Protecting LHC components against radiation resulting from colliding beam interactions

PDF Version Also Available for Download.

Description

Beam-induced energy deposition in the LHC high luminosity interaction region (IR) components due to both pp collisions and beam loss in the IR vicinity is a significant challenge for the design of the high luminosity insertions. It was shown in our previous studies that a set of collimators in the machine and absorbers within the low-beta quadrupoles would reduce both the peak power density and total heat load to tolerable levels with a reasonable safety margin. In this paper the results of further optimization and comprehensive MARS calculations are briefly described for the updated IP1 and IP5 layouts and a ... continued below

Physical Description

100 Kilobytes pages

Creation Information

Rakhno, Nikolai V. Mokhov and Igor L. June 26, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Beam-induced energy deposition in the LHC high luminosity interaction region (IR) components due to both pp collisions and beam loss in the IR vicinity is a significant challenge for the design of the high luminosity insertions. It was shown in our previous studies that a set of collimators in the machine and absorbers within the low-beta quadrupoles would reduce both the peak power density and total heat load to tolerable levels with a reasonable safety margin. In this paper the results of further optimization and comprehensive MARS calculations are briefly described for the updated IP1 and IP5 layouts and a baseline pp-collision source term. Power density, power dissipation, accumulated dose and residual dose rates are studied in the components of the inner triplets including their TAS absorbers, the TAN neutral beam absorbers, separation dipoles, and quadrupoles of the outer triplets and possible collimators there. It is shown that the optimized absorbers and collimators provide adequate protection of all the critical components.

Physical Description

100 Kilobytes pages

Source

  • 2001 Particle Accelerator Conference, Chicago, IL (US), 06/18/2001--06/22/2001

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: FERMILAB-Conf-01/131
  • Grant Number: AC02-76CH03000
  • Office of Scientific & Technical Information Report Number: 781996
  • Archival Resource Key: ark:/67531/metadc717900

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 26, 2001

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • April 1, 2016, 6:38 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Rakhno, Nikolai V. Mokhov and Igor L. Protecting LHC components against radiation resulting from colliding beam interactions, article, June 26, 2001; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc717900/: accessed September 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.