Dual-Fiberoptic Microcantilever Proximity Sensor

PDF Version Also Available for Download.

Description

Microcantilevers are key components of many Micro-Electro-Mechanical Systems (MEMS) and Micro-Optical-Electro-Mechanical Systems (MOEMS) because slight changes to them physically or chemically lead to changes in mechanical characteristics. An inexpensive dual-fiberoptic microcantilever proximity sensor and model to predict its performance are reported here. Motion of a magnetic-material-coated cantilever is the basis of a system under development for measuring magnetic fields. The dual fiber proximity sensor will be used to monitor the motion of the cantilever. The specific goal is to sense induction fields produced by a current carrying conductor. The proximity sensor consists of two fibers side by side with claddings ... continued below

Physical Description

10 pages

Creation Information

Goedeke, S.M. August 8, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Microcantilevers are key components of many Micro-Electro-Mechanical Systems (MEMS) and Micro-Optical-Electro-Mechanical Systems (MOEMS) because slight changes to them physically or chemically lead to changes in mechanical characteristics. An inexpensive dual-fiberoptic microcantilever proximity sensor and model to predict its performance are reported here. Motion of a magnetic-material-coated cantilever is the basis of a system under development for measuring magnetic fields. The dual fiber proximity sensor will be used to monitor the motion of the cantilever. The specific goal is to sense induction fields produced by a current carrying conductor. The proximity sensor consists of two fibers side by side with claddings in contact. The fiber core diameter, 50 microns, and cladding thickness, 10 microns, are as small as routinely available commercially with the exception of single mode fiber. Light is launched into one fiber from a light-emitting diode (LED). It emerges from that fiber and reflects from the cantilever into the adjacent receiving fiber connected to a detector. The sensing end is cast molded with a diameter of 3-mm over the last 20-mm, yielding a low profile sensor. This reflective triangulation approach is probably the oldest and simplest fiber proximity sensing approach, yet the novelty here is in demonstrating high sensitivity at low expense from a triangular microstructure with amorphous magnetic coatings of iron, cobalt, permalloy, etc. The signal intensity versus distance curve yields an approximate gaussian shape. For a typical configuration, the signal grows from 10% to 90% of maximum in traversing from 6 to 50 microns from a coated cantilever. With signal levels exceeding a volt, nanometer resolution should be readily achievable for periodic signals.

Physical Description

10 pages

Source

  • SPIE International Symposium on Optical Science and Technology, Conference location not supplied, Conference dates not supplied

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: P01-111270
  • Grant Number: AC05-00OR22725
  • Office of Scientific & Technical Information Report Number: 788515
  • Archival Resource Key: ark:/67531/metadc717800

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 8, 2001

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • March 30, 2016, 6:41 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 8

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Goedeke, S.M. Dual-Fiberoptic Microcantilever Proximity Sensor, article, August 8, 2001; Tennessee. (digital.library.unt.edu/ark:/67531/metadc717800/: accessed June 25, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.