Mechanism of constitution liquid film migration

PDF Version Also Available for Download.

Description

Liquid film migration (LFM) in liquid phase sintering classically involves a large metastable liquid volume adjacent to solid, and migration occurs at an isolated solid-liquid (S-L) interface. Constitutional liquid film migration (CLFM), discovered in alloy 718, has major characteristics similar to those of LFM, except that the metastable liquid is from the constitutional liquation of precipitates on the grain boundary. The similarity between LFM and CLFM has led to the theory that coherency lattice strain responsible for LFM is also responsible for CLFM. The coherency strain hypothesis was tested in this study by evaluating whether the Hillert model of LFM ... continued below

Physical Description

Medium: P; Size: 136 pages

Creation Information

Creator: Unknown. June 1, 1999.

Context

This thesis or dissertation is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this document can be viewed below.

Who

People and organizations associated with either the creation of this thesis or dissertation or its content.

Creator

  • We've been unable to identify the creator(s) of this document.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this thesis or dissertation. Follow the links below to find similar items on the Digital Library.

Description

Liquid film migration (LFM) in liquid phase sintering classically involves a large metastable liquid volume adjacent to solid, and migration occurs at an isolated solid-liquid (S-L) interface. Constitutional liquid film migration (CLFM), discovered in alloy 718, has major characteristics similar to those of LFM, except that the metastable liquid is from the constitutional liquation of precipitates on the grain boundary. The similarity between LFM and CLFM has led to the theory that coherency lattice strain responsible for LFM is also responsible for CLFM. The coherency strain hypothesis was tested in this study by evaluating whether the Hillert model of LFM would also apply for CLFM. Experimental results of CLFM in alloy 718 showed that migration velocity followed the trend predicted by the Hillert model. This indicates that the coherency strain hypothesis of LFM also applies for CLFM and that the coherency lattice strain responsible for LFM is also the driving force for CLFM.

Physical Description

Medium: P; Size: 136 pages

Notes

OSTI as DE00761948

Subjects

Source

  • Other Information: TH: Thesis (Ph.D.); Submitted to Univ. of Alabama, Birmingham, AL (US)

Language

Identifier

Unique identifying numbers for this document in the Digital Library or other systems.

  • Report No.: DOE/ER/45449-3
  • Grant Number: FG05-91ER45449
  • Office of Scientific & Technical Information Report Number: 761948
  • Archival Resource Key: ark:/67531/metadc718698

Collections

This document is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this thesis or dissertation?

When

Dates and time periods associated with this thesis or dissertation.

Creation Date

  • June 1, 1999

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • March 30, 2016, 1:04 p.m.

Usage Statistics

When was this document last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Thesis Or Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Mechanism of constitution liquid film migration, thesis or dissertation, June 1, 1999; United States. (digital.library.unt.edu/ark:/67531/metadc718698/: accessed December 14, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.