Group-Velocity-Matched Three Wave Mixing in Birefringent Crystals

PDF Version Also Available for Download.

Description

We show that the combination of pulse-front slant, k-vector tilt, and crystal birefringence often permits exact matching of both phase and group velocities in three wave mixing in birefringent crystals. This makes possible more efficient mixing of short light pulses, and it permits efficient mixing of chirped or broad bandwidth light. We analyze this process and present examples. Differences in the group velocities of the three interacting waves in a nonlinear crystal often limits the effective interaction length. For example, in mixing very short pulses, temporal walk off can stretch the pulses in time unless the crystal is very short. ... continued below

Physical Description

11 p.

Creation Information

SMITH,ARLEE V. December 12, 2000.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We show that the combination of pulse-front slant, k-vector tilt, and crystal birefringence often permits exact matching of both phase and group velocities in three wave mixing in birefringent crystals. This makes possible more efficient mixing of short light pulses, and it permits efficient mixing of chirped or broad bandwidth light. We analyze this process and present examples. Differences in the group velocities of the three interacting waves in a nonlinear crystal often limits the effective interaction length. For example, in mixing very short pulses, temporal walk off can stretch the pulses in time unless the crystal is very short. Efficient mixing with such short crystals requires high irradiances, but the irradiances are limited by higher order nonlinear effects such as intensity-dependent refractive index and two-photon absorption. Improved matching of the group velocities can alleviate this problem, allowing longer crystal and lower irradiances. Similarly, for high energy pulses, practical limits on crystal apertures mandate temporally stretching the pulses to reduce irradiances. For the resulting chirped pulses, temporal walk off restricts the chirp range unless the group velocities are well matched. In addition to perfectly matching the group velocities of all three waves, it is sometimes useful to match two velocities, such as the signal and idler in parametric amplification, permitting broadband parametric amplification, or to arrange the velocities of two inputs to bracket the generated sum frequency pulse, giving pulse compression under suitable circumstances.

Physical Description

11 p.

Notes

OSTI as DE00771514

Medium: P; Size: 11 pages

Source

  • Journal Name: Optics Letters; Other Information: Submitted to Optics Letters

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SAND2000-3102J
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 771514
  • Archival Resource Key: ark:/67531/metadc718227

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 12, 2000

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • April 6, 2017, 7:31 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

SMITH,ARLEE V. Group-Velocity-Matched Three Wave Mixing in Birefringent Crystals, article, December 12, 2000; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc718227/: accessed August 14, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.