that permits them to simulation Army operations
without Brigades. Issues to be explored in this use case include:

■ Impact of decision making at lower echelons;

“ Impact on planning at higher echelons;

■ New information requirements; and

■ Command and Control requirements (new equipment, better
communication, etc.).

End-Use Scenario E: Simulation Composition using Shared Components

In this end-use scenario, two concurrent study teams are developing simulations
using one or more shared elements (e.g., an advanced armored vehicle concept
study and a future force projection requirements study). The temporal aspects of
the sharing are such that the simulation representations employed in one of the
studies are to be incorporated into the second study. Issues to be explored
include:

z Semantics of the sharing (e.g., degree of coupling)

“ Control/coordination of sharing; and

4/24

“ Framework infrastructure implications

These five end-use scenarios are representative of the broad range of
applications in which simulation composition can be employed. Each of the
scenarios has a temporal element that, while manifested in a different operational
setting, exceeds the capabilities of current computer simulation environments.

Abstract Use Case

The underlying goal of a simulation composition capability is to “Build the
simulation to fit the analysis problem”. Ideally, this must incorporate a very
extensive set of reusable and modifiable components that are shared across a
large number of organizational and geographical boundaries.
case is intended to represent this end-use.

Fjgure 1 Abstract Use Case Dagram

--”’’’’’-’’-e----{~]
~?::i’~c >

~lder mMed=t~

<i~w, ,>,
b~ i

The abstract use

- P.etmsit-iea sze

Two end-use venues, static and dynamic composition, can be generally defined
for composition-based construction. Though represented by the abstract use
case, they present different requirements for the composition process and have
far ranging implications for the underlying technological SUppOrt. 1+static

composition occurs in a development context in which component collections
(“libraries” in the traditional vernacular) are used in the construction of an
application instance comprised of a group of components “bound together” to
create a static application. In this setting, the identities of the individual
components are subsumed by the identity of the newly formed application
(component). in contrast, dynamic composition occurs in a development context

5/24

in which collections of shared components are used to create an application
comprised of linked components. Linked components retain their identities while
the newly created application (component) has an identity in its own right.

The Technology Roacimap

The technology roadmap depicts the technological areas required to support the
construction of software systems through composition. The application focus is
the domain of computer-based simulations, though the required technologies are
not generally application domain specific.

The essential structure of the roadmap depicts functionally related groupings of
technologies, represented as nodes in the roadmap, and their relationships,
modeled as arcs, to one another. The roadmap has an inherently hierarchical
nature related to the interdependencies among the technologies. It may also be
viewed as an overlay associating technologies with the capabilities referenced in
the abstract use case.

The basic elements of the roadmap are functionally related groupings of
technologies. The most fundamental such elements are:

‘ Component Creation - the initial definition and development of
components;

■ Component Management- the collection and maintenance of a
set of components such that they may be effectively reused;
and

“ Component Utilization - the technology elements that support
the effective reuse of individual components.

Each of these elements is represented by a number of related technologies. For
example, Component Utilization is comprised of technological elements including
Component Interface Models and Data Exchange Models. The former include
mechanisms by which components reveal their command and functional
interfaces, e.g., the Java reflection application programming interFace, adaptable
component interfaces, and component interconnection models. The latter defines
the low-level data exchange/transport mechanism between two “connected
components”.

The road map uses color-coding, augmented with a character designation, to
indicate the current state and vitality of the associated technology areas with
respect to the realization of software composition. Green is used to designate
technology areas in which there is presently sufficient R&D results or activity in
the software community. Nodes are colored yellow (“Y) to indicate areas in
which there is substantial activity but additional effort is required. Several such
technology areas are further designated “Y/D” to indicate that effort focused
specifically on simulation issues are required. Several technology areas are
colored red (“R”) indicating a lack of evidence of sustained, substantive R&D
efforts. The following sections discuss individual technology areas that require
additional effort.

Mets-Description

A4eta-description refers to the representation of a component (or system) by a
formal mechanism describing its semantic properties. For example, specification
languages based on formalisms such as first order predicate calculus, temporal
logic and state machines can be used to formally specify hardware and software
systems [3, 4]. These specifications may in themselves be executable, allowing
system developers to treat the specifications as prototypes [3]. These formally
based descriptions lend themselves to analysis of component and system
characteristics.

7/24

Formal mechanisms have been developed for general software systems (e.g., Z
[4], Communicating Sequential Processes) as well as, more specifically, for
larger scale software architectures (e.g., UniCon [5], Rapide [6]). Though still the
focus of substantial research efforts, specification languages have been
successfully used to formally specify relatively small systems or parts of systems.

There are a number of promising avenues for future work in this area. Successful
component specification formalisms would enable semantic-based component
classification and repository search, as well as compositional strategies
incorporating reasoning about component behaviors. These would lead to
substantial improvement in component reusability. Further research may lead to
the general applicability of this technology in the formal definition of software
components and composed systems,

Verification and Validation

Verification and validation (V&V) are processes used to ensure that soflware
being developed meets design requirements and performs correctly. Software
verification refers to the process of ensuring that each step in the development
process is done accurately. Validation refers to the process of determining if the
software, upon completion, fulfills the requirements.

In modeling and simulation, the definition of verification and validation can be
stated slightly differently. Verification deals with building a simulation correctly.
The accuracy in each step of transforming a model description into a computer
simulation is evaluated during verification. Validation is used to determine if the
simulation execution, within its domain of applicability, is a sufficiently adequate
representation of the entity or system being modeled [7, 8].

V&V of composition-based simulations requires further study. For example, while
verification can be performed in the traditional manner for individual components,
the verification of a simulation comprised of verified components remains an
open issue.

The (re)use of components has also raised the issue of component certification
[9], the certification that an individual software component satisfies one or more
specific constraints/characteristics (e.g., quality, stability, fault-tolerance). In a
traditional software development environment, the validation of a component
would relate to such constraints. Certification is a concern within a reuse context
when the original requirements may not address issues of importance to the
,component user or may not be readily “visible”. Presently, initiatives is this area
are generally derived from traditional software engineering approaches
influenced by object-oriented technologies and require considerable effort on the
part of the potential “consumer”. Development of approaches for determining the
“quality” (in specific dimensions) of components using a set of well-defined
analyses, relying upon the broader field of software metrics, is one viable avenue
of activity in this technology area.

8/24

Patterns

Paitems, often referred to as design patterns within the object-oriented
community, have become a popular technique for supporting the reuse of design
information. A pattern describes a problem, a solution to the problem, a context
within which that solution is valid, and the consequences or tradeoffs for using
the pattern [1 O, 11]. Patterns are developed for problems that occur repeatedly
and then are available for use by developers as appropriate for their designs.

Patterns are abstract in that they are not expressed as code written in some
object-oriented programming language but are descriptions of classes or objects
and how they may be used to solve the problem at hand [1O]. They define the
structures and relationships among the elements making up the pattern.
Because they are abstract, usually textual in form, patterns have to be
implemented each time they are used.

Research is being done in formalisms such as pattern languages for representing
design patterns. Mechanisms are being studied for capturing design patterns in
a methodical and tangible manner to enhance and facilitate their development
and reuse.

Frameworks

A framework is an object-oriented reuse technique that can be used to represent
a significant subset of an application. Frameworks are less abstract than
patterns in that they actually contain code. Patterns are often considered the
building blocks of frameworks as frameworks may consist of implementations of
one or more patterns [1O]. The concept of abstract classes is key to the use of
frameworks as a reuse technique. An abstract class is a class with no instances
and is used as a template for creating subclasses. The abstract class specifies
the interface to and, usually, part of the implementation of its subclasses.

Frameworks are generally domain specific, capturing design decisions specific to
that domain thus emphasizing design reuse. This type of reuse leads to a control
inversion. When using a library or toolkit, a developer writes the body of a
program that calls the code to be reused from the library. When using
frameworks, the framework represents the body of the program being reused and
the developer, using naming and calling conventions specified by the framework,
writes the code to be called. This frees the developer from having to make the
design decisions resulting in some loss of creative decisions but providing for
faster development of more consistent applications. -

When a framework is reused in an application, one of its primary utilities beyond
the obvious code reuse is the provision of a broader architecture for the
application. Therefore, it is important that a framework be as flexible and
extensible as possible to ensure that a large number of applications within the
domain can reuse the framework.

9/24

Component Repositories

A component repository is essentially a library of software components. This
library supports the reuse of the components that it contains, providing a variety
of services such as component search and retrieval. There are presently
examples of large-scale repository structures, generally realized using traditional
data base technologies, that seek to support component reuse within limited
domain boundaries, e.g., DoD Ada reuse libraries [12]. Due to the challenge
presented by effective retrieval as these repositories grow in size, broadly
applicable solutions must rely upon technology developments to suppotl search
and discovery needs as well as overall performance [13].

Software repository technology may be separated into concerns dealing with the
basic elements of component storage and the mechanisms for component
distribution or use. The latter, dealing with the access to components in the
repository, is intimately coupled to component utilization and such issues as the
distributed component model (discussed in a following section).

Component repositories play a central “enabling” role [14] in the effective reuse
of components. A critical measure of utility is the effectiveness of the retrieval
mechanism. This effectiveness is dependent on many factors, including the
representation or characterization of the components in the repository and the
architecture of the repository. The former reinforces the importance of an
appropriate formalism supporting the required level of retrieval accuracy. The
latter is reflected in the repository response time and, more broadly, the overall
component architecture (e.g., static components paired with a remote invocation
mechanism). These factors are exacerbated in an operational environment in
which repositories will in all likelihood be geographical distributed, components
are diverse in functional characteristics, and expected end-uses vary widely. The
advent of large-scale Internet connectivity and the resulting potential access to
massive amounts of information has spurred interest in the development of large,
geographically distributed digital libraries [15]. These efforts will continue to
address numerous technical issues pertinent to large-scale component storage
and repository access. Another needed feature missing from most existing digital
libraries is a change management capability to manage the collection of
information. Software repositories clearly require similar support given the volatile
nature inherent in software.

Search/Discovery technologies support the retrieval of a software component
stored in a repository structure. Performance of retrieval algorithms is strongly
related to the component (repository) representation. Current practice relies upon
traditional data base approaches moderated by object-oriented (i.e., code-level)
influences. Necessary research directions include the development of
sophisticated meta representations and search mechanisms based on these
representations (e.g., [16]). The general goal of these efforts is the improvement
of the precision and recall of the search. The recognized need for imprecise

10/24

queries has led to the development of various technical approaches to support
this functionality (e.g., [17, 18]).

Distributed Component Model

The distributed component model is an extension of the component model in
which components may reside on different physical hosts. There is considerable
work in this area developing such systems with three examples being Microsofl
DCOM, OMG CORBA and Java RMI. Currently, most of the systems are static,
that is, the components are loaded onto specific host computers, communication
links established and there are no architectural changes during software
execution [19, 20]. There is ongoing research into operational features such as
configuration, administration, and monitoring. Dynamic component migration
during execution is also being investigated.

Summary of Findings

The evolution of object technologies into the rapidly expanding area of
component software engineering fundamentally supports the composition
approach to simulation construction. This evolution continues to yield substantial
improvement in technologies applicable to compositional development of
software and, specifically, simulations. Thus, the state of Component Definition
(refer to Figure 2) has been significantly enhanced by the continuing
development of programming language mechanisms exemplified by Java Beans
and related technologies. These technologies explicitly address many of the
language-level requirements for the description and use of individual software
components. There is an emerging body of applicable standards in this area that
serves to enhance the general usability of technology products [21].

Similarly, Component Management issues such as frameworks and component
repository approaches have been the focus of very widespread R&D activities.
These efforts have yielded products, e.g., the Java Abstract Window Toolkit
(AWT) and comprehensive object brokering systems, that have significantly
broaden the interest of the technical community in software composition. The
area of Component Wizafion has benefited from large-scale commercial interest
in the development of component interconnection. The commercial realizations of
Distributed Component Models, including CORBA, Java RMI and Microsof&
DCOM, have altered the software development landscape and provided
mechanisms for effective employment of component architectures in a variety of
application domains.

Within the broad context of enabling software composition to be applied to the
construction of computer simulations, there are a number of areas requiring
additional R&D effort. The current view of composition focuses on components at
a largely syntactic level. Although substantial improvements have been realized
in the specification of the interface and interconnection syntax of software
components, there are very limited mechanisms to describe or use component

11/24

semantics. Component-based composition allows a user to construct a software
system from pre-defined elements (components). These abstract building blocks
have an associated semantics that is generally implicitly described at best. Thus,
the validity of a composed system often reflects (and requires) the detailed
knowledge of the user. Substantial R&D effort will be required to develop
technologies supporting software composition in a more general setting.

The description of language semantics has traditionally been a challenge and
remains a focus of advanced R&D efforts. As a result, software developers
presently have very limited technology products in this area. The ability to define
components at the semantic level would have far reaching impact in component
creation, management, and utilization. Specifically, explicit representation of
component semantics would facilitate component verification & validation,
sophisticated repository search and discovery, and verification & validation of
composed systems. Similarly, the ability to associate constraints related to
composition with individual components would provide a mechanism to express
“necessary conditions” for compositional validity. These constraints, as generally
realized, define conditions evaluated at the time of composition that characterize
required relationships. Though efforts employing a variety of formalisms are
underway in this area (e.g., [5, 6]), a comprehensive treatment is still not
generally available.

The concept of the component repository is a central feature of most
compositional approaches to software construction. Though much of the early
work in this area has been in the context of traditional, limited scope software
libraries, the current focus of software component technology encompasses
additional requirements. These requirements are derived from the desired wider
scope of application, spanning larger organizational and geographical
boundaries, and place a premium on advanced search mechanisms and effective .
distributed architectures. In addition, practical requirements in the area of
maintenance, long the bane of the software R&D community, are more pressing
and challenging in a component-based software development context. Technical
solutions that satisfy these requirements are still pending and the success of
these solutions will determine in large part how widely applied compositional
strategies are in the larger software development community.

In summary, Compositional approaches to the development of large-scale
software systems provide a strong foundation for the reuse of software. The last
decade has witnessed substantial progress in the definition and successful
application of these approaches in the software development and simulation
development communities. This paper has presented a technology roadmap
depicting the technology areas related to composition. The goal was to review
technologies in the broad computing context, though the end-use application
area was computer simulations.

12124

References

[1] E. H. Page and J. M. Opper, “Observations on the Complexity of
Composable Simulation,” presented at 1999 Winter Simulation
Conference (submitted to), Phoenix, AZ, 1999.

[2] G. Bundy, S. Slosser, and P. Delaney, “Use Case Definitions for
Simulation Composition,” 1999.

[3] A. Coen-Porisini, C. Ghezzi, and R. Kemmerer, “Specification of
Realtime Systems Using ASTRAL,” /EEE Transactions on Sothvare
Engineering, vol. 23, no. 9, pp. 572-598, 1997.

[4] P. Zave and M. Jackson, “Where Do Operations Come From? A
Multiparadigm Specification Technique,” LEEE Transactions on Sot7ware
Engineering, vol. 22, no. 7, pp. 508-528, 1996.

[5] M. Shaw, R. DeLine, D. Klein, T. Ross, D. Young, and G. Zelesnik,
“Abstractions for Software Architecture and Tools to Support them,” /f5EIIE
Transactions on Software Engineering, vol. 21, no. 4, pp. 314-335, 1995.

[6] D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan,
and W. Mann, “Specification and Analysis of System Architecture Using
Rapide,” L5EE Transactions on Software Engineering, vol. 21, no. 4, pp.
336-355, 1995.

[7] W. O. Balci, “Verification, Validation and Accreditation of Simulation
Models,” presented at Winter Simulation Conference, 1997.

[8] R. Sargent, “Simulation Model Verification and Validation,”
presented at 1991 Winter Simulation Conference, 1991.

[9] J. M. Voas, “Certifying Off-the-Shelf Software Components,” IEEE
Computer, vol. 31, no. 6, pp. 53-59, 1998.

[1O] R. Johnson, “Frameworks= Components+ Patterns,”
Communications of the ACM, vol. 40, no. 10, pp. 10-17, 1997

[11] H. Gomaa and G. A. Farrukh, “Composition of Software
Architectures from reusable Architecture Patterns,” Proceedings of the
Third international Workshop on Soi7ware Architecture, no. , pp. 45-48,
1998.

[12] N.-Y. Lee and C. Litecky, “An Empirical Study of Software Reuse
with Special Attention to Ada,” /EEE Transactions on Sot?ware
Engineering, vol. 23, no. 9, pp. 537-549, 1997.

13/24

[13] R. Seacord, S. Hissam, and K. Mallnau, “Agora: A Search Engine
for Software Components,” /EEE /ntemet Computing, vol. 2, no. 6, pp. 62-
70, 1998.

[14] S. Henninger, ‘(An Evolutionary Approach to Constructing Effective
Software Reuse Repositories,” ACM Transactions on Software
Engineering and Methodology, vol. 6, no. 2, pp. 111-140, 1997.

[15] B. Schatz, W. Mischo, T. Cole, J. Hardin, A. Bishop, and H. Chen,
“Federating Diverse Collections of Scientific Literature,” Computer, vol. 29,
no. 5, pp. 28-36, 1996.

[16] R. Mili, A. Mili, and R. Mittermeir, “Storing and Retrieving Software
Components: A Refinement Based System,” IEEE Transactions of
Sofiare Engineering, vol. 23, no. 7, pp. 445-460, 1997.

[17] E. Damiani, M. G. Fugini, and C. Bellettini, “A Hierarchy-Aware
Approach to Faceted Classification of Object-Oriented Components,” ACM
Transactions on So~are Engineering and Methodology, vol. 8, no. 3, pp.
215-262, 1999.

[18] E. Damiani and M. G. Fugini, “Automatic Thesaurus Construction
Supporting Fuzzy Retrieval of Reusable Components,” presented at
Proceedings of the 1995 ACM symposium on Applied computing, 1995.

[19] A. Dogac, C. Dengi, and M. T. Oszu, ‘fDistributed Object Computing
Platforms,” Communications of the ACM, vol. 41, no. 9, pp. 95-103, 1998.

[20] D. Schmidt and M. Fayad, “Lessions Learned Building Reusable
00 Frameworks for Distributed Software,” Communications of the ACM,
vol. 40, no. 10, pp. 85-87, 1997.

[21] R. Adler, “Emerging Standards for Component Software,” /EEE
Computer, vol. 28, no. 3, pp. 68-77, 1995.

14/24

Appendix - DoD Software Reuse Initiative Technology Roadmap

Reference: DoD Software Reuse Initiative Technology Roadmap (Version 2.2,30
March 1995).

The following section is a synopsis of the information on composition contained
in the DoD SRI Technology Roadmap report. This document is a technology
roadmap focused on the broad issue of software reuse. Its discussion of
composition characterizes the relevant technologies using the following structure:
asset creation; asset management; and asset utilization. Composition is
discussed as one of the enabling technologies required for software reuse.
Composition is a technology that can be used to develop new programs from
existing software building blocks. These building blocks largely retain their
identity in the new program.

There are three approaches to composition: .

“ The first approach relies upon “mining” or “scavenging” existing
code for reusable assets or components.

~ The second approach reflects the position that reusable assets
should be designed, developed and sustained for reuse.

w The third approach is “software schemas” which emphasizes
reusable algorithms and data structures rather than source code
components.

Mining or scavenging for simple, self-contained pieces of code, such
as mathematical routines, was described as being common. Trying to identify
more complex building blocks in existing codes is more difficult, often requiring
reverse engineering. The sheer number of legacy codes, however, is a
compelling reason for continued research in this area and the paper stated that
some research was being done.
Components designed and developed for reuse was seen as the current
focus of many software engineers. Parameterized programming and
inheritance provide support for evolving such reusable assets.
This second approach benefits from classification and library management
systems that are being increasingly used as reuse repositories to store and
manage collections of reusable assets. Standard bindings, such as SQL and
POSIX, also facilitate composition. Programming languages that support the
three features of program modularity, polymorphism and inheritance allow
programmers to develop software with the properties necessary for reusability,
portability and maintainability. Most programming language that support object-
oriented programming support these features and, therefore, can be effectively
used in the development of reusable components. Object-oriented programming
is not the only programming paradigm that could be used to develop reusable
software building blocks but is the one currently experiencing rapid growth and

15124

interest.

The third approach to composition, software schemas, is a higher level of
abstraction. This technology, still primarily in research stages, is based on formal
semantic descriptions of algorithms and data structures. Schema-based
transformational languages are needed to transform the formal semantics of
schemas into applications.

A reuse repository is described as a database for storing reusable assets while a
reuse library is a repository plus an interface for searching, indexing, change
management and quality assessment. Reuse libraries have been developed by
government agencies including the DoD and NASA. These libraries have
addressed many problems related to database security and quality assessment.
Several reuse library tools, providing more direct support for reuse, have also
been developed commercially and by government agencies. A related, emerging
technology is the use of large-scale, internet-based libraries. There are active
research activities relating to libraries and information repositories. Indexing
methods, interoperability among libraries, performance issues related to
obtaining assets, certification of potential library components and efficient
presentation of information to users are some of them.

16/24

Bibliography

[1] R. Adler, “Emerging Standards for Component Software,” LEEE Computer,
vol. 28, no. 3, pp. 68-77, 1995.

[2] E. Agerbo and A. Cornils, “How to preserve the benefits of Design
Patterns,” presented at Conference on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), 1998.

[3] C. Alexander, “The Origins of Pattern Theory: The Future of the Theory
and the Generation of a Living World,” /f35S Software, vol. 16, no. 5, pp. 71-82,
1999.

[4] M. Astley and G. Agha, “Customization and Composition of Distributed
Objects: Middleware Abstraction for Policy Management,” presented at Sixth
International Symposium on Foundations of Software Engineering, 1998.

[5] O. Astrachan, G. Berry, L. Cox, and G. Mitchener, “Design Patterns: An
Essential Component of CS Curricula,” presented at Twenty-Ninth SIGSCE
Technical Symposium on Computer Science Education, 1998.

[6] W. O. Balci, “Verification, Validation and Accreditation of Simulation
Models,” presented at Winter Simulation Conference, 1997.

[7] A. Bartoli, P. Corsini, G. Dini, and C. Prete, “Graphical Design of
Distributed Applications Through Reusable Components,” /EEE Para#e/ &
Distributed Technology, vol. 3, no. 1, 1995.

[8] D. Batory and S. O’Malley, “The Design and Implementation of
Hierarchical Software Systems with Reusable Components,” ACM Transactions
on Software Engineering and Methodology, vol. 1, no. 4, pp. 355-398, 1992.

[9] D. Batory and B. Geraci, “Composition Validation and Subjectivity in
GenVoca Generators,” /EEE Transactions on Soi?ware Engineering, vol. 23, no.
2, pp. 67-82, 1997.

[1O] 1.Ben-Shaul, J. Gish, and W. Robinson, “An Integrated Network
Component Architecture,” /EEE So?7ware, vol. 15, no. 5, pp. 79-87, 1998.

[11] K. Bobrer, V. Johnson, A. Nilsson, and B. Rubin, “Business Process
Components for Distributed Object Applications,” Communications of the ACM,
vol. 41, no. 6, pp. 43-48, 1998.

[12] A. Borgida and P. Devanbu, “Adding More “DL” to IDL: Toward More
Knowledgeable Component Inter-Operability,” presented at International
Conference on Software Engineering, 1999.

[13] F. P. Brooks, “No Silver Bullet - Essence and Accidents of Software

17/24

Engineering,” /EEE Computer, vol. 20, no. 4, pp. 10-19, 1987.

[14] A. Brown and K. Wallnau, “The Current State of CBSE,” IEEE Software,
vol. 15, no. 5, pp. 37-46, 1998.

[15] G. Bundy, S. Slosser, and P. Delaney, “Use Case Definitions for
Simulation Composition,” 1999.

[16] W. Buntine, “will Domain-Specific Code Synthesis Become a Silver
Bullet,” LEEE /r?fe//~genf Systems, vol. 13, no. 2, pp. 9-15, 1998.

[17] G. Campbell, “Adaptable Components,” presented at Object-Oriented
Programming Systems, Languages and Applications (OOPSLA), Santa Barbara,
CA, 1999.

[18] C. Chambers, “Towards Reusable, Extensible Components,” ACM
Computing Surveys, vol. 38, no. 4, Article 192, 1996.

[19] A. Chavez, C. Tornabene, and G. Wiederhold, “Software Component
Licensing: A Primer,” IEEE Soflware, vol. 15, no. 5, pp. 47-53, 1998.

[20] B. Cheng and J. Jeng, “Reusing Analogous Components,” /.EEE
Transactions on Knowledge and Data engineering, vol. 9, no. 2, pp. 341-349,
1997.

[21] A. Coen-Porisini, C. Ghezzi, and R. Kemmerer, “Specification of Realtime
Systems Using ASTRAL,” /EEE Transactions on Software Engineering, vol. 23,
no. 9, pp. 572-598, 1997.

[22] J. Cook and J. Dage, “Highly Reliable Upgrading of Components,”
presented at International Conference on Sofhvare Engineering, 1999.

[23] J. O. Coplien, “Reevaluating the Architectural Metaphor: Toward
Piecemeal Growth,” IEEE Software, vol. 16, no. 5, pp. 40-44, 1999.

[24] D. Corkill, “Countdown to Success: Dynamic Objects GBB and Radarsat-
1,“ Communications of the ACM, vol. 40, no. 5, pp. 48-58, 1997.

[25] E. Damiani and M. G. Fugini, “Automatic Thesaurus Construction
Supporting Fuzzy Retrieval of Reusable Components,” presented at Proceedings
of the 1995 ACM symposium on Applied computing, 1995.

[26] E. Damiani, M. G. Fugini, and C. Bellettini, “A Hierarchy-Aware Approach
to Faceted Classification of Object-Oriented Components,” ACM Transactions on
Software Engineering and Methodology, vol. 8, no. 3, pp. 215-262, 1999.

[27] F. DeRemer and H. H. Kron, “Programming-in-the-large versus
programming-in-the-small,” /EEE Transactions on SoMare Engineering, vol. 2,

18124

no. 6, pp. 80-86, 1976.

[28] T. Digre, ‘fBusiness Object Component Architecture,” LEEE Software, vol.
15, no. 5, pp. 60-69, 1998,

[29] A. Dogac, C. Dengi, and M. T. Oszu, “Distributed Object Computing
Platforms,” Communications of the ACM, vol. 41, no. 9, pp. 95-103, 1998.

[30] S. Dumas and G. Gardain, “A Workbench for Predicting the Performances
of Distributed Object Architectures,” f 998 Conference on Winter Simulation, no. ,
pp. 515-522, 1998.

[31] M. Fayad and D. Schmidt, “Object-Oriented Application Frameworks,”
Communications of the ACM, vol. 40, no. 10, pp. 32-38, 1997.

[32] E. Fernandez, “Building Systems Using Analysis Pattern,” presented at
Third International Workshop on Software Architecture, 1998.

[33] W. B. Frakes and C. J. Fox, “Quality Improvement Using A Software
Reuse Failure Modes Model,” LEEE Transactions on Sothvare Engineering, vol.
22, no. 4, pp. 274-279, 1996.

[34] M. Franz, “Dynamic Linking of Software Components,” LEEE Computer,
vol. 30, no. 3, pp. 74-81, 1997.

[35] G. Froehilich, J. J. Hoover, L. Liu, and P. Sorenson, “Hooking into Object-
Oriented Application Frameworks,” /nternationa/ Conference on Sot%vare
Engineering, no. , pp. 491-501, 1997.

[36] D. Gannon, R. Bramley, T. Stuckey, J. Villacis, J. Balasubramanian, E.
Akman, F. Breg, S. Diwan, and M. Govindaraju, “Developing Component
Architectures for Distributed Scientific Problem Solving,” IEEE Computational
Science and Engineering, vol. 5, no. 2, 1998.

[37] D. Garlan and M. Shaw, “An Introduction to Software Architecture,”
Carnegie Mellon University (School of Computer Science), Pittburgh, PA 15213-
3890 CMU-CS-94-166, January 1994.

[38] D. G’arlan, G. E. Kaiser, and D. Notkin, “Using tool abstraction to compose
systems,” /15EE Computer, vol. 25, no. 6, 1992.

[39] D. Garlan, R. Allen, and J. Ockerbloom, “Exploiting Style in Architectural
Design Environment,” Proc. SIGSOFT’94: Foundations of Software Engineering,
no. , pp. 175-188, 1994.

[40] D. Garlan, R. Allen, and J. Ockerbloom, “Architectural Mismatch or Why
it’s hard to build Systems out of Existing Parts,” presented at 17 International
Conference on Software Engineering, Los Alamitos, CA, 1995.

19/24

[41] H. Gomaa and G. A. Farrukh, “Composition of Sof&ware Architectures from
reusable Architecture Patterns,” Proceecflngs of the Third /nfernationa/ Workshop
on So#ware Architecture, no. , pp. 45-48, 1998.

[42] D. Gray, J. Hotchkiss, S. LaForge, S. Shalit, and T. Winbery, “Modern
Languages and Microsoft’s Components Object Model,” Communications of the
ACM, vol. 41, no. 5, pp. 55-65, 1998.

[43] T. Hansen, “Development of Successful Object-Oriented Frameworks,”
presented at Addendum to the 1997 ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA),
1997.

[44] S. Heiler, R. Miller, and V. Ventrone, “Using Metadata to Address
Problems of Semantic Interoperability in Large Object Systems,” presented at
First IEEE Metadata Conference, Silver Spring, MD, 1996.

[45] J. A. Heim, “Integrating Distributed Simulation Objects,” presented at
Proceedings of the 1997 Winter Simulation Conference, 1997.

[46] S. Henninger, “An Evolutionary Approach to Constructing Effective
Sof&ware Reuse Repositories,” ACM Transactions on Sot7ware Engineering and
Methodology, vol. 6, no. 2, pp. 111-140, 1997.

[47] J.-M. Jezequel and B. Meyer, “Design by Contract: The Lessons of
Ariane,” /EE Computer, vol. 30, no. 1, pp. 129-130, 1997.

[48] , R. Johnson, “Frameworks = Components+ Patterns,” Communications of
the ACM, vol. 40, no. 10, pp. 10-17, 1997.

[49] R. Keller and R. Schauer, “Design Components: Towards Software
Composition at the Design Level,” presented at 20th International Conference on
Software Engineering, Kyoto, Japan, 1998.

[50] N. L. Kerth and W. Cunningham, “Using Patterns to Improve Our
Architectural Vision,” IEEE Software, vol. 14, no, 1, pp. 53-59, 1997.

[51] L. Kortright, “An Incremental Approach to the Development of Reusable
General-Purpose Discrete-Event Simulator Components,” presented at
Proceedings of the 1994 Conference on TR1-Ada, 1994.

[52] J. Kotula, “Using Patterns to Create Component Documentation,” IEEE
Software, vol. 15, no. 2, 1998.

[53] D. Krieger and R. Adler, “The Emergence of Distributed Component
Platforms,” /EEE Computer, vol. 31, no. 3, pp. 43-53, 1998.

[54] D. Krieger and R. M. Adler, “The Emergence of Distributed Component

20/24

Platforms,” IEEE Computer, vol. 31, no. 3, pp. 43-53, 1998.

[55] K. Kroeker, “Software [Revolution: A Roundtable,” IEEE Con?gwfer, vol.
32, no. 5, pp. 48-57, 1999.

[56] N.-Y. Lee and C. Litecky, “Ari Empirical Study of Software Reuse with
Special Attention to Ada,” /f55E Transactions on Software Engineering, vol. 23,
no. 9, pp. 537-549, 1997.

[57] S. M. Lewandowski, “Framework for Component-Based Client/Server
Computing,” ACM Computing Surveys, vol. 30, no. 1, pp. 3-27, 1998.

[58] D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan, and W.
Mann, “Specification and Analysis of System Architecture Using Rapide,” LE15E
Transactions on Software Engineering, vol. 21, no. 4, pp. 336-355, 1995.

[59] M. D. Mcllroy, “Mass Produced Software Components,” presented at Nato
Conference on Software Engineering, 1968.

[60] J. Meekel, T. Horton, r. France, C. Mellone, and S. Dalvi, “From Domain
Models to Architecture Frameworks,” presented at 1997 Symposium on Software
Reusability, 1997.

[61] M. Mezini and K. Lieberherr, “Adaptive Plug-and-Play Components for
Evolutionary Software Development,” presented at Proceedings of the
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 1998.

[62] H. Mili} F. Mili, and A. Mili, “Reusing Software: Issues and Research
Directions,” LEEE Transactions on Software Engineering, vol. 31, no. 6, 1995.

[63] H. Mili, H. Sahraoui, and 1.Benyahia, “Representing and querying
Reusable Object Frameworks,” presented at 1997 Symposium on Software
Reusability, 1997.

[64] R. Mili, A. Mili, and R. Mittermeir, “Storing and Retrieving Software
Components: A Refinement Based System,” L5EE Transactions of So/?ware
Engineering, vol. 23, no. 7, pp. 445-460, 1997.

[65] R. T. Monroe, A. Kompanek, R. Melton, and D. Garlan, “Architectural
Styles, Design Patterns, and Objects,” /EEE Software, vol. 14, no. 1, pp. 43-52,
1997.

[66] M. Morgenstern, “Metadata for Heterogeneous Databases,” presented at
IEEE Second Metadata Conference, 1997.

[67] M. Nanard, J. Nanard, and P. Kahn, “Pushing Reuse in Hypermedia
Design: Golden Rules, Design Patterns and Constructive Templates,” presented

21/24

at Ninth ACM Conference on Hypertext and Hypermedia, 1998.

[68] J. Ning, “An Architecture Design Environment for Component-Based
Software Engineering,” Proceedings of the 1997 /nternationa/ Conference on
SoMare Engineering (/CSE’97), no. , pp. 614-615, 1997.

[69] E. H. Page and J. M. Opper, “Observations on the Complexity of
Composable Simulation,” presented at 1999 Winter Simulation Conference
(submitted to), Phoenix, AZ, 1999.

[70] D. L. Parnas, “On the criteria to be used in decomposing systems into
modules,” Communications of the ACM, vol. 15, no. 12, pp. 1053-1058, 1972.

[71] L. Perrochon and W. Mann, “Inferred Designs,” IEEE Soflware, vol. 16,
no. 5, pp. ”46-51, 1999.

[72] S. L. Pfleeger, R. Jeffery, B. Curtis, and B. Kitchenham, ‘tStatus Report on
Software Measurement,” /EEE Software, vol. 14, no. 2, pp. 33-43, 1997.

[73] R. Rasala, “Function Objects, Function Templates, and Passage by
Behavior in C++,” Proceedings of the Twenty-Eight S/GCSE Technics/
Symposium on Computer Science Education, no. , pp. 35-38, 1997.

[74] J. D. Riley, “A Comparison of Two Approaches to Distributed Application
Development with Ada: The Ada Distributed Systems Annex and CORBA,” ACM
0-89791-808-8/96/0012 3.50, no. , pp. 73-80, 1996.

[75] D. Rine, N. Nada, and K: Jaber, “Using Adapters to Reduce Interacting
Complexity in Reusable Component-Based Software Development,” presented at
Proceedings of the Fifth Symposium on Software Reusability, 1999.

[76] R. Sargent} “Simulation Model Verification and Validation,” presented at
1991 Winter Simulation Conference, 1991.

[77] B. Schatz, W. Mischo, T. Cole, J. Hardin, A. Bishop, and H. Chen,
“Federating Diverse Collections of Scientific Literature,” Computer, vol. 29, no. 5,
pp. 28-36, 1996.

[78] H. A. Schmid, “Creating Applications from Components: A Manufacturing
Framework Design,” /EEE Software, vol. 13, no. 6, pp. 67-75, 1996.

[79] D. Schmidt, “Using Design Patterns to Guide the Development of
Reuseable Object-Oriented Software,” Computing Surveys, vol. 28, no. 4es,
Aficle 162, 1996.

[80] D. Schmidt and M. Fayad, “Lessions Learned Building Reusable 00
Frameworks for Distributed Software,” Communications of the ACM, vol. 40,
10, Pp. 85-87, 1997.

22/24

no.

[81] R. Seacord, S. Hissam, and K. Mallnau, “Agora: A Search Engine for
Software Components,” IEEE /nternet Computing, vol. 2, no. 6, pp. 62-70, 1998.

[82] M. Shaw, R. DeLine, D. Klein, T. Ross, D. Young, and G. Zelesnik,
“Abstractions for Software Architecture and Tools to Support them,” /EEE
Transactions on Software Engineering, vol. 21, no. 4, pp. 314-335, 1995.

[83] R. Smith, A. Parrish, and J. Hale, “Cost estimation for Component Based
Software Development,” presented at 36th Annual Southeast Regional
Conference, 1998.

[84] S. Srinivasan and J. Verge, “Object Oriented Reuse: Experience in
Developing a Framework for Speech Recognition Applications,” presented at
Eleventh Annual Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA), 1998.

[85] P. Steyaert, c. Lucas, K. Mens, and T. D’Hondt, “Managing the Evolution
of Reusable Assets,” presented at Conference on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA), 1996.

[86] J. Sutherland, “Why I Love the OMG: Emergence of a Business Object
Componet Architecture,” StancfardView, vol. 6, no. 1, pp. 4-13, 1998.

[87] R. N. Taylor, N. Medividovic, K. M. Anderson, E. J. W. Jr., J. E. Robbins,
K. A. Nies, P. Oreizy, and D. L. Dubrown, “A Component and Message-Based
Architectural Style for GUI Software,” /EEE Translations on Software
Engineering, vol. 22, no. 6, pp. 390-406, 1996.

[88] W. Tracz, “Developing Reusable Java Components,” Proceedings of the
Third International Workshop on Software Architecture, no. , 1997.

[89] J. Voasl “Maintaining Component-Based Systems,” IEEE Soflware, vol.
15, no, 4, 1998.

[90] J. M. Voas, “Certifying Off-the-Shelf Software Components,” /EEE
Computer, vol. 31, no. 6, pp. 53-59, 1998.

[91] Y. M. Wang and P. Y. E. Chung, “Customization of Distributed Systems
Using COM,” IEEE Concurrency, vol. 6, no. 3, pp. 8-12, 1998.

[92] E. J. Weyuker, “Testing Component-Based Software: A Cautionary Tale,”
IEEE Soflware, vol. 15, no. 5, pp. 54-59, 1998.

[93] M. Wooidride and N. Jennings, “Pitfalls fo Agent-Oriented Development,”
presented at Second International Conference on Autonomous Agents, 1998.

[94] D. Wu, D. Agrawal, and A. E. Abbadi, “StratOSphere: Mobile Processing
of Distriubted Objects in Java,” presented at The Fourth Annual ACM/lEEE

23/24

International Conference on Mobile Computing and Networking, Dallas, Texas,
1998.

[95] P. Zave and M. Jackson, “Where Do Operations Come From? A
Multiparadigm Specification Technique,” /EEE Transactions cm Software
Engineering, vol. 22, no. 7, pp. 508-528, 1996.

[96] S. Zweben, S. Edwards, B. Weide, and J. Hollingsworth, “The Effects of
Layering and Encapsulation on Software Development Cost and Quality,” /EEE
Transactions on Software Engineering, vol. 21, no. 3, pp. 200-208, 1995.

24/24

