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Abstract

I. Advances in NMR Signal Processing

II. Spin Dynamics in Quantum Dissipative Systems

by

Yung-Ya Lin

Doctor of Philosophy in Chemistry

University of California at Berkeley

Professor Alexander Pines, Chair

Part I. Advances in IVMR Signal Processing. Improvements of sensitivity and

resolution are two major objects in the development of NMR/MRI. A signal en-

hancement method is first presented which recovers signal from noise by a judicious

combination of a priordmowledge to define the desired feasible solutions and a set

theoretic estimation for restoring signal properties that have been lost due to noise

contamination. The effect of noise can be significantly mitigated through the process

of iteratively modifying the noisy data set to the smallest degree necessary so that it

possesses a collection of prescribed properties and also lies closest to the original data

set. A novel detection-estimation scheme is then introduced to analyze noisy and/or
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strongly damped or truncated FIDs. Based on exponential modeling, the number

of signals is detected based on information

estimated using the matrix pencil method.

theory and the spectral parameters are

Part II. Spin Dynamics in

body dipole-coupled systems

Quantum Dissipative Systems. Spin dynamics in many-

constitutes one of the most fundamental problems in

magnetic resonance and condensed-matter physics. Its many-spin nature precludes

any rigorous treatment. ‘Therefore, the spin-boson model is adopted to describe in

the rotating frame the influence of the dipolar local fields on a tagged spin. Based

on the polaronic transform and a perturbation treatment, an analytical solution is

derived, suggesting the existence of self-trapped states in the. strong coupling limit,

i.e., when transverse local field >> longitudinal local field. Such nonlinear phenomena

originate from the joint action of the lattice fluctuations and the reaction field. Under

semiclassical approximation, it is found that the main effect of the reaction field is

the renormalization of the Hamiltonian of interest. Its direct consequence is the

two-step relaxation process: the spin is initially localized in a quasiequilibrium state,

which is later detrapped by the lattice fluctuations in an extended time scale. Low-

temperature measurements and classical-spin simulations are carried out to verify the

above analysis.

To promote the implementation and future study on the topics described in this

thesis, program packages of advanced NMR signal processing and many-spin FID

simulations are summarized and listed in the Appendix.
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Introduction

Part I.

Within

Advances in NMR Signal Processing.

the last decade, there has been a flurry of research activity into formulating

and comparing alternative means of NMR signal processing. The primary motivation

has apparently been the development of techniques for accurate spectral quantification

and enhanced spectral resolution. In Chapter 1, a mathematical signal enhancement

method is presented, which seeks to reduce the degradation made on the excitation-

response observations and to enhance the spectral/image estimators’ performance.

This object is achieved by using a wide range of a priori knowledge available from our

theoretical and experimental understanding of the underlying spin system to define

the desired signal, and a set theoretic estimate to restore signal properties that have

been lost due to noise corruption and measurement distortion. Among various novel

algorithms, the feasibility algorithm of iterative parallel projections demonstrates

certain theoretical and computational advantages for practical NMR applications, as

demonstrated in Chapter 2. It is shown via Monte Carlo simulations and experiments

that a significant enhancement in spectral sensitivity and resolution can be achieved

by applying this method as a preprocessing step prior to routine data analysis, at the

expense of greater computational complexity.

Many potentially interesting and useful classes of NMR experiments generate data

for which conventional spectral estimation and

form is unsatisfactory. In particular, recently

quantification via the Fourier Trans-

introduced solid-state NMR experi-
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ments which involve long delays before data acquisition (discussed in Part II) fall

into this category, as the free induction decays are heavily “truncated” and have low

signal-to-noise ratios. A novel detection-estimation scheme is introduced in Chapter

3 in order to analyze data from such experiments and others where the sensitivity

is low and/or the data record is strongly damped or truncated. This method not

only improves the estimation accuracy (by a factor of 2–4) with a lower ‘breakdown”

signal-to-noise threshold (=1.5 dB), but also reduces the computational cost by about

an order of magnitude. It also holds great promise in effectively reducing truncation

artifacts.

One of the most effective ways to gain a deep appreciation and understanding

of such advanced techniques is to process NMR signals. Therefore, to assist in the

implementation of these advanced NMR signal processing techniques, a package of

MATLAB programs is ccmstructed, as documented in Appendix A. None of these

programs in this package are particularly long and may be typed-in by hand without

too much difficulty.

Part H. Spin Dynamics in Quantum Dissipative Systems.

For abundant spins in solids, particularly those with high gyromagnetic ratios, the

homonuclear dipolar coupling is the dominant internal interaction. Spin dynamics in

such systems, as reflected in the measured free induction decay, is a subject that

has been of great theoretical and experimental interest since the birth of magnetic

resonance. The understanding is crucial to the interpretation of experimental results
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and the development of new methodologies n NMR and related techniques, let

its fundamental importance in quantum and statistical mechanics. In Chapter

existence of the solitonic modes in long-time evolution is experimentally conf

and theoretically modeled by a two-dimensional spin-boson Hamiltonian to de;

the influence of the fluctuating dipolar local-fields upon the quantum cohere]

connection with the macroscopic observable. Such striking phenomena, total]

expected within current NMR theoretical framework, originate from the nonlin

triggered by the joint action of the lattice fluctuations and the reaction field: the

fluctuate and polarize the lattice which reacts back on

tuations are not independent of the spin states, and the

the spins. The Iattic(

crucial problem is pre

how to take this effect into account. As shown in Chapter 5, our simple pert

tion treatment based on the two-dimensional spin-boson Hamiltonian supple]

the prototype approaches with proper inclusion of the reaction field in additj

the direct field in describing the dynamics of the spins coupled to a dissipative k

We then illustrate in Chapter 6 how to carry out a semiclassical analysis wi

osing the influence of the reaction field. The semiclassical approximation i

w to simplify the analysis by replacing the quantum-mechanical dissipation p:

with the standard classical fluctuation-dissipation process. The resulting m

spin relaxation process can then be satisfactcyily accounted by a renormalizat

the Hamiltonian of interest.

due to the similar mechanism

Initially, the spin is localized in a self-trapped

of Davydov soliton. The lattice fluctuations even
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provoke the destruction of this localized state with an extended time scale, in a way

similar to the thermal instability of the Davydov soliton at physiological temperature.

It is also demonstrated that the trajectories of classical spins show signs of chaos:

sensitivity nonlinearly amplifies even the smallest difference in the initial conditions.

Both the self-trapped states and the chaotic trajectories are again provoked by the

reaction field. Molecular-dynamics simulation for classical spins in a rigid lattice

is carried out in Chapter 7 to test the validity of the above analysis. When the

spin-lattice coupling strength and/or the dipolar order is increased, the resulting

solitonic dynamics is expected to become even more pronounced. To promote user’s

implementation and future study, a concise GAMMA program for quantum spins

is documented in Appenc[ix B, which simulates the FID of a polycrystalline dipole-

coupled many-spin system with or without magic-angle spinning. A collection of

MATLAB m-files for classical-spin FID simulations then follows.
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Part I

Advances in NMR Signal

Processing





Chapter 1

Set Theoretic Estimation: Theory

1.1 Abstract

A signal enhancement method is presented which recovers signal from noise by a

judicious combination of u priori knowledge to define the desired feasible solutions,

and a set theoretic estimation technique for restoring signal properties that have been

lost due to noise contamination. The usefulness of this approach is illustrated by a

simple NMR application using the matrix properties of Hankel structure and rank

deficiency. The algorithm proposed by B. de Moor is adopted to solve the resulting

best feasible approximation problem. It is shown via Monte Carlo simulations that

a significant enhancement in spectral sensitivity and resolution can be achieved by

applying this method as a preprocessing step

expense of greater computational complexity.

prior to routine data analysis, at the
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1.2 Introduction

The measured noisy free induction decays (FIDs) can usually be regarded

sumoftrue signal and corrupt noise. NMR/MRI signal enhancement techniques

as a

may,

therefore, be logically classified into three categories: (i) signal strength enhancement,

(ii) noise strength reduction, and (iii) recovery of signal from noisy measurements. In

this chapter, a mathematical signal enhancement method in category (iii) is presented,

which seeks to reduce the degradation made on the excitation-response observations

and to enhance the spectral/image estimators’ performance. This object is achieved

by using a priori knowledge to define the desired signal, and a set theoretic esti-

mate to restore signal properties that have been lost due to noise corruption and

measurement distortion. In the context of NMR/MRI experiments, a wide range

of a priori knowledge arises from our theoretical and experimental understanding of

the underlying spin system. This includes information on the spectra to be studied

(e.g., number of peaks, l;.neshapes, coupling patterns, and relations between spec-

tral parameters), attributes pertaining to the system that generates the FIDs (e.g.,

deterministic/stochastic information and autoregressive order), and probabilistic de-

scription of the external noise process (e.g., statistical mean, variance, and whiteness).

Each piece of information. can potentially be used to discriminate signal from noise

and hence increase the precision of the signal recovery. The resulting estimate, which

possesses all the known or hypothesized properties, should then more accurately por-

tray the salient characteristics of the spin system and a signal enhancement can then
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be mathematically accomplished. This is the basic philosophical motivation for the

approach of mathematical signal enhancement in the set theoretic framework.

1.3 Best Feasible Approximation

Set theoretic estimation is governed by the notion of feasibility and is constrained

to produce solutions consistent with all available information [1, 2, 3, 4, 5). Each

piece of information is associated with a set in the solution space and the intersection

of these sets represents the acceptable solutions. If (Xli)l<i<I is the collection of 1——

propositions representing u priori knowledge and E the solution space, a collection of

so-called property sets (S~)l<i<I can be formally written as——

S’i = {a ~ = \ !Pi holds for a}. (1.1)

A set theoretic estimate is any object consistent with all available information, i.e.,

any point in the set intersection

I
S=n S~={ac El b’i E{l, ”””,l}illi holds for a}. (1.2)

i=1

This set S is called the feasibility set and the problem of set theoretic estimation

reduces to finding a point in S. A pictorial description is given in Fig. 1.1.

In order to use the set theoretic approach most efficiently, one must first select the
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Ed

Figure 1.1: Set theoretic estimation. Feasibility set S = S1 n S2 n S3. Any point in
S will be an equally acceptable solution in the set theoretic framework.
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solution space E which can describe all available information easily and accurately. A

rule of thumb is to select a solution space that contains the objects directly described

by most of the available information. The usual goal of NMR spectral estimation or

MRI image processing is to obtain an estimate of the frequency or spatial response

function of the underlying spin system from the measured FID, a time-series vector.

Therefore, the space of complex vectors equipped with vector norms will be appro-

priate. For this purpose, we may temporarily assume the solution space E is a metric

space denoted by (I’, d) in which I’ is a set of vectors and d(z, y) is a metric that mea-
‘>

sures the distance between any two vectors z, y of the set r. This dist ante measure

d(x, g) is commonly referred to as the Euclidean norm of (Z – y), i.e.,

(1.3)

Specifically, (Si)l<i<Z will then designate 1 sets of veetors contained in (I’, d) that

satisfy properties (Vi) I<i<z, with S being the intersection of these vector sets. .Any——

point in S will be an equally acceptable solution in the set theoretic framework.

When there is no noise contamination, the FID itself and its resulting data ma-

trix, covariance matrix, and autocorrelation matrix are known to possess certain

properties [6, 7, 4, 5]. Inevitable noise in measurement, however, will result in a loss

of some, or all, of these theoretical properties. If the noise perturbation is reasonably

small, a bound 6 on the deviation of the noiseless FID from the empirically generated
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noisy FID z may arise from the a priori constraint imposed by noise variance[8].

This constraint confines estimates to lie in a ball 1? with center z and radius J, i.e.,

B = {y < ~ Id (x, y) < 6}, as shown in Fig. 1.2. Such a constraint can signifi-

cantly reduce the set of feasible solutions and thereby improve the reliability of the

set theoretic estimates. If 6 can not be determined reliably, one can still exploit the

constraint by choosing as a solution the feasible point x* E S that lies nearest to z.

Such a point, z*, will be guaranteed to lie in the intersection of S and any ball B

centered at x and intersecting with S. Geometrically, Z* is simply the projection of

x onto S, i.e., Z* = II(z) (see Fig. 1.2). Consequently, an enhanced signal can be

formally obtained by finding the projection operator II or, equivalently, by solving

the following best feasible approximation problem

infy~s d (z, Y), (1.4)

where “inf” denotes the greatest lower bound operator.

1.4 Monte Carlo Simulations

To illustrate the above abstract concepts, in the following we will consider a simple

NMR example based on exponential FID modelling. The entire computation has been

carried out on a SGI Indigo IRIS-4000 workstation.

If the spin relaxation can be treated as a first order pr~cess, the measured NMR
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Figure 1.2: Best feasible approximation. Z*, defined bytheprojectionofx onto S,
will be guaranteed to lie in the intersection of S and any ball B centered at z and
intersecting with S.
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impulse response will be a sum of exponentially damped sinusoids perturbed by ad-

ditive noise,

X.= f%exP(~’%)fxP[(-a2 +~z~.fi)~] +% n= 0,1, . . ..N–l (1.5)
ial

where ai, ai, jz, 13irepresent the amplitudes, damping factors (inverse time con-

stants), frequencies, and phases respectively of the M distinct exponential; w =

[w~, w,,... , w~–l]~ is the additive noise perturbation, N is the number of data points,

and j is used to denote ~ –1. Consider the data matrix X formed from such. a FID

x [X(),X1,. . . , XN–l]T

x(x) =

r’”’
“.

XL XL+l “ “ “ xN_]

(1.6)

1
where “~” de.~otes matrix transpose and L is a parameter chosen by the user. It

follows that X, when constructed from noiseless FID, possesses two important prop-

erties, (i) W1, Hankel structure, and (ii) V2, rank deficiency. A Hankel matrix is one

which is symmetrical about any cross-diagonal, while the rank deficiency of X results

from z being the impulse response of a finite dimensional linear system of relatively

low order. Indeed, since exponential signals satisfy recursive homogeneous difference
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equations[9], then if the FID z is the sum of AI noiseless complex exponential with

ikf < min(L + l,N – L + 1), X will be of rank M. Similarly, if z contains only the

real or imaginary part of complex exponential, X will be of rank 2J4, since cosine or

sine functions can always be decomposed into the sum of two complex exponential

with conjugate exponents.

With above a priori knowledge, the general expression of the best feasible approx-

imation problem of Eq. (1.4) can be specified as

infy~s=slns, d (z, g) , (1.7)

where property sets SI = {Z E-E IX(Z) is a Hankel matrix}, S2 = {Z c E [rank[X(x)] =

Al}, and X(x) G C(~+lJ x(N-~+ l). The specific projection operator required to solve

Eq. (1.7) has recently been developed in the context of constrained total least squares

[15, 16, 17,4, 18, 19, 20]. The algorithm proposed by B. de Moor[19, 20] is adopted

here, and its MATLAB implementation is listed in the Appendix. Unlike some other

algorithms that only provide an approximate solution [17, 4, 18], B. de Moor’s al-

gorithm can offer the exact optimal solution to Eq. (1.7), as can be checked via the

orthogonality condition (Z – z“)~x” = O (which is necessary for optimality).

Within the last decade, much research activity has been focused on formulating

and comparing alternative means of NMR spectral/parameter estimation[17, 19, 6, 7,

21, 22]. For example, least squares Prony method (LS-Prony) and its variants have
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been shown to be useful for NMR/MRI quantification[17, 19, 6, 7, 21, 22, 23, 24,

25, 26]. LS-Prony embeds the nonlinear aspect of exponential model into a judicious

combination of linear prediction and polynomial factoring. Its principles have been

extensively documented[7,

termined linear prediction

polynomial by minimizing

27], but in summary, one first solves the following overde-

equations for the coefficients {b~ }l<~<q of the prediction——

the prediction error ~~.~l Iz. – in 12,

xq_ 1 ,Xq–z “. . xl)

Xq xq_l . . . xl

“.

xN–z :~N–~ “““ xN–~–l

bl

b2

bq

Xq

Xq+1

xN–~
J

7 (1.8)

.

where & = ~~=1 b~xn–m is the predicted value of x.. The roots of the prediction

polynomial F’(z) = 1 – ~n=l,q bn.z-m then produce the signal poles .zi = exp(–a~ +

j2T~z). Once damping factors cq and frequencies ~i are known, the amplitudes ai and

phases 6Zcan finally be scived by a general linear least-squares analysis.

It has been shown that LS-Prony and its variants can achieve a resolution in chem-

ical shifts far exceeding that of conventional Fourier transform [7, 27]. However, their

estimation accuracy and resolving ability rapidly deteriorate as the signal-to-noise ra-

tio (S/N) drops to a critically low value[17, 19, 6, 7, 21, 22, 23, 24, 25, 26]. To reduce

this problem, the enhancement procedure of Eq.

up” the FID before it is processed, for example,

1.7) can be invoked

using LS-Prony. In

to first “clean

the following,
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Monte Carlo simulations will be used to evaluate the resulting improvements in spec-

tral sensitivity (Simulation I) and resolution (Simulation H). These examples have

previously been used to compare the performances of various spectral estimators[28].

Spectral parameters are estimated by the standard LS-Prony subroutine listed in

Ref. [7] using the same noise-free data set, but 400 different realizations of the noise

for each considered

noise is assumed to

signal-to-noise ratio

S/N with, and without, the

be Gaussian and white with

(S/N) is here defined as

enhancement preprocessing. The

zero mean and variance o:. The

(dB) . (1.9)

The synthesized FIDs are given bySimulation I: Sensitivity Enhancement.

x. = a exp(–om) cos(2n~n + 6) + Wn with damping factor a = 0.05, normalized fre-

quency ~ = 0.2, amplitude a = 1.0, phase 6’= O, and n = O, . ...25. Figure 1.3 (a)

and (b) summarise the Cram&-Rao lower bounds and the statistics in damping factor

cz and frequency f,respectively. The Cram6r-Rao lower bound predicts the best pos-

sible performance (smallest variance) for any unbiased estimator; its calculation has

been outlined in several places[23, 29]. It is shown in Fig. 1.3 that the enhancement

preprocessing effectively improves the estimate statistics as if the spectral sensitivity

has been increased by 12 dB or, equivalently, the acquisition time has been reduced

by a factor of 250, as estimated from reduction in the mean square error of damping
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factors Q or frequencies j (mean square error is the sum of the variance and the

square of bias). Over the range of noise levels investigated, the enhanced estimates

are now essentially near-optimal in the sense that their biases are almost equal to

zero and their variances are very close to their theoretical lower “bounds.

Simulation II: Rescdution Enhancement. The synthesized FIDs consist of

two closely spaced resonances exceeding the resolving ability of FT:

Zn = ~~=1 ai exp(–sin) cos(2m~N2 + Oi) + w~ with damping factors al = @Q= 0.05,

normalized frequencies ~1 = 0.20,

01 =02 =0, andn=(),... ,25.

peaks are not both resolved within

.fQ = 0.22, amplitudes al = a2 = 1.0, phases

The estimation is judged to have failed if the

two standard deviations (given by the Cram6r-

P,ao lower bounds) of the exact normalized frequencies. Fig. 1.4 shows the success

rate as a function of S/P?. In this case, the enhancement preprocessing not only

provides much higher estimation accuracy (similar to Simulation 1, data not shown)

but also has a “breakdown” threshold for resolution that is much lower by x 19 dB

(as estimated from the success rate).

1.5 Conclusion

There are many different types of problems which require signal enhancement for a

solution. It

some novel

is desirable, therefore, to make effective use of the observed data by using

mathematical methods. Set theoretic estimation is a technique which
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provides a set of solutions defined as the class of objects consistent with all information

arising from a priori knowledge and the observed data set. If necessary, the

feasible solution can be obtained from the feasibility set by optimizing some

objective function. This is exactly the case for NMR/MRI signal recovery

the true signal is known to lie near a reference or a prototype signal and the

unique

chosen

where

object

function is simply the distance measurement.. The resulting best feasible solution

can be considered as a “clean” version of the original noisy data in which the effect

of noise corruption has been significantly mitigated. This is illustrated by means of

a rudimentary NMR application invoking the matrix properties of Hankel structure

and rank deficiency.

preprocessing enables

Monte Carlo

the LS-Prony

simulations show that the signal enhancement

method to produce effective estimates in a S/N

environment 10–20 dB lower than would have been otherwise possible.

The concept of set theoretic estimation can be applied to a large number of appli-

cations. The development of better feasibility algorithms and incorporation of more

signal and noise properties are the critical steps in broadening the scope of the ap-

plications of set theoretic estimation in NMR/MRI. The former lequests algorithmic

procedures for obtaining an approximation of the optimal solution, while the latter

usually entails some degree of ingenuity on the user’s part to identify specific sig-

nal/noise properties and data representation

issues shall be discussed in next chapter.

that apply to a given problem. These
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Chapter 2

Set Theoretic Estimation:

Algorithm

2.1 Abstract

The development of better feasibility algorithms and incorporation of more signal

and noise properties are the critical steps in broadening the scope of the applica-

tions of set theoretic estimation in NMR/MRI. Among various novel algorithms, the

feasibility algorithm of iterative paralIel projections demonstrates certain theoretical

and computational advantages for practical NMR applications. The effects of noise

corruption, measurement distortion, and theoretical mismatch can be significantly

mitigated through the process of iteratively and simultaneously modifying the noise-

corrupted data set to the smallest degree necessary so that it possesses a collection
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of prescribed signal properties and also lies closest to the original data set. The

lsca and 25Mg NMRusefulness of this approach is demonstrated by experimental

spectra.

2.2

For

below.

and =

Introduction

the reader’s convenience, the concept of set theoretic estimation is outlined

If (Wi) l<i<~ is the collection of 1 propositions representing a priori knowledge

the solution space, a collection of so-called property sets (Sz) l<Z<I can be.—

constructed in a propositional manner, namely,

S’i = {a E E \ Vi holds for a}. (2.1)

A set theoretic estimate is any object consistent with all available information, i.e.,

any point in the set intersection

I

2=1

A signal-enhanced data set (constructed from the FID vector), Y, can be formally

obtained by solving the following best feasible approximation problem

infy=~ d (X, Y) (2.3)
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where “inf” denotes the greatest lower bound operator and X is the measured noisy

data set. This problem is of significance in many fields of research, and a number of

algorithms have been proposed in the applied mathematics literature [6,7,8, 9, 10, 11].

The selection of an algorithm mainly depends on the metric and geometric attributes

of the property sets (Sk) 1<~<~ and the structure of the underlying solution space E..—

Because Eq. (2.3) can not usually be solved in one step, most feasibility algorithms are

recursive and consist of building a sequence that converges to a point in the feasibility

set.

2.3 Iterative Parallel Projections

The feasibility algorithm of iterative parallel projections [1, 16, 17, 18] in the

framework of set theoretic estimation constitutes a particularly effective means to

solve the best feasible approximation problem of Eq. (2.3). Let us first assume the

exact solution is obtained by the projection operator II, i.e., Y = II(X). Similarly,

the projection operator onto Sk is denoted by II.sk. When two or more of the rela-

tively simple property sets (Sk) 1<~<~ are employed to form the feasibility set S, the——

associated projection operator II generally does not have an analytical form. This is

due to the requirement that the solution must simultaneously lie in each of the prop-

erty sets (Sk) 1<~<~ and this set intersection can be extremely complicated (e.g., it is——

often nonconvex). In such cases, it is necessary to resort to algorithmic procedures

for obtaining an approximation of the optimal solution.
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Thealgorithm ofiterative parallel projections, instead ofattacking Eq. (2.3) di-

rectly, exploits the techniques of best approximation and nonlinear programming [19]

to solve the potentially more tractable set of problems

infye~~ d(X, Y), l<k<h!l (2.4)

It then invokes the technique of parallel projections to constitute a local approximate

solution to Eq. (2.3), which consists of the following recursive sequence

(2.5)

where j ~ 1, X(o) is the initial estimate, and the weight satisfies ~~=1 ok = 1. In such

a scheme, all the property sets are activated simultaneously and the new iteration is

a combination of the projections of the current iterate onto each property set. This

algorithm has been shown to converge to a feasible point locally, as long as X(o) lies

in the region of attraction [1, 16, 17, 18].

In the framework of set theoretic estimation, most algorithms require that (!.$k)~<k<fi~

be closed and convex sets, or be describable by linear projection operators. Unfor-

tunately, such restrictions are often too severe for matrix properties of interest as

exemplified later by the singular value decomposition (SVD) characterization of ma-

trix rank property. The main feature of the iterative parallel projections, therefore,

lies in its ability to loosen these restrictions and only require that (Sk) 1<~<~ be
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closed. As is shortly shown, the possibility to use nonconvex sets is critical in many

important applications. Another salient feature of iterative parallel projections is its

parallelism: at every iteration the projections can be computed simultaneously and

independently on a parallel computing architecture to considerably reduce the com-

putational burden. From our numerical experience, it is also found that Eq. (2.5)

generally converges in a very efficient manner.

2.4 Sensitivityy Enhancement in 43Ca NMR

Both

systems.

magnesium and calcium occur widely in biological as well as in non-biological

The relation of these elements to biological structure and function is a

subject of intense research [20]. Since these ions, because of their closed electron shells,

lack other useful spectroscopic properties such as ESR, UV/Visible, or luminescence

properties, progress in these studies has been mainly relied on NMR spectroscopy

[21, 22,23, 24].

The receptivity at natural isotopic abundance of 43Ca is one of the lowest in the

Periodic Table [25]. The problem of inherently small NMR signal can be greatly

improved through the use of isotope enriched samples, however, at a prohibitive cost.

Many important and potential studies, therefore, remain unexplored.

Let’s now consider the data matrix X formed from the measured FID z(1), x(2),... ,
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X(fv),

x=

x(L + 1) z(L) “o“ x(1)

z(L+2) z(L+l) ... z(2)

r “.

x(N) x(N–1) . . . x(N– L)

(2.6)

where L is a parameter chosen by the user. Since the usual NMR spin relaxations in

liquids are in the Markovian limit, the magnetizations can be characterized by expo-

nentially damped relaxation.

from noiseless FID, possesses

It follows that this data matrix X, when constructed

three important matrix properties [6, 11, 25].

Property 1: ToepM.z structure. The Toeplitz matrix has the property that all the

elements along the diagonal are identical and so are those along each subdiagonal.

Assume the unique Toeplitz matrix XT that lies closest to an arbitrary matrix X ~

C~x” in the Frobenius norm sense is obtained by the projection IIs~ (X). It is found

that the kth subdiagonal elements of the resulting XT equal the average value of the

kth sub diagonal elements of X. Here C’rnxn denotes the metric space consisting of

all m x n complex valued matrices.

Property 2: Matrix rank. If the FID x(l), x(2),.. 0, x(N) comprises a sum of Q

noiseless complex exponential with Q < min(N — L, L), it follows that the corre-

sponding noiseless data matrix X possesses rank Q. Its proof is dependent on the

fact that exponential signals satisfy homogeneous difference equations. The widely
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employed SVD provides a particularly useful tool for characterizing the matrix-rank

property. Recall that the SVD of an arbitrary matrix X e C~x” is given by

r

x = ~ CJiuiv: = C71ulv[+ @u2v~ + “““+ Oru,v: , (2.7)
2=1

where “~” stands for taking the Hermitian conjugate, r ~ min(m, n) is equal to

the rank of X, the (Oi)l<i<r are real and nonnegative singular values ordered in the——

monotonically nonincreasing fashion ~i ~ Oi+l, and the (w) l<i<~ and (vi) I<i<T are—— —-

the corresponding orthonormal left and right singular vectors, respectively [4, 5]. The

matrix X is thus constructed from the contribution of r rank-one matrices weighted

by the respective singular values. If OQ # o~+l, the unique matrix XR of rank Q or

less contained in property set SR that lies closest to X in the minimum Frobenius

norm sense is given by the matrix-rank projection (Eckard-Young theorem [27])

Q
XR, = I’Is R(X) = ~(TiU2W~ . (2.8)

i=1

The nonconvexity of SR is established by noting that the sum of two rank-Q matrices

can have a rank greater than Q.

Property 3: Subsequences. Assume z = {z(1), x(2),””” , x(N)} comprises a sum

of Q noiseless complex exponentials. This sequence may be decimated by a positive
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integer p z 2 to form p subsequences

Z,:, = {z(q), z(p + q), 0. ~ ,x(FIX(IV/p - l)p + q)} . (2.9)

Here 1 s q < p and “FIX)’ denotes rounding toward zero. Each such subsequence

will also comprise a sum of Q complex exponential with the exponents being equal

to those of the original raised to the pth power. We can then construct the composite

subsequence data matrix .XP

Xp=

Xp:l

xp,~
-(2.10)

where submatrix Xp:~ (1 S: q < p) denotes the data matrix formed from subsequence

Zp:q according to Eq. (2.6). It follows that Xp will also possess rank Q [28]. The

projector IIsU ~ associated with the subsequence property set SU,P for an arbitrary

standard data matrix X c Cmxn can be described as follows. (i) Extract the se-

quence z from X. Decimate z by p to form p subsequences (ZP:~)15q5p. (ii) For

each xp:~, form submatrix XP:Q following Eq. (2.6), and then construct the composite

subsequence data matrix XP by Eq. (2.10). (iii) Find the nearest rank Q approx-

imation to XP. (iv) Perform the inverse operation of (i) and (ii), i.e., extract the

*
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submatrix and subsequence and then form the enhanced standard data matrix XU,P.

Consequently, XU,P = U9U,p(x).

With such knowledge, the signal enhancement method can be easily formulated

as

pm..

X(.O = WsT1-Is,(-x(~-’)) + w&J’IsR(x @l))+ ~ L4&JIsu,p(x@’)), (2.11)
p=2

with X(o) the original noisy data matrix. The iterations can be stopped when negli-

gible improvement in the projection is observed, which leads to the stopping rule

d (Xq X(q
<e,

d ( x(o),o)
(2.12)

where O is the null matrix and c is a suitably small positive number. Once the iterative

procedure converges to a specific matrix, we can extract the spectral parameters

by various quantification methods or just recover the signal-enhanced FID [refer to

Eq. (2.6)] and then obtain the conventional FT spectrum.

We now apply Eq. (2.11) to NMR studies on Ca2+ complexation by using natural

abundance 43Ca samples. Figure 2.la presents the original FT spectrum with 10,000

scans obtained at 300K on a Bruker MSL-400 spectrometer for aqueous solution con-

taining 0.20 M CaC12 and 0.10 M sodium EDTA. From the chemical composition of the

solution, it is known that the frequency spectrum should show two Lorentzian peaks

corresponding to free Ca2+ ion and Ca-EDTA complex. Unfortunately, these spectral

/

.



30 Chapter 2. Set Theoretic Estimation: Algorithm

features are now buried in a high level background noise. We have also performed

another measurement uncler the same experimental conditions except for an increase

of number of scans from 10,000 to 1,700,000. Its FT spectrum is depicted in Fig. 2. Id,

which will be used as the “true” spectrum for comparison. The most commonly used

technique to improve the signal-to-noise ratio (S/N) would be exponential multiplica-

tion, i.e., multiplying the noisy FID by an exponential decay function. Therefore, to

compare the performance of our signal enhancement method with exponential multi-

plication, these two sensitivity enhanced versions of Fig. 2. la are shown together in

Fig. 2. lb (by exponential

two peaks correspond to

multiplication) and 2. lC (by Eq. (2.11)), respectively. The

the Ca2+-EDTA (left) and free Ca2+ (right) states. The

spectroscopy parameters used are: sampling interval 150 ps, deadtime delay 30 ps,

pulse interval 400 ms, and left shift 4 complex data points. Please notice the scale

change in (b).

During the signal enhancement preprocessing, ten property sets are simultaneously

activated. These include Toeplitz-structure property set ST, matrix-rank property set

SR, and subsequence property sets (Su,P)2<P~g. Other algorithm parameters used are

N = 256, L = 192 [Eq. (2.6)], Q = 2 [Eq. (2.8)], Pn.. = 9 [Eq. (2.11)], and e = 0.004

[Eq. (2.12)]. The algorithm convergence is shown in Fig. 2.2. Satisfactory results can

in general be achieved within 10 iterations. Since no particular property set should

be privileged in this case, the weights

problems in which some property sets

are

are

taken to be equal, i.e., Wi = 1/10. For

judged to be more critical than others,
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they should be assigned larger weights.

By comparing Fig. 2. lb with 2. Id, it is observed that the incorporation of expo-

nential multiplication attenuates the noise contribution to some extent, however, at

the expense of resolution degradation and intensity distortion. This problem arises

because the generally used anodization technique is nothing but a linear operation,

so that it treats noise in the same way as signal. Consequently, these spectral ob-

stacles can not be surmounted without sacrificing something valuable, be it spectral

resolution or sensitivity. This kind of artifact, however, does not occur in our signal

enhancement method.

close approximation to

In Fig. 2.lc, the signal-enhanced

the “true” spectrum (Fig. 2.ld).

spectrum exhibits a very

Therefore, this signal en-

hancement preprocessing not only effectively strips away noise that contaminates the

original data, but also faithfully reconstructs the spectral details even with as few

as 10,000 scans. This fact means that a factor of 170 reduction in NMR machine

time might be obtained and, hence, the 43Ca NMR studies without isotope-enriched

samples might be possible. The price for such accomplishment is only 5 minutes CPU

time in our SGI IRIS-4000 workstation.

2.5 Resolution Enhancement in 25Mg NMR

Recently, NMR spectroscopy of enriched 25Mg has been adapted as a useful tool

in the studies of Mg2+ binding with biomolecules in solution [20, 2 I]. However,

progress in these studies has been much retarded primarily because of experimental
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Figure 2.1: The natural abundance 43Ca frequency spectra (real part without phase

correction) obtained at 3100K on a 400 MHz Bruker spectrometer for an aqueous
solution cent aining 0.20 M CaC12 and 0.10 M sodium EDTA. (a) The direct FT of the
FID with 10,000 scans; (b) Signal-enhanced spectrum of (a) obtained by multiplying
the original measured FID by an exponential decay function, i.e., r(n) := x(n)e–~n
with n= O.. .255 and ,6 = 0.03; (c) Signal-enhanced spectrum of (a) obtained by

using signal enhancement preprocessing of Eq. (2.11); (d) The direct FT of the E’ID
with 1,700,000 scans, used. as the “true” spectrum for comparison.
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Figure 2.2: The algorithm convergence of the iterative parallel projections.
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inaccessibility due to poor chemical shift separation blurred further by low sensitivity,

acoustic ringing, and sizable quadruple relaxation effects [22, 23, 24].

Within the last decade, there has been a flurry of research activity into for-

mulating and comparing alternative means of NMR spectral estimation. The pri-

mary motivation has apparently been the development of techniques for enhanced

spectral resolution. Among them, linear prediction (LP) has attracted consider-

able interest as an alternative approach to FT for quantification of NMR FIDs

[12, 13, 14, 15, 29, 30, 31, 32]. The success of LP resides in its predictive power

to extend truncated FID for resolution enhancement, or to recalculate the initial

data points from the remainder of the FID for baseline and phase corrections. It has

been shown that LP as well as most of the other proposed estimators can achieve a

resolution in chemical shifts far exceeding that of conventional FT. However, their

resolving ability

critical value.

rapidly deteriorates as the signal-to-noise ratio (S/N) drops to a

To alleviate this problem, the signal enhancement method of Eq. (2.11) can be in-

voked to first “clean up” the FID being processed, and then a high-resolution spectral

estimator can be applied to the signal-enhanced FID to extract the spectral paramet-

ers. Here, the LP with the Kumaresan-Tufts algorithm, LPSVD [29, 30], is selected

to serve as the high-resolution spectral estimator due to its growing popularity in the

iNMR community. The result of LPSVD analysis is a table of spectral parameters

(damping factor, frequency, amplitude, and phase) which either can be used to con-
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struct a frequency/time domain spectrum or can be used directly without the need

for complicated peak searching, curve fitting, and intensity integration. It is well

known that the 25Mg chemical shift is very insensitive to the formation of complexes

[24]. Therefore, we can use the example of 25Mg binding with EDTA to verify the

usefulness of this two-step procedure in resolving very closely spaced exponentially

damped sinusoids under low S/N environments. The FT spectra shown in Fig. 2.3a

(500 scans) and 2.3c (30,000 scans) are obtained from an aqueous solution containing

0.80 M MgC12 (natural abundance) and 0.60 M sodium EDTA. To emphasize the fine

spectral structure, only about 1/5 of the full spectral width is shown here. The stock

solution of MgC12 was first standardized by titration with EDTA using Eriochrome

Black T indicator. Under the experimental conditions, the Mg2+ ion is in the limit

of slow exchange between complexed and uncompleted sites and forms a 1:1 complex

with EDTA. The signal-enhanced spectra (dash line) shown in Fig. 2.3b and 2.3d are

obtained respectively from Fig. 2.3a and 2.3c by the signal enhancement algorithm of

Eq. (2.11), while the two resolved components (solid line) are generated from further

LPSVD analysis of the signal-enhanced FIDs. The algorithm p,wameters are the same

as those used in the previous 43Ca example. The two resolved components represent

the Mg2+-EDTA (right) and free Mg2+ states (left). After correcting the effect of

deadtime and extrapolating to initial amplitudes, the [Mg2+]/[Mg2+–EDTA] ratios

are estimated to be 0.32 (Fig. 2.3b) and 0.34 (Fig. 2.3d), which agree excellently with

the stoichiometric ratio 0.33. By comparing the signal-enhanced spectrum (Fig. 2.3b)

..
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with the “true” spectrum (Fig. 2.3d), it might be concluded that the combined use

of set theoretic estimation and high-resolution spectral estimator holds great promise

in reducing the total accpisition time without significant loss of resolution. This

is critical to, say, multi-d.imensional in vivo NMR, where very poor sensitivity and

resolution may arise from the low concentration of the sample species and limited

data points in the higher dimensions. On the other hand, this example also reveals

the inherent drawbacks of FT: limited resolution and its inability to distinguish be-

tween signal and noise. Consequently, in the absence of detailed knowledge about the

spectral contents, FT should be used conservatively and carefully, particularly when

overlapping peaks are to be accurately quantified or interpreted.

..

One point remaining to be addressed is the determination of the effective rank Q

in matrix-rank projection 17,s~and subsequence projection ll.sU,P. This can usually be

done based on one’s a priori knowledge about the number of exponential components

in the FID or by examining the relative magnitudes of the singular values of the

associated data matrix. It is found that the data matrix is generally almost rank

deficient and there is a j’ump ~Q >> OQ+I in its singular values, as exemplified in

Fig. 2.4 for the data matri~ constructed from the FID of Mg-EDTA shown in Fig. 2.3c.

This distinction, however, will eventually become blurred when the spacing between

resonance frequencies, the number of data points, and the S/N all decrease. As

discussed in Chapter 3, in such cases one can still resort to various statistical criteria

based on the theories of perturbations of singular v-alues and significance test [33]. It
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Figure 2.3: The natural abundance 25Mg frequency spectra (real part with zeroth
order phase correction) obtained at 300K on a 400 MHz Bruker spectrometer for an
aqueous solution containing 0.80 M MgC12 and 0.60 M sodium EDTA. (a) The direct
FT of the FID with 500 scans and lK zero-filling; (b) Signal-enhanced spectrum of

(a) obtained by the signal enhancement preprocessing (dash line) and then LPSVD
analysis (solid line); (c) The direct FT of the FID with 30,000 scans, used as the
“true” spectrum for comparison; (d) Signal-enhanced spectrum of (c) obtained by
using the signal enhancement preprocessing (dash line) and then LPSVD analysis
(solid line).
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is shown that these criteria in general perform better than those empirically set by

the users. Besides, they a,lso help lead to a fully automatic algorithm by minimizing

user’s involvement during the signal enhancement procedure.

2.6 Conclusion

Conceptually, the conventional least-square analysis is also capable of incorporat-

ing various types of requirement, constraint, or desideratum. In practice, however,

the resulting constrained optimization problem may not be solvable by any known

method. The main asset of set theoretic estimation, therefore, stems from the ex-

istance of efficient algorithms for finding these solutions and great flexibility with

regard to incorporation of all available information. Among various novel algorithms,

the feasibility algorithm of iterative parallel projections has demonstrated certain the-

oretical and computational advantages for practical NMR applications: unrestrictive

convergence conditions, its iterative and parallel nature, and attractive convergence

behavior. As is previously illustrated by means of examples, a dramatic enhance-

ment in spectral sensitivity and resolution can be obtained at the expense of greater

computational complexity.. The advent of powerful computers at reasonable cost and

the development of fast algorithms should render approaches of this kind usable on a

routine basis.

Due to the generality of the set theoretic estimation, this approach can actually

be applied to a wide spectrum of NMR and non-NMR applications. For various
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Figure 2.4: The singular values of the data matrix constructed from the FID of Mg-
EDTA shown in Fig. 4c.
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situations, one can use different data representations and incorporate different a pri-

ori knowledge. Besides the examples shown above, we have also successfully imple-

mented such signal enhancement algorithms in solid-state NMR with non-Lorentzian

lineshapes and MRI (not shown). In the solid-state experiments, the inherent S/N

problem can be aggravated further by long spin lattice relaxation times and relatively

broad and complex lineshapes reflecting chemical shift anisotropy and incomplete av-

eraging of the total spin Hamiltonian. Thus, a signal enhancement method without

Iineshape distortion will be

The only way to restrict

mation in the formulation.

very helpful.

objectively the feasibility set is to incorporate more infor-

Continuing work will be aimed at incorporating random

matrix theory and probabilistic information pertaining to the noise process such as

range, moments, second and higher order probabilistic attributes. Such information

can be obtained from the tail of the FID where the exact signal has died out, or by

acquiring the FID in the [~bsence of a stimulated pulse. The construction of these

property sets must resort to statistical confidence limit and fussy set theory. Adding

these sets to the collection of sets describing the solution will yield a smaller fea-

sibility set and, hence, mcwe reliable estimates and more significant effect of signal

enhancement. It is, therefcre, concluded that

mation is dependent on the user’s theoretical

spin system to innovatively introduce signal

the underlying applications.

the true utility of the set theoretic esti-

and experimental understanding of the

and noise properties that characterize
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Chapter 3

Matrix Pencil

3.1 Abstract

Many potentially interesting and useful classes of NMR experiments generate data

for which conventional spectral estimation and quantification via the Fourier Trans-

form is unsatisfactory. In particular, recently introduced solid-state NMR experi-

ments which involve long delays before data acquisition fall into this category, as the

free induction decays are heavily “truncated” and have low signal-to-noise ratios. A

novel detection-estimation scheme is introduced in order to analyze data froni such

experiments and others where the sensitivity is low and/or the data record is strongly

damped or truncated. Based on the assumption of exponential data modelling, the

number of signals present is first detected using criteria derived from information the-

ory and the spectral parameters are then estimated using the matrix pencil method.
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Monte Carlo simulations and experimental applications are carried out to demonstrate

its superior statistical and computational performances and its general applicability

to delayed acquisition data. Over the range of noise leveIs investigated, it is found

that this approach is essentially near-optimal in the sense that the estimated spec-

tral parameters having biases almost equal to zero and variances very close to their

theoretical Cram&-Rao lower bounds. Compared to the popular method of Linear

Prediction with Singular Value Decomposition, this method not only improves the

estimation accuracy (by a factor of 2–4) with a lower ‘{breakdown” signal-to-noise

threshold (N 1.5 dB), but also reduces the computational cost by about an order of

magnitude. It also holds great promise in effectively reducing truncation artifacts. It

is concluded that this approach not only facilitates the analysis of delayed acquisition

data, but can also become a valuable tool in the routine quantification of general

NMR spectra. A listing of programs is also included in the Appendix.

3.2 Introduction

Conventional spectral

(FT), which decomposes

estimation of NMR data is based on the Fourier Transform
.

the time series into a sum of undamped sinusoidal oscilla-

tions. This can be done very efficiently using the Fast Fourier Transform. However,

the Fourier Transform is only strictly applicable to the limited subset of ‘(complete”

signals, i.e., t = O to co [3, 4, 5, 6, 7, 8, 9, 10]. Fourier transformation of signals

that are truncated, either at the start or end of the decay, leads to familiar spectral
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distortions, baseline roll and “sine-wiggles” respectively. Besides, there is no built-in

mechanism for noise suppression. The linear nature of the Fourier Transform implies

that reducing these problems or improving apparent resolution can only be done at

the expense of spectral resolution and/or sensitivity.

The goal of NMR spectral estimation is to obtain an estimate of the frequency

response function of the underlying spin system from the measured free induction de-

cay (FID). A particular FID can be characterized in terms of a model function with

a set of free parameters. A crucial problem in NMR spectral estimation is, therefore,

the detection of the signal. model and the estimation of the spectral parameters (e.g.,

damping factor, frequency, amplitude, and phase). The difficulty of the detection-

estimation problem is increased by the low sensitivity inherent in NMR spectroscopy.

Because of the computational complexity and noise interference, the problem is usu-

ally solved in two steps. The model function is first chosen, and verified on physical

grounds or by statistical tests. After successful signal modelling, the free parameters

of the signals are then estimated.

Detection theory refers to the selection of the physical or mathematical model

that best describes the measured phenomena. The model function must be chosen

with care; if the number of parameters is too large, many of them will be spurious,

particularly if one has to contend with noise, while too restrictive a model func-

tion leads to poor fitting of the data and systematic errors. Estimate statistics

are usually better if the number of parameters is minimized. In NMR, the exper-
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imentally observed FID, v = [yo,yl, . . . , y~-1]~, can be approximated by a sum of

complex-valued noise-free signal z = [z., xl, . . . , ZN_l]~ and additive noise pertur-

bation w = [wo, WI,. . ., WN-l]T, where “T” denotes matrix transpose and N is the

number of complex data points. It is generally assumed that the elements of w are

complex Gaussian random variables with zero mean, variance p, and uncorrelated real

and imaginary parts. This a priori assumption of normality is not only mathemati-

cally convenient, but via the central limit theorem, it is often a good approximation

“of the real NMR circumstances.

The quality of spectral estimation can be improved by incorporating further in-

formation into the signal model. This is conventionally done by assuming that the

signal can be decomposed into a set of exponentially damped oscillations,

yn=xn+wn = XglIail ew(jf%) ew[(-w + jzmfi)n] + W. (3.1)

=~flluia”+wn n= O,l,... ,l–l (3.2)

where Iai 1,ai, ~z, 19jrepresent the absolute amplitudes, damping factors (inverse time

constants), frequencies, and phases of the Al distinct exponentials, respectively; j is

used to denote ~. ~i ~ exp(–~i +j2~~i) is the “signal pole” and ai = \ai \ exp (jOz)

is the “complex amplitude”. This is in general a good assumption for liquid-state

NMR, and for solid-state NMR with fast magic angle sample spinning[9]. Based on

this model function, the detection problem is then reduced to the determination of the
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number of signals M!. Note that the assumption of exponential decay is m

unduly restrictive. The application of such a model to non-exponentit

signals results in a mathematical, rather than a physical, analysis by exl

spectral component into a sum of exponentials.

Within the last decade, much research activity has been focused on

and comparing alternative means of NMR spectral estimation[4, 5, 6, 7,

driven by the promise of potentially superior spectral sensitivity and/or

comparison to the conventional Fourier Transform (albeit at the expen

computational complexity). In particular, parametric methods based on 1

tial FID modelling, cf. Eq. 3.1, have attracted considerable interest. ‘1

ration of Iineshape information should allow individual signals to be bet

both from

estimation

each other and from the noise. In this chapter, a combine

scheme, ITMPM, based on Information Theory and Matrix P(

is introduced which improves the estimation performance and compu

ciency of the exponential FID modelling, relative to existing techniqu

Linear Prediction. Monte Carlo simulations are first carried out to veri:

tical superiority of ITMPM. Its applications to the experimental data I

acquisition measurements are then demonstrated. A fully automated

MATLAB [II] is provided in the Appendix to minimize the user’s iml

effort.
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3.3 Matrix Pencil Method

There is an important difference between the complex amplitude ai and the signal

pole zi in the functional form of Eq. 3.l; the signal model is linear in the first and

nonlinear in the second. The complications of nonlinearity can be circumvented by

invoking the linear prediction principle [e.g., linear prediction[12, 13], autoregressive

modelling[l, 2]] or by employing matrix factorization techniques [e.g., state space

formalism[16, 17], matrix pencil method [18, 19, 21]]. In particular, Linear Prediction

with Singular Value Decomposition (LPSVD) and related methods have been shown

to be useful complements to the Fourier Transform[4, 5, 6, 7, 8, 9, 10, 12, 13, 22, 23,

24, 25]. The principles of LPSVD have been extensively documented. In summary,

one first solves the following linear prediction equations for the coefficients {ci }l<i-g

of the prediction polynomial,

“.

1!/N-2 !/N-3 “““ YN-L-I

c1,!‘.1YL

C2 YL+l
=

CL YIV-1
-:1

(3.3)

The roots of the prediction polynomial ~(z) = 1 – ~i=~,L Ciz-i then Produce the ~

signal poles {.zi}l~i<~. The success of LPSVD resides in the ability of Linear Predic-

tion to extend truncated FIDs for resolution enhancement, or to estimate missing or

corrupted initial data points for baseline and phase corrections [26]. The corrupting
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efiects of noise can be mitigated through a judicious combination of;

prediction order

for the noise in

(L > M, introducing extra L - M noise-related

the measurements, and SVD-based signal-subsp:

discriminate between signal and noise[lO].

While the use of LPSVD for spectral quantification has many adv;

drawback is the considerably larger computational burden and h

complexity (necessary to avoid numerical instability and overflov

the high degree polynomial rooting. In addition, LPSVD exhibits :

estimation performance when noise level increases beyond a certai

Refs [4, 5, 6, 7, 8, 9, 10, 10, 12, 13, 27]. These factors make LPSV12

particularly when the signal-to-noise ratio (SNR) is low.

Unlike LPSVD, the recently proposed matrix pencil method, de

dently by Hua and Sarkar[18, 19] and by Kailath et al. [21], irn

signal poles, zi, directly by solving a generalized eigenvalue problen

is governed by the notion of pencil-of-functions and exploits the I

trix pencil constructed from the underlying FID. The mathematics

pencil” refers to the linear combination of two matrices (say, F am

common domain, i.e., F -+AG. The eigenvalues of the matrix per

the values of the scalar variable A that decrease the rank of the ma

Let X. and Xl be two noise-free data matrices with dimens
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definedby

“Xo =

XL–1 XL–2 ““”

XL XL–1 ““”

r’”
“.

XN–2 XN–3 ““”

where L is called the penci

can be decomposed as

X(J

xl

XN–L–1

XL XL–1 --- xl

XL+l XL ‘ “ “ X2

1“”’I
(3.4)

“.

XN–~ XN–Z ‘ “- XN–L

parameter. It follows from Eq. 3.1 that these matrices

X. = ZLBZR , Xl = ZLBZZR (3.5)

.
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where

ZL =

ZR =

1 1

‘Z1 22

Z1N–L–1 23N_L_l

,..

. . .

“.

. . .

~lL–l

.7qL–1

z&fL–1

‘Z1L–2

Z2L–2

ZML-2

. .

. .

“.

. . .

1

1

1

1

~M

ZMN–L–1

, B=

z=

al

o

0

21

0

0

0 . . .

az “..

“.

o . . .

0 . . .

Z2 ““.

“.

o . . .
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ZL and ZR are Vanderm.onde matrices, and B and Z are diagonal matrices con-

structed from the complex amplitudes and signal poles respectively.

Now consider the matrix pencil X ~ – }XO,

r

== ZLB

= ZLB(Z – .MM)ZR

.21-A o ““’ o 1
0 Z2– A ““” o

zR
“.

(3.7)

(3.8)

o 0 . . . z&f-~ 1
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where IM is an Al x Al identity matrix. In general, the rank of the matrix pencil

X1 – ,lXO is M. However, if A = ~i then the rank of Z – AIM will be reduced to

ikl – 1. In other words, each of the ~i will be a rank reducing number of the matrix

pencil Xl – AXO, and so, by definition, the set {~i}l<i<~ can be identified with the——

Ill non-zero generalized eigenvalues of the matrix pair (Xl, XO),

Xl~i = ZiXo~i (3.9)

where qi is the eigenvector associated with the eigenvalue (and signal pole) Zi. The

Moore-Penrose pseudo-inverse of a matrix is a generalization of the matrix inverse

to the case where the matrix is not square and possibly of incomplete rank. Left

multiplying Eq. 3.9 by the Moore-Penrose pseudo-inverse of X., Xo#, and using the

property that

can be solved

Xo#Xo = 1, it is clear that the generalized eigenvalues of (Xl, Xo)

by finding the Al non-zero eigenvalues of the L x L matrix product

xo#xl,

Xfj#Xl~~ = %qi . (3.10)

In order to

for the effects

apply such techniques to experimental data, it is important to account

of noise corruption. In spectral estimation, the data matrix, covari-

ance matrix, and autocorrelation matrix characterize the information contained in the

observed signal. When constructed from noiseless signal, these matrices possess cer-
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tain eigen-characteristics (e.g., rank, degeneracy, positive semidefinite, etc.) and/or

matrix structures (e.g., Hermitian, Hankel, Toeplitz, etc.). Inevitable measurement

noise, however, results in the loss of part (or all) of these theoretical matrix properties.

Provided the noise perturbation is not too large, a useful procedure for approximating

the noiseless matrix is to find the matrix which possesses a set of chosen properties

and lies closest to the empirical noisy matrix. The resulting matrix is a more accu-

rate representation of the characteristics of the underlying signal than the original

noisy matrix, where the corrupting effect of noise has been mitigated and a signal

enhancement has been accomplished.

This can be successfully incorporated into the matrix pencil method. For the noisy

data, we define YO and YI the same way as for XO and Xl with xi replaced by the

noisy measurement vi. It is clear that, while the noiseless da;a matrices X. and X 1

have a rank equal to the number of signal components (IM), the noisy data matrices,

Y. and Y1, will in general be of full rank due to noise contamination. Singular Value

Decomposition (SVD) provides a particularly useful tool for restoring the matrix-

rank property. SVD, one of the most stable and comput ationally effective algorithm

in the theory of matrix algebra, is a generalization of the eigenvalue decomposition

for non-square matrices[lO, 28, 1, 2]. The SVD theorem states that for an arbitrary

(JV– L) x L matrix Y. there exist positive real numbers al z 022 ...2 OR >0 (the

so-called singular values), an (IV – L) x (N – L) unitary matrix U = [U1U2”.”UN–L],
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and an L x L unitary matrix V = [V1V2. . . VL] such that

Y~=u

where Z = diag(al, 02, “”“, OR) is an R X R diagonal matrix, O is a null matrix,

‘(t” denotes conjugate transpose, and R s min(iV – L, L) is defined as the rank of

Yo. The matrix Y. is thus constructed from R rank-one matrices weighted by their

respective singular values. The matrix of rank Al (< R) which lies closest, in a least

squares sense, to the original matrix is constructed using the first M principle singular

values and the associated singular vectors [Eckard-Young theorem [29]], i.e.,

(3.12)

where UM = [U1U2”““UM],VM = [vlvz. . “u~], and ZM = diag(ol, OZ, “. “, ~M).

The Moore-Penrose pseudo-inverse can also be defined in terms of the SVD com-

ponents of Yo,

M
~o# = VMEM-l UMt = ~~i-lvittit . (3.13)

i=l

Hence, for noisy data, the M non-zero eigenvalues of the signal-enhanced L x L matrix

product ~o#Y1 give the estimates of the signal poles ~ij and hence the damping

factors Clz = – log l~il, and frequencies ji = arg(~i)/2n. It should be noted that
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further replacement of Y1 by its rank Al counterpart ~1 offers little advantage, due

to the strong correlation of the noise between Y. and Y1. Once {,zi}l<i<~ are known,——

the absolute amplitudes IazI and phases Oi = arg(ai) can be solved by a general linear

least-squares analysis

!)0

W

yN-1

1

Z1N–1

1

2!2

.q N–1

-1

. . . 1

... zJ/f

“.
.

z&fN–1. . .

al

az
+ (3.14)

Note that the pencil parameter L (where M < L < N) will influence the quality

of the results, in a similar way that LPSVD is affected by the choice of the polynomial

degree (prediction order). A poor choice of prediction order or pencil parameter will

limit the performance of either technique. It is empirically found that the optimal

value for L ranges from 1, = N/3 for noisy signals, to L = N/2 for signals with a

higher SNR[18, 19].

The computational efilciency can be increased by noting that since ~o#Y I has

rank M < L, L —M of its eigenvalues are zero[19]. The size of ~o#Y 1 can therefore

be reduced before its eigenvalues are found. Substituting for ~o# from Eq. 3.13 into

the eigenvalue equation, Eq. 3.10, for ~o#Y 1,

V&& M-l U&@lqz = ~~q~. (3.15)



x&f-wJYlvM(vJq2) = z2(vJq2) . (3.16)

Now it can be seen that the estimates of {zz}l<i<~ can be found by computing the——

eigenvalues of the much smaller &l x M matrix ZM–l UM+Y1 VM.
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Left multiplying by VM+ and using the unitary nature of VM, i.e., VMVMt =

VMtVM = 1, we have

3.4 Information Theory

A potential difficulty encountered in practical applications of matrix pencil and

other SVD-based methods is the ambiguity in detecting the number of signal compo-

nents, that is, in choosing the matrix rank Af[30]. The determination of M is crucial;

too small a value of M results in information loss, while too large a value effectively

incorporates more noise and generates spurious spectral features. For well-resolved

spectra with reasonable SNR, the value of Al can be determined from the sharp cut-

off in magnitude of the singular values, or the number of resolved peaks in the FT ‘

spectrum above a predefine threshold. These criteria, however, become ill-defined

as the spacing between resonance frequencies, the number of data points, or the SNR

decreases.

Various criteria have been proposed to address this problem. They may be clas-

sified into the following five categories: (i) subjective threshold settings of singular
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values[28, 31, 32], e.g., c~l ~ 02 ~ . . . z a~ > 6 z o~+l, where the threshold

value 6 is selected on an ad hoc basis; (ii) statistical threshold

values [30], which is similar to (i) but the threshold is based on

bounds on singular

the theories of per-

turbations of singular values and statistical significance test; (iii) hypothesis test of

likelihood ratios[33, 34], for each hypothesis the. likelihood ratio statistic is compared

to a subjective threshold level; (iv) matching of reconstruction residue with noise

power[35, 36], consecutive reconstructions for various rank are performed and the re-

sulting error power is compared to the noise power; (v) information theory for model

order selection [37]. All these criteria appear intuitively reasonable and function ef-

fectively over various cases. Moreover, the information theoretic criteria, (v), have

certain theoretical and computational advantages over the others. These criteria were

originally introduced in the context of linear prediction by Akaike [AIC, Akaike In-

formation Criterion[38]] and by Schwartz and Rissanen [MDL, Minimum Description

Length[39, 40]], and later adapted to exponential modelling by Wax and Kailath[37].

Unlike the conventional approaches in categories (i) and (iii), AIC and MDL do not

require any subjective threshold settings.

perform better than those empirically set

Statistically determined criteria generally

by the user, as well as minimizing the ne-

cessity for user involvement. The principle and the derivation of these criteria can be

found elsewhere [l, 2], but in summary, the optimal value of Al is determined merely

by minimizing a discrete function of the singular values (which are already known
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from Eq. 3.11), e.g.,

MDL(k) = – log

[

(ll:=k+,~z)N 1(&x:=k+1a2)+~k(2L-k‘3”1
different from theapproaches in category (iv) where apriori knowledge

power and extra computational cost for consecutive reconstructions are

This is very

of the noise

definitely required. In this work, MDL is used in preference to AIC as

shown to give consistent estimates of Al, while AIC tends to overestimate

it has been

the number

of signals as the number of data points increases [37].

The flowchart for the ITMPM algorithm is depicted in Fig. 3.1

3.5 Monte Carlo Simulations

The development of any signal processing protocol requires a rigorous statistical

evaluation of its performance. Visual comparison of the results of a few realizations

is insufficient to draw any general

relative error (MRE) are statistical

performance:

conclusions [l, 2]. The bias,

measures that are commonly

variance, and mean

used to quantify the

(3.18)

(3.19)

(3.20)
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[

Estimate Signal Poles:
diagonalize Z~U~YIV~
Eq. (3. 16)

[

Estimate Amplitudes and
Phases: solve linear equations
Eq. (3.14)

Construct YO, YI : Eq. (3.3)

[

SVD of YO: Eq. (3.11)

[

Detect Signal Components:
M=min(AIC) or
M=min(MDL) Eq. (3. 17)

Figure 3,1.: The flowchart of the ITMPM algorithm.
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where E is the expectation operator and ~ is the estimate of the spectral parameter

whose true value is ~. Ideally the bias should be negligibly small and the variance

as close as possible to its theoretical lower limit, the Cram&-Rao Lower Bound (see

below).

Analytical determination of these functions is generally intractable. Instead they

can be estimated using Monte Carlo simulations in which the statistics are calculated

using the same noise-free data set, but many different realizations of the noise. In

this section, three simulation experiments are carried out to evaluate the performance

of ITMPM, while LPSVD is used as a benchmark against which ITMPM can be

compared. The MATLAB code for both ITMPM and the original Kumaresan-Tufts’

LPSVD algorithm with bias compensation[12, 13] is listed in the Appendix. The

signal-to-noise ratio (SNR) is here defined as

SNR = 10 log10‘i ‘ail’ (dB;
P

where p is the noise variance.

(3.21)

Example I: Single Exponentially Damped Sinusoid. In this example, the

synthesized FIDs are given by g. = \al exp(j~) exp[(–a + j2rf)n] + w. with damp-

ing factor Q = 0.1, normalized frequency ~ = 0.52, absolute amplitude [al = 1.0,

phase O= O,andn= O,... ,24. For non-parametric estimators (e.g., the Fourier

Transform), the noise can be observed directly in the spectrum, while for parametric



62 Chapter 3. Matrix Pencil

estimators (e.g., LPSVD and ITMPM), the noise manifests itself as uncertainty in

the estimated parameters, leading to a distribution of observed parameters values.

Ideally the mean of this distribution corresponds to the true value of the parameter,

i.e., the estimation method is unbiased, while the minimum value of its standard devi-

ation is given by the Cram&-Rao Lower Bound (CRLB), also known as the Minimum

Variance Bound[l, 2]. The calculation of these lower bounds is reasonably straight-

forward for signals distorted by uncorrelated Gaussian noise and parallels exactly

the calculation of the covariance matrix for least-squares model-fitting; indeed the

CRLBS are identical to the standard deviations on parameters values returned by

model-fitting (in the absence of systematic error). The details of the calculation can

be found elsewhere[12, 19, 20].

Table 1 summaries the results of a Monte Carlo simulation using 500 noise real-

izations for each value of the SNR, using M = 1. It can be seen that the standard

deviations (square root of the variance) for ITMPM are close to the theoretical lower

bounds, and, unlike LPSVD, the bias on each ITMPM result is always much smaller

than its standard deviation. For all SNRS tested here, ITMPM is more accurate and

precise than LPSVD.



Table 3.1: Bias + Standard Deviation of the Estimated Spectral Parameters

SNR (dB) Method Damping Factor a Frequency f Amplitude [al Phase 0

50 CRLB O+ 2,1OE-4 O+ 3.35 E-5 Oi 1.32 E-3 O+ 1.32 E-3

ITMPM –7.34 E-7 A 2.38 E-4 –1.30 E-6 & 3.63 E-5 1.69 E-5 + 1.41 E-3 2.74 E-5 + 1.37 E-3

LPSVD 5.83 E-4 + 2.69 E-4 –1.21 E-6+ 3.93 E-5 2.55 E-3 + 1.53 E-3 2.50 E-5 A 1.43 E-3

40 CRLB O+ 6.65 E-4 O+ 1.06 E-4 O+ 4.18 E-3 O& 4.18 E-3

ITMPM –9.99 E-6+ 7.37 E-4 6.93 E-6 + 1.13 E-4 –2.71 E-4+ 4.58 E-3 –3.05 E-4+ 4.16 E-3

LPSVD 1.86 E-3 + 8.35 E-4 5.56 E-6 + 1.21 E-4. 7.77 E-3 + 4.84 E-3 –2.68 E-4A 4.38 E-3

30 CRLB O+ 2.1OE-3 O+ 3.35 E-4 O+ 1.32 E-2 O+ 1.32 E-2

ITMPM 1.57 E-4 + 2.21 E-3 8.82 E-6 + 3.50 E-4 9.26 E-4 + 1.40 E-2 –5.81 E-4 + 1.31 E-2

LPSVD 5.98 E-3 + 2.53 E-3 1.02 E-5 + 3.85 E-4 2.55 E-2 + 1.50 E-2 –6.18 E-4 + 1.38 E-2

24 CRLB 0&4.19 E-3 + O& 6.68 E-4 O+ 2.64 E-2 O+ 2.64 E-2

ITMPM 2.44 E-4 t 4.40 E-3 6.46 E-5 & 7.01 E-4 1.99 E-3 + 2.71 E-2 –2.44E-3 & 2.71 E-2

LPSVD 1.17 E-2 & 5.42 E-3 5.70 E-5 & 7.68 E-4 4.89 E-2 + 2.92 E-2 –2.21 E-3 & 2.85 E-2

18 CRLB O+ 8.37 E-3 O& 1.33 E-3 O+ 5.26 E-2 O& 5.26 E-2

ITMPM 2.69 E-3 + 9.74 E-3 –2.54 E-5 + 1.35 E-3 1.66 E-2 + 5.52 E-2 4.88 E-4 & 5.54 E-2

LPSVD 2.52 E-2 + 1.26 E-2 –3.22 E-5 + 1.49 E-3 1.02 E-1 + 5.92 E-2 5.83 E-4 & 5.65 E-2
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There are a couple of reasons why ITMPM can perform better than LPSVD

[18, 19, 41, 42]. Despite their differences, both methods solve the following matrix

prediction equation

The solution obtained by ITMPM is

fo#Y1 = [f-ryL, FO%L.l>“ “ “ , i70%1]

(3.22)

(3.23)

where?Ji = [IA,U+l? ““ “ M+N-L-lIT (~=1,2,“““ , L). Each column of C’lTMPM (say,

the jth column) is a solution to the equation

Note that, as To has a nontrivial null space, the least squares solution to Eq. 3.24

is not unique, Of all the least squares solution, the one with the minimum .@-

--#
clidean norm is unique and is given by YO IJL_j+l. The minimum-norm choice has

been shown to be an

perturbation[43]. On

effective way to overcome the estimate sensitivity to noise

the other hand, the solution provided by LPSVD is simply
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(cf. Eq. 3.3)

CLPSVD = Fo#yL,J~, J&l, 0 ... J2] [3.25)

where Ji is the L x 1 vector with its ith element equal to 1 and all other elements

zero. It is clear from Eq. 3.25 that only the first column of C’LPsvD is the minimum-

norm solution to Eq. 3.24 while the other columns are just trivial solutions. CITMPM,

however, is the unique minimum-norm solution to the full matrix prediction equation

of Eq. 3.22; this results in better immunity to noise perturbation.

In addition, ITMPM distinguishes more reliably between signal and noise eigen-

values (poles). This is because C’lTMPMhas h! eigenvalues at {.zi}l<i<~ and L – M——

extraneous zero eigenvalues, while CLPsvD has ilf eigenvalues at {z; }l<i<~ and L – M——,

extraneous eigenvalues that are nonzero and located inside the unit circle. (Recall

that CLPsvD is in fact the companion matrix of the prediction polynomial in LPSVD,

and solving the roots of a polynomial is equivalent to solving the eigenvalues of its

companion matrix.) Consequently, LPSVD requires a tedious pruning step in dis-

criminating the signal eigenvalues from the extraneous ones introduced by the noise.

This discrimination becomes increasingly difficult as the noise level increases.

Example II: 19F Spectrum of p-fluorophenol. Figure 3.2 (a) shows the the-

oretical 19F NMR spectrum of p-fluorophenol, a heteronuclear system containing 5

spin-1/2 species. The theoretical FIDs used in Example II and Example III are calcu-
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lated by the NMR computer simulation package GAMMA[l]. The equilibrium den-

sity matrix of the underlying spin system is first treated by a (7r/2)V ideal pulse, and

then propagated in time governed by the isotropic chemical shift and scalar coupling

Hamiltonian without rela~ation effects. The FID, taken by a single-quantum quadra-

ture detection operator sampling the xy-magnetization, is apodized by an exponential

decay function to simulate T2 relaxation.’ Fig. 3.2 (b) shows the FT spectrum of a

typical FID used in the Monte Carlo simulation (SNR = 14.5 dB) while (c) is the

corresponding ITMPM spectrum. The improvement in sensitivity is substantial, al-

though the effects of noise can still be seen as small errors in the phases of the lines

as compared to the ideal spectrum, (a).

The results of Monte Carlo simulations using 400 noise realizations for various

SNR with M = 9 are shown in Fig. 3.3. Figs. 3.3 (b) and (c) show the mean relative

errors in the damping factors and amplitudes respectively; both ITMPM and LPSVD

give very reliable estimates of signal frequencies [44]. Signals may not be correctly

detected at low SNRS; for this example, detection is defined as successful if all the

peaks are resolved within + 0.6 ppm (about 1/6 of the average peak spacing) of their

correct chemical shifts. Fig. 3.3 (a) shows the failure rate as a function of SNR. It

is apparent that ITMPM not only provides significantly more accurate estimates of

the spectral parameters (by a factor of 2–4), but also has a lower SNR “breakdown”

threshold (lower by % 1.5 dB, as estimated from the success rate).

In practice, the usefulness of “exotic” spectral estimation methods, whatever their
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(a)

-L A
(b)

dd__.L

, I I I

-lo 0 10

Chemical Shift (ppm)

Figure 3.2: The 19F spectrum of p-fluorophenol calculated assuming weak coupling.
(a) FT spectrum of the noiseless FID; (b) FT spectrum of a FID with SNR = 14.5
dB; (c) ITMPM spectrum of (b).
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Figure 3.3: Monte Carlo simulations (with 400 noise realizations) on the 19F p-
fluorophenol FIDs of Fig. 3.2 as a function of SNR. The curves show the results
for ITMPM (solid line) and LPSVD (dashed line) using FID lengths of N = 128
(0) complex points (sampIing from O to 2.56 T2) and IV = 256 (o) points (sampling
from O to 3.84 Tz); (a) success rate, (b) MRE of damping factors, and (c) MRE of
amplitudes.
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theoretical advantages, is limited if they involve significant computational overheads.

ITMPM, however, is significantly faster than methods such as LPSVD, since no

high degree polynomial rooting is needed. This is particularly true for general NMR

FID lengths of about 1–2 K points, where the number of floating-point operations

(flops) is reduced by roughly an order of magnitude, as measured in their MAT-

LAB implementations. XT’MPM can still not compete, however, with the efficiency

of the Fast Fourier Transform. The FFT requires computational time proportional

to 0(lVlog21V), whereas SVD is an O[(N – L) x L2] process. Should computational

efficiency be of great concern, rapid SVD of a Toeplitz or Hankel matrix can be accom-

plished by using the Lanczos algorithm[45] and/or explicitly exploiting the Toeplitz

or Hankel structure of the data matrix[46]. Moreover, the result of the ITMPM

analysis is a table of spectral parameters which either can be used to construct a

frequency/time domain spectrum or can be used directly without extra tedious man-

ual operation for peak searching, curve fitting, and intensity integration. With the

present processing protocol, results can be obtained in 4.5 minutes of CPU time for

1024 complex data points on a SGI Indigo workstation with 100 MHz R4000 proces-

sor and a spectroscopist’s intervention is needed only for data transfer (compared to

2 seconds and 40 minutes for FT and LPSVD, respectively).

Example 111: III Spectrum of Glutamic Acid in D20. Classical spectral esti-

mation using Fourier tran.sformation of truncated data sets implicitly assumes that

the unobserved data is zero. A blurred spectral estimate is a consequence of such
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an unrealistic assumption. It should be possible to obtain a better estimate by us-

ing a priori knowledge to construct a suitable model for the unobserved data. This

would eliminate the need for window functions, along with the associated trade-offs

of-resolution and sensitivity. Moreover, by incorporating lineshape information, para-

metric methods, such as ITMPM, are able to resolve overlapped signals that cannot

be separated in an FT spectrum.

This is illustrated in Fig. 3.4 using the calculated lH spectrum of glutamic acid in

D20, whose “true” spectrum is shown in (d). The result of Fourier transforming the

FID truncated to 384 complex data points (and zero-filled back to 4096) is shown in

Fig. 3.4 (a). The details of the spectrum are obscured and distorted by sine-wiggles

from nearby stronger signals. Fig. 3.4 (b) shows the result of applying an exponential

apodizing function to the FID prior to Fourier transformation. This effectively atten-

uates the sine-wiggles, at the expense, however, of resolution. In contrast, applying

ITMPM to the truncated FID gives a spectrum, Fig. 3.4 (c), in which the sine-wiggles

are suppressed without degrading resolution. This is particularly significant in multi-

dimensional spectroscopy where the indirectly detected dimensions must often be

severely truncated to keep the experiment time within reasonable bounds. Clearly

ITMPM can effectively reduce the

Figure 3.5 plots the singular

truncation artifacts.

values obtained during the ITMF’M analysis of

Fig. 3.4 (c). It is clear from the gradual decrease of the singular values (solid line)

that the separation of signal singular values from those associated with noise is not
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straightforward and subjective approaches are likely to be unsatisfactory. By contrast,

the minimum of the MDL, criterion (dashed line) is relatively well defined.

3.6

This

Experimental Applications

work has been prompted by our studies of the long-time behavior of free

induction decays in solid-state NMR. Apparently high-resolution spectra (more char-

acteristic of solution rather than solid-state NMR) have been obtained by using a

sufficiently long delay between simple pulse excitation and data acquisition. This

striking phenomenon has been observed in various experiments using static, magic-

angle spinning, and off-magic angle spinning samples, and has attracted a wide variety

of explanations [3, 48, 49, 50, 51, 52, 5, 54, 6]. Extensions of SPEDAS (Single-Pulse

Excitation Delayed Acquisition Spectroscopy) to two-dimensional experiments in-

volving 1H COSY and multi-quantum coherence using polycrystalline fumaric acid

monoethyl ester (a “rigid” solid in which there is no motional averaging) have also

been reported[48, 50].
,.

Investigation of these experiments is hampered by the extremely large phase dis-

tortions and severe sensitivity losses (by factors of 10-2–10–4) that result from the

long delay between excitation and acquisition. The use of signal averaging to improve

the SNR is limited by the long T1 spin-lattice relaxation times of solid-state samples.

Hence, experimental restrictions on the total acquisition time result in low sensitiv-

ity, and potentially poor spectral resolution in multi-dimensional experiments (due
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Figure 3.4: Calculated lH spectra of glutamic acid in D20. (a) FT of the FID trun-
cated to 384 data points and zero-filled to 4096 points (SNR = 54 dB); (b) FT
spectrum of (a) ,apodized by multiplying the truncated FID by an exponential decay;
(c) ITMPM spectrum of (a); (d) FT spectrum of the original FID of 4096 points and
SNR = cm.
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Figure 3.5: The functional value of MDL criterion (dashed line) and the magnitude
of the singular values (solid line) (both are normalized) during the ITMPM analysis
of Fig. 3.4 (c). The optimal matrix rank determined by MDL is M = 57.
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to data truncation in the indirectly detected dimensions).

Clearly a more sophisticated spectral estimation method than the Fourier Trans-

form is required to analyze the results of these experiments. Although the nature

of the signals is still currently under investigation, our experimental experience sug-

gests that modelling as a sum of exponential is a reasonable approximation [56].

Figure 3.6 (a) sho-ws the F’T spectra using 10,240 and 8,192 scans for static polycrys-

talline anthracene (upper row) and malonic acid (lower row) respectively. Despite

the extensive signal averaging, the features of the spectrum are still difficult to dis-

tinguish from the high-level background noise. The corresponding ITMPM spectra

are shown in Fig. 3.6 (b). Increasing the number of scans from 10,240 to 198,856 for

anthracene and from 8,192 to- 117,112 for malonic acid, gives the FT spectra shown

in Fig. 3.6 (c). The difference between these “true” spectra and the ITMPM spectra

derived from much noisier signals is very small. The ability of ITMPM to extract

the signal information from relatively noisy FIDs greatly facilitates the study of the

long time behavior of solid-state NMR signals, particularly as the problems of phase

correction are eliminated cf. Fig, 3.6 (d).

ITMPM should also be important in other experiments where the FID is trun-

cated or whenever the SNR is low, as demonstrated below. Figure 3.7 (a) presents the

FT spectrum of a noisy 43Ca FID from an aqueous solution containing 0.20 M CaC12

(natural abundance) and 0.10 M sodium EDTA, and acquired with 50,000 scans. Its

corresponding ITMPM spectrum is shown in Fig. 3.7 (b). From the chemical com-
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Figure 3.6: Experimental spectra ofstatic polycrystalline anthracene (upper row) and
malonic acid (lower row) measured at room temperature on a Bruker AM-400 spec-
trometer with 231 points and initial delays of 600 ps (anthracene) and 856 ps (malonic
acid). (a) FT spectra of the FIDs obtained by accumulating 10,240 (anthracene) and
8,192 (maIonic acid) scans; (b) ITMPM spectra of (a) with the optimal matrix rank,
Al = 5 (anthracene) and Al = 6 (malonic acid), determined by the MDL criterion;
(c) FT spectra of the FIDs obtained under the same experimental conditions as (a)
but accumulating 198,865 (anthracene) and 117,112 (maIonic acid) scans. (d) phase-
corrected ITMPM spectra, obtained from (b) by setting all the phases to zero.
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position of the solution, it is known that the FID should consist of two exponential

components corresponding to free Ca2+

formed another measurement under the

and Ca-EDTA complex. We have also per-

same experimental conditions except for an

increase of scans from 50,000 to 1,700,000. Its FT spectrum is depicted in Fig. 3.7 (c).

and will be used as the “true” spectrum for comparison. Again, the ITMPM spectrum

serves as a very close approximation to the ‘~true” spectrum.

3.7 Conclusion

An often recurring problem in NMR spectroscopy is how to improve spectral sen-

sitivity and resolution. The Monte-Carlo simulations described above indicate that

this combined detection-estimation scheme, ITMPM, is able to simultaneously achieve

these objectives. The deficiencies of the applications of the FT to imperfect NMR

data can be diminished to a large extent at the expense of reasonable computational

complexity. Compared to LPSVD, it has the advantages of greater computational ef-

ficiency, higher precision and accuracy of the estimated spectral parameters, and less

tendency for spurious estimates at low signal-to-noise ratios. ITMPM is essentially

near-optimal over the range of signal-to-noise ratios investigated; the

timates have biases that are close to zero and standard deviations

parameter es-

close to their

Cram&-Rao Lower Bounds.

For experimental applications, ITMPM considerably facilitates our analysis of

the delayed acquisition data, and increases the potential applicability of SPEDA$
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Figure 3.7: Experimental spectra ofan aqueous solution containing O.20M CaC12
and O.lOMsodium EDTA. obtained at 300Kona Bruker AM-400 spectrometer. (a)
FTspectra of the FID obtained by accumulating 50,000 scans; (b) ITMPM spectra
of(a) with the optimal m.atrix rank, M = 2, determined by the MDL criterion; (c)
FTspectra of the FIDs obtained under the same experimental conditionsas (a)but
accumulating 1,700,000 scans.
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like experiments to solid-state NMR, by providing phase-corrected spectra with much

improved sensitivity and resolution. ITMPM should also be important in other exper-

iments where the FID is truncated or whenever the SNR is low. This is often the case

irr one- and multi-dimensional NMR studies of low gamma nuclei, in vivo samples,

and macromolecules of biological interest. Consequently, ITMPM could become a

valuable quantification tool within NMR and other branches of Fourier spectroscopy.



80

Bibliography

[1] J. C. Linden and A. G. Ferrige, Prog. NMR Spectrosc. 14,27 (1980).

[2] R. de Beer and D. van Ormondt, ii “NMR Basic Principles and Progress”

(P. Diehl, E. Fluck, H. Gunther, R. Kosfeld, and J. Seelig, Eds.), Vol. 26, pp. 201,

Springer-Verlag, Berlin/Heidelberg, 1992.

[3] R. E. Hoffman and G. C. Levy, Prog. NMR Spectrosc. 23,211 (1991).

[4] J. J. Led and H. Gesmar, Chern. Rev. 91,1413 (1991).

[5] R. Roy, B. G. Sumpter, G. A. Pfeffer, S. K. Gray, and D. W. Noid, Physics

Reports 205, 109 (19!31).

[6] H. Gesmar, J. J. Led, and F. Abildgaard, Prog. NMR Spectrosc. 22,255 (1990).

[7] D. S. Stephenson, Pr~g. NMR Spectrosc. 20,515 (1988).

[8] H. Barkhuijsenj R. de Beer, A. C. Drogendijk, D. van Ormondt, and J. W. C. van

der Veen, in “Proceedings International School of Physics ‘Enrico Fermi’ on the



BIBLIOGRAPHY 81

‘Physics of NMR Spectroscopy in Biology and Medicine’ “ (B. Maraviglia, Ed.),

pp. 313, Italian Physical Society, 1988.

[9] M. Mehring, “Principles of High Resolution NMR in Solids,” 2nd cd., Springer-

Verlag, Berlin/New York, 1983.

[10] A. van der Veen, E. F. Deprettere, and A. L. Swindlehurst, Proc. L!3E.E 81,1277

(1993).

[11] The Mathworks, Inc., “MATLAB Reference Guide,” South Natick, Mas-

sachusetts, 1992.

[12] R. Kumaresan and D. W. Tufts, IEEE Trans. Acoust. Speech Signal Process.

ASSP-30, 833 (1982).

[13] H. Barkhuijsen, R. de Beer, W. M. M. J. Bovee, and D. van Ormondt, J. Magn.

Reson. 61, 465 (1985).

[14] S. M. Kay, ‘(Modern Spectral Estimation,” Prentice-Hall, Englewood Cliffs, New

Jersey, 1987.

[15] S. L. Marple, “Digital Spectral Analysis with Applications,” Prentice-Hall, En-

glewood Cliffs, New Jersey, 1987.

[16] S. Y. Kung, K. S. Arun, and D. V. Bhaskar Rae, J. Opt. Sue. Am. 73, 1799

(1983).



82 BIBLIOGRAPHY

[17] H. Barkhuijsen, R. de Beer, and D. van Ormondt, J. Magn. Reson. 7’3, 553

(1987).

[18] Y. Hua and T. K. Sarkar, L?3E.E Trans. Signal Process. 39,892 (1991).

[19] Y. Hua and T. K. Sarkar, IEEE Trans. Acoust. Speech Signal Process. ASSP-38,

814 (1990).

[20] P. Hodgkinson and P. J. Here, Adv. Magn. Opt. Reson. 20 (in press).

[21] R. Roy, A. Paulraj, and T. Kailath, IEEE Trans. AcozLst. Speech Signal Process.

ASSP-34, 1340 (1986).

[22] G. Zhu and A. Bax, J. Magn. Reson. 100,202 (1992).

[23] J. Tang and J. R. Norris, J. Chem. Phgs. 84,5210 (1986).

{24] J. Tang and J. R. Norris, Chem. Phys. Lett. 131,252 (1986)

[25] J. Tang. C. P. Lin, M. K. Bowman, and J. R. Norris, J. Magn. Reson. 62, 167

(1985).

[26] Y. K. Lee, R. L. Void, G. L. Hoatson, Y.-Y. Lin, and A. Pines, J. Magn. Reson,

A 112, 112 (1995).

[271 A. C. Kot, D. W. Tufts, and R. J. Vaccaro, IEEE Trans. Signal Process. 41,

3174 (1993).



BIBLIOGRAPHY 83

[28] G. H. Golub and C. F. Van Loan, “Matrix Computations,” 2nd cd., John Hopkins

University Press, Baltimore, 1989.

[29] C. Eckart and G. Young, Psychometrika 1,211 (1936).

[30] K. Konstantinides and K. Yao, IEEE Trans. Signal Process. 36,757 (1988).

[31] J. M. Chambers, “Computational Methods for Data Analysis,” Wiley, New York,

1977.

[32] J. A. Cadzow, B. Baseghi, and T. Hsu, lEE Proc. pt. F, 130,202 (1983).

[33] M. S. Bartlett, J. Roy. Stat. Sot. Ser. B, 16,296 (1954).

[34] D. N. Lawley, Biometrics 43,128 (1956).

[35] I. Dologlou and G. Carayannis, IEEE Trans. Acoust. Speech Signal Process.

ASSP-39, 1681 (1991).

[36] M. Shinnar and S. M. Eleff, J. Magn. Reson. 76,200 (1988).

[37] M. Wax and T. Kailath, IEEE Trans. Acoust. Speech Signal Process. ASSP-33,

387 (1985).

[38] H. Akaike, IEEE Trans. Automat. Contr. AC-19, 716 (1974).

[39] G. Schwartz, Ann. Stat. 6,461 (1978).

[40] J. Rissanen, Autornatica 14,465 (1978).



84 BIBLIOGRAPHY

[41] Y.-M. Wang, H. Lee, and D. V. Apte, lM. J. Imag. Sys. Tech. 4,201 (1992).

[42] H. Ouibrahim, IEEE Trans. Acoust. Speech Signal Process. ASSP-37, 133

(1989).

[43] B. D. Rae, IEEE Trans. Acoust. Speech Signal Process. ASSP-36, 1026 (1988).

[44] P. Koehl, C. Ling, and J. F. Leftwre, J. Magn. Reson. A 109,32 (1994).

[45] G. L. Millhauser, A. A. Carter, D. J. Schneider, J. H. Freed, and R. E. Oswald,

J. Magn. Reson. 82, 150 (1989).

[46] W. W. F. Pijnappel, A. van den Boogaart, R. de Beer, and D. van Ormondt,

J.

[47] s.

[48] S.

[49] s.

[50] s.

[51] s.

[52] S.

Magn. Reson. 97, 122 (1992).

Ding and C. A. McDowell, J. Magn. Reson. A 111, 212 (1994).

Ding and C. .4. McDowell, J. Magn. Reson. A 115, 141 (1995).

Ding and C. A. McDowell, J. Magn. Reson. A 117, 171 (1995).

Ding and C. A, McDowell, J. Magn. Reson. A 120, 261 (1996).

Ding and C. A. McDowell, Chem. Phys. Lett. 255, 151 (1996).

Ding and C. A. McDowell, Chem. Phys. Lett. 259, 538 (1996).

[53] B.C. Gerstein, J. Z. Hu, J. Zhou, C. Ye, M. Solum, R. Pugmire, and D. M. Grant,

Solid State NMR 6, 63 (1996).



BIBLIOGRAPHY 85

[54] J. Z. Hu, J. Zhou, F. Deng, H. Feng, N. Yang, L. Li, and C. Ye, Solid State NiMR

6, 85 (1996).

[55] B. M. Fung, T. Dollase, M. L. Magnuson, and T.-H. Tong, J. Magn. Reson. A

123, 56 (1996).

[56] M. Engelsberg and I. J. Lowe, Phys. Rev. 1?10,822 (1974).

[57] S. A. Smith, T. O. Levante, B. H. Meier, and R. R. Ernst, J. Magn. Reson. A

106, 75 (1994).



86 BIBLIOGRAPHY



87

Part II

Spin Dynamics in Quantum

Dissipative Systems





89

Chapter 4

Solitonic Spin Dynamics

4.1 Abstract

The existence of the solitonic modes in the NMR transverse relaxation of dipole-

coupled many-spin systems is experimentally confirmed and theoretically modeled by

a spin-boson Hamiltonian to describe the influence of the fluctuating dipolar local-

fields upon the quantum coherence in connection with the macroscopic observable.

Such striking phenomena, totally unexpected within current NMR theoretical frame-

work, originate from the nonlinearity triggered by the joint action of the lattice fluc-

tuations and the reaction field: the spins fluctuate and polarize the lattice which

reacts back on the spins.
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4.2 Introduction

For abundant spins

such as ‘H and 19F, the

n solids, particularly those with high gyromagnetic ratios

homonuclear dipolar coupling fi~ is the dominant internal

interaction. For N equivalent spin dipoles under a large static longitudinal ‘Zeeman

field, the effective Hamiltonian %! in the rotating frame processing with the Larmor

frequency WOcan be approximated by its secular part ?& (in angular-frequency unit)

(4.1)

(4.2)

Y2h 1 – 3 COS2 Oij
Dij = —

2
(4.3)

r;.

where -y is the gyromagnetic ratio, I is the spin angular-momentum operator, r is

the internuclear distance, and 6 is the angle between the internuclear vector and the

Zeeman field [2]. The flip-flop interaction (l+il-j + l_il+j), embedded in the lZilZj

or lVi.IVj term, excites the mutual spin flips, disturbing the phase of an individual

spin without energy loss in the entire system. Such dephasing process, as reflected

in the measured free induction decay, is a subject that has been of great theoretical

and experimental interest since the birth of magnetic resonance. The understanding

is crucial to the interpretation of experimental results and

methodologies in NMR and related techniques, let alone its

in quantum and statistical mechanics. Since the optical

the development of new

fundamental importance

pseudo-dipolar coupling
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also share similar Hamiltonian structure, any resulting comprehension may be easily

generalized to its counterpart in optical spectroscopes.

The many-body character and the absence of a small parameter in the Hamiltonian

preclude any exact

laxation process in

and general analysis covering the whole duration of the phase re-

various free induction decay experiments. Nevertheless, numerous

approaches, mainly based on moment expansions and stochastic local-field models[l],

have been proposed and can indeed quantitatively or qualitatively describe the short-

time dephasing behavior: Gaussian decays in rigid solids subject to a quasi-static

distribution of the local-fields, and exponential decays in liquids and solids with a

strong exchange interaction in which rapid local-field fluctuations are present. Recent

experimental work by Ding and McDowell, however, suggests the possible existence of

anomalous long-time behavior [3], Without resorting ‘to demanding decoupling tech-

niques in the spin and/or spatial spaces, apparently high-resolution solid-state NMR

spectra can be obtained simply by using a sufficiently long delay between simple pulse

excitation and data acquisition to filter out the initial fast-decaying part before per-

forming Fourier transformation. This striking phenomenon has been demonstrated in

various experiments using static, magic-angle spinning, and off magic-angle spinning

samples [4], and has attracted a wide variety of explanations. The original authors

claim that it is an intrinic property of the bulk rigid lattice and can be explained by

a memory effect with no clear physical foundation. Other authors, however, suggest

that it may result from the motional narrowing effects associated with a small frac-
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tion of thermally activated mobile species present in the heterogeneous structures of

the rigid lattice due to lattice defects, surface disorder, or moisture adsorption[5]. It

has also been indicated that there may exist specific crystalline orientations at which

the total dipolar coupling vanishes, or that the homogeneously broadened spectral

peak may consist of a superposition of numerous transitions with different linewidths

[6]. In this chapter, we ask the following questions:

behavior really exist, and,, if there is any, what is its

4.3 Experimental Verification

To reach an experimental confirmation, static

does this anomalous long-time

physical origin?

NMR measurements at liquid-

helium temperature were carried out first. The low temperature ensures that the

samples, static polycrystidline glycine and alanine, are “rigid” solids without sig-

nificant thermal motion. To eliminate the effects of moisture, 4mm quartz tubes

containing the sample were attached to a vacuum line (~ 10–5 mmHg); first dried

at 50° C for 2 days and then sealed. Experiments were performed on a home-built

spectrometer with a home-built transmission-line probe assembly operating at a 1H

frequency of UO/27r = 178.025 MHz. Figures 4.1 and 4.2 show the short-time and

long-time behaviors of the 1H free induction decays.

According to contemporary NMR theory, for typicai lH coupling networks in

solids, the transverse magnetization is completely dephased

ends and therefore results in the broad peak in spectrum

within tens of microsec-

(a). The much sharper
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Figure 4.1: lH NMR spectra of static polycrystalline glycine (MCB Chemicals,
99.5%), measured at 4 K with single 7r/2 pulse excitation and phase cycling. (a)
normal spectrum obtained by accumulating 32 scans; (b) frequency spectra of the
free induction decay acquired with 2000 scans and an extra 100ps acquisition delay;
(c) the background spectrum under the same experimental conditions as (b).
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L, , .. ... .Z

II W-y .J

.1

-40 -20 0 20 40

Frequency(KHz)

Figure 4.2: 1H NMR spectra of static polycrystalline alanine (Sigma Chemical Co.,
99.5%) measured at 4 K with single 7r/2 pulse excitation and phase cycling. (a)
normal spectrum obtained by accumulating 160 scans; (b) frequency spectra of the
free induction decay acquired with 200 scans and an extra 200ps acquisition delay;
(c) the background spectrum under the same experimental conditions as (b).
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peak in spectrum (b) clearly shows that the magnetization in fact persists much

longer than

background

the usually defined phase relaxation time T2.

spectrum (c), the possibilities of experimental

By comparing with the

or instrumental artifacts

may be mostly eliminated.

4.4 Spin-Boson Hamiltonian

The spectra shown in Figs. 4.1 and 4.2 correspond to the Fourier transform of

the macroscopic observable (~~~1 J.i (t)). In the case of equivalent spins, one gets

(~:;’ I.,(t)) ~ N(lZO (t)), where the subscript “.” labels the tagged spin. Rewrite

Eq. (4.1) in the one-spin picture,

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

where WZ,Uy, and tiZ are the dipolar local-fields acting on the tagged spin. Following

the convention of NMR, the terms “spin” and “lattice” (“~”) will be used to represent
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the primary and all the secondary degrees of freedom, respectively. The initial density

operator in the laboratory frame prepared by a 7r/2 pulse along –g axis can be

approximated as

P(O) R sinh(@-+/2) 1+).(+]. ew[-P(w + ~+%LU)] (4.9)

where U = exp(l~/2 ~~=jl Ivj), ~ is the inverse lattice temperature and I+)Z is

defined by lZ l+). = +*1+).. A general scheme to describe the evolution of (lxO(t)) is

to first solve the set of coupled Heisenberg equations associated with the Hamiltonian

and then take ensemble average over the initial density operator p(0). For our dipole-

coupled many-spin systems, it still represents a formidable task. This is the starting

point of various different approaches and approximations.

First, assume that the lattice can be modeled as a collection of generalized har-

monic oscillators. A reservoir consisting of harmonic oscillators is rather general and

often provides a suitable mean-field Langevin description of a realistic environment [7].

For example, even the coupling to a Fermionic bath (as in our case) may be well

described by the Bosonic environment considered here [6]. Second, in many-spin sys-

tems, the autocorrelation time in the longitudinal local-field WZis characterized by

(3 – 4)T2, which is much slower than that in the transverse local-field wt. Therefore,

during this time period, ~JZcan be temporarily assumed to be a constant. Finally,

for mathematical tractability, the fluctuating local-field along the y-axis is ignored.
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Based on these assumptions, Eqs. (4.4) and (4.9) become

(4.10)

(4.11)

where ox = ~j I’j (bj+ bj), and bj and b] are respectively the annihilation and creation

operators for the jth boson of frequency ~j with coupling constant 17j. The parameter

A characterizes the intensity of the spin-lattice coupling and also serves as a perturba-

tion variable in later analysis. We introduce the parameter a to study the dependence

of the long-time dynamics on the initial density operator, especially on the magnitude

of the dipolar order. Equation (4.10) is the famous spin-boson model [5], which is

now adopted to describe in the rotating frame the influence of the dissipative dipolar

local-fields on the dynamics of a tagged spin within a fully Hamiltonian picture. To

test the validity of the above assumptions, we have performed molecular-dynamics

simulations for classical spins governed by secular dipolar Hamiltonian. The results

(Chapter 7) also exhibit similar long-time dynamics, as discussad below.

4.5 Reaction Field

Denote the unperturbed motion of the the transverse local-field with WY)(t),
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This term describes the free fluctuations of the lattice and is usually referred as the di-

rect field. The initial statistical distribution of the oscillators is canonical with respect

to the shifted harmonic potential of Eq. (4. 11), therefore (w~o)(-t)) # O. Following the

same lines as Vitali et al. [10], it is then convenient to adopt the following polaronic

transformation

Xj& = bj+—cv,
Vj

(4.13)

(4.14)

2’

so that ti~o)(t) is now a Gaussian stochastic operator with vanishing mean value. Note

that lZ, Iv, and lZ are invariant under such transformation. By solving the Heisenberg

equation in the new reference frame for Q.(t), one finds

o.(t) = o:) (t) +@@ (t)

where ti~o)(t) and ti~~) (-t) are defined in Eq. (4.12) and

Jo ~

(4.15)

(4.16)

(4.17)

The second term ti~~)(t)in Eq. (4.15) is usually referred as the reaction field since it

takes into account the effect that the spin fluctuates and polarizes the lattice which
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reacts back on the spin. The reaction field ti$~) (t), which depends on the state of the

tagged spin, makes the spin evolution nonlinear and nonstationary.

By assuming ti~~) (t) M (ti~~)(t)), ignoring the quantum fluctuations (i.e., the

imaginary part) of the direct-field correlation function (ti$o)(t)ti~o) (0)), and carrying

out a second-order perturbation in A, one reaches the following integro-differential

equation (Chapter 5)

I~(Iz(t)) = -w, ‘ d7_e-J:’”’7’(T’) [uz + qIZ(T)](Iz(T)) cos{~’ dT’2a[B(7_’) - A]}
o r

t

+%
/

&e- ~; ~T’W (7’) JA(I-)sin{ ~d~’2a[B(#) – A]}: (4.18)
o r

where A, -yI(t), 72(t), A(t), and 1?(t) are defined by

When time t = co, ~1(co) is the spectral component of the transverse local-field

at frequency WZand A(m) has the physical meaning of the equilibrium Boltzman

magnetization under a constant w. field.
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To render it possible to compare the above theoretical prediction with experiments,

the distribution of the bosons must be specified. Assume that the number of oscillators

is infinite with frequencies distributed over a continuum, so that complete information

about the effect of the lattice is encapsulated in the single “spectral density” J(v)

defined as

(4.24)
J

where d is the Dirac delta function. For our spin system, the lattice may be empirically

described by the “constrained Ohmic” spectral density

J(v) = &vexp(–v/vC) ,

f; J(v)dv = A’c

(4.25)

(4.26)

where UCis the cut-off frequency and A2Cis determked by the lattice structure and

dipolar coupling strength.

4.6 Solitonic Modes

The transverse magnetization (lZ (t)) and reaction field (ti!~) (t)) can now be nu-

merically solved from Eqs. (4.18) and (4.17) respectively, as depicted in Figs. 4.3 and

4.4 for various values of WZand A, Further averaging over the Gaussian probability



distribution of w, for various sites in a bulk sample produces spectra in qualitative

agreement with the experiments shown in Figs. 4.land 4.2.

The reaction field, weak in the short-time region, becomes increasingly important

upon the increase of time. Consider the case of small tipping angle (a = –1/2).

In the short-time limit, (I.(t)) = 1/2 and (ti~~) (t)) = O, while in the long-time

limit (lZ~(t)) N O and (ti4R)(t))

z-axis an increasing biased field

= A2c/vc. In other words, the spin feels in the

ti$R)(t) with an asymptotic strength of A2c/vC, in

- ‘0) After an initial transit time, the spinaddition to a Gaussian stochastic field UZ .

precesses around a tilted axis with an z component depending on the spin state

itself. Adopting the language of soliton theory, the spin is temporarily localized in

a state with (lZ (cm)) # O due to the similar mechanism proposed by Davydov for

the localization and transport of chemically produced vibrational energy in protein:

the exciton-phonon coupling leads to vibrations about new equilibrium positions[ll].

The fluctuations of the Gaussian field ti~o) and the longitudinal local-field w= will

eventually provoke the destruction of this localized state with an extended time scale

which is an exponential function of the dipolar coupling strength A, in a way similar

to the thermal instability of the Davydov soliton at physiological temperature[12].

4.7 Conclusion

In summary, the role of the

NMR relaxation theories. The

reaction field is the missing key property of current

lattice fluctuations are not independent of the spin
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Figure 4.3: The evolution of (a) the transverse magnetization (lZ(t)) and (b) the

reaction field (L2$R)(t)), obtained by numerically solving Eqs. (4.18) and (4.17), re-
spectively. The longitudinal local field u. = 0.25 (solid line), 0.5 (dash line), and 1.0
(dash-dot line). Other parameters used are: a = O, (1.(0)) = 0.5, cut-off frequency
vC=0.5, and A=c=l.
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Figure 4.4: The evolution of (a) the transverse magnetization (lZ (t)) and (b) the

reaction field (ti4R)(t)), obtained by numerically solving Eqs. (4.18) and (4.17), re-
spectively. The spin-lattice coupling parameter A = 2 (solid line), 1 (dash line), and
0.5 (dash-dot line). Other parameters used are: UZ = 0.5, a = O, (1.(0)) = 0.5, cut-off
frequency v. = 0.5, and c = 1.
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states, and the crucial problem is precisely how to take this effect into account. In

this regard, our simple perturbation treatment based on the spin-boson Hamiltonian

supplements the prototype approaches with proper inclusion of the reaction field

in addition to the direct field in describing the dynamics of the spins coupled to a

dissipative lattice. It therefore can provide a qualitative explanation on the physi-

cal mechanism of the experimentally confirmed solitonic modes in phase relaxation.

When the condition of weak spin-lattice coupling (i.e., small A) or weal dopolar order

(i.e., small a), tacitly implied by normal NMR experimental conditions, is dismissed,

the interplay among the lattice fluctuations and the reaction field, and hence the

resulting nonlinear polaronic/solitonic dynamics, can be expected to be even more

pronounced.
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Chapter 5

Spin-Boson Hamiltonian

5.1 Abstract

We approach the problem of spin dynamics in

ing from a microscopic and quantum-mechanical

quantum dissipative systems start-

Hamiltonian of a two-level system

coupled to a collection of independent bosonic elementary excitations. Based on the

polaronic transform and a second-order perturbation treatment, an analytical solu-

tion governing the evolution of (lZ (t)) is derived, suggesting that, upon decrease of the

longitudinal local field, (I.(t)) should exhibit a critical transition to an overdamped

self-trapped regime. The dynamics of’this process is expected to be influenced by the

joint action of the bath fluctuations and of the nonlinearity stemming from the reac-

tion field. The model is also extended to two-dimensional spin-boson Hamiltonian.
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5.2 Introduction

The relaxation of spin system is a subject that has been of great theoretical and

experimental interest for a. long time. Such understanding is crucial to the interpreta-

tion of experimental results and development of new methodology in NMR and ESR.

The analysis of spin relaxation is usually based on the following three approaches.

One is the quantum mecblanical density matrix approach pioneered by Bloch, Red-

field, and others [1]. Another scheme is developed by Kubo, Anderson and Weiss

and is based on classical multiplicative stochastic equations of motion for the spin

components [2, 3]. The third method is the semiclassical stochastic Hamiltonian for-

mulation developed by Fclx [4]. A pervasive feature of some of these approaches is

that the description of the dynamics of spin relaxation is based either on untested

approximations or on semii-phenomenological assumptions. For example, in the early

versions of the fully quantum mechanical treatment, it is assumed at the outset that

the density operator can at all times be expressed as the product of a system and a

bath density operator, the bath being canonically distributed at all times. Another

common feature of these models is the ubiquitous appearance of linear relaxation laws

for the average spin components, i.e. of Bloch or Bloch-like equations.

The spin-boson model provides a simple approach to describe the influence of

the dissipative environment on the dynamics of a quantum system within a fully
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Hamiltonian picture [5]

where

J

(5.1)

Wz = E Wxj 9 (5.2)
j

W~j = I’j(bj + bj) , (5.3)

and bj and b; are respectively the annihilation and creation operators for the jth

boson of frequency Vj with coupling constant rj. The parameter A characterizes the

intensity of the spin-lattice coupling and also serves as a perturbation variable in later

analysis. Because of its simplicity, this model Hamiltonian has been studied in many

different areas, to name a few, condensed-matter physics[6], chemical physics[7, 8, 9],

and the foundation of quantum mechanics[lO]. This is a strongly nonisotropic model

with fluctuations only along one axis, while in a typical NMR problem the environ-

ment provides fluctuating fields that are in all directions. Instead of quantitatively

reproducing the NMR spin relaxation process, this work aim at understanding the

nonlinear dynamics stemming from

essential aspects of spin relaxation.

the reaction field within

The discussion is limited

a

to

—

model that has the

the following initial
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density operator (Chapter 4)

(5.4)
J

where Q is a parameter used to study the dependence of spin dynamics on the initial

density operator, especially on the magnitude of the dipolar order.

5.3 Polaronic Transformation

The Heisenberg equation for an arbitrary quantum-mechanical operator 0(-t) is

given by

go(t) = -l[o(t), %] . (5.5)

Therefore, the set of Heisenberg equations derived from the spin-boson Hamiltonian

of Eq. (5.1) reads[ll]

--&) = (J&(t) ,

-&) = –L@.(t) + A&(t)Iz(t) ,

:L(t) = –b.(t)],(t) ,

d2
~~xj (~:)+ $%j (~) = 2AW;L (~) ,

(5.6)

(5.7)

(5.8)

(5.9)
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Here we have used the following relations:

[bj–bj,bj+bj=2,

[~j- ~j,~;bj]=bj + b:.

(5.10)

(5.11)

The fluctuating field along the x axis is proportional to the coordinate WZ(t). If we as-

sume these fluctuations to be fast and their mean value to vanish, we are immediately

led by Eqs. (5.6)-(5.9) to a zeroth-order picture, obtained by setting w.(t) = O. The

resulting spin dynamics is a precession around the z axis with precessional frequency

Wz.

A more refined picture must take the role of the fluctuation into account, especially

in the case when it is not much faster than the spin dynamics. Because of the

initial

Wz(t),

condition of Eq. (5.4), the unperturbed motion of the collective coordinate

which will be denoted with W$o)(t), is such that (w!o)(t)) # O. Then it is

convenient to shift the reference frame so as to make the mean value of the new

unperturbed coordinate, L2Z(t), vanish. This condition is fulfilled by adopting the

polaronic transform[12, 13, 141:

(5.12)

(5.13)

(5.14)

—
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The initial condition of Eq. (5.4) expressed in terms of the new operators is

(5.15)

As a consequence of adopting

perturbed coordinate 01°) (t) is

the new reference framework, the collective and un-

a Gaussian stochastic operator, with vanishing mean

value that is completely defined by the two-time correlation function

(~(o)(~l) . . . i(o)(tzn+l)) = 0, (5.16)

(Z(o)(t~) ‘ ““5(0)(tz~)) = ~~~i~(fi(o) (t~,)5(0) (t~~)) “““(i(o) (t~~~_~);(0) (t~~~)) (5.17)

with order preserved [15].

In the new reference s,ystem, the set of Heisenberg equations of Eqs. (5.6)-(5.9)

becomes

(5.18)

(5.19)

(5.20)

(5.21)
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where

(5.22)

Solving Eq. (5.21) one obtains

(z.(t) = (#)(t) + L& (t) , (5.23)

.e–]vjt+ ~]elvjt) , (5.24)Uy)(tj = ~ rj(~~
~

t
L@ (t) = 2A /z dr{ r; sin[vj(t – 7)]}[1Z(~) + a]. (5.25)

o ~

The first term ti$o)(t) describes the free fluctuations of the lattice in the absence of

the interaction with the spin-1/2 system and is usually referred as the direct jield,

while the second term fi~~)(t) is usually referred as the reaction jield since it takes into

account the effect that the spin fluctuates and polarizes the lattice which reacts back

on the spin. The reaction field til~) (t), which depends on the state of the spin-1/2

system, makes the spin dynamics nonlinear and nonstationary.

Replacing Eq. (5.23) into the set of Heisenberg equations Eqs. (5.18)-(5.21), one
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gets

-&) = uz~y(t) ,

-&(t) = –w,:I.(t) – 2Aa1Z(t) + A[ti$j (t)lZ (t)]s

t

+2>\2lE dr{ r; sin[vj(t – r)]}[(lZ(r) + a)~.(t)]s,
o ~

--&(t) = 2Adv(t) – ~[ti~o)(t) IJt)]s

t

–2;\2 /x dr{ r; sin[vj(t – ~)]}[(lZ(~) + ~)~y(t)]s,
o ~

where

[d]s = ~(ab + ba) .

(5.26)

(5.27)

(5.28)

(5.29)

for two arbitrary operators a and b. Equations (5.26)-(5.28) are formally exact. When

A = O the system is characterized by harmonic oscillations with frequency w=. They

then describe how this ideal behavior is perturbed by the interaction between the

spin of interest and its bath of oscillators.

5.4 Second-Order Perturbation

To gain a deeper understanding and make the physics more transparent, it is

convenient to approximate Eqs. (5.26)-(5.28) in some relevant limit conditions. In

the following, we carry out a perturbation expansion at second order in the parameter
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A All the results of this section are valid without making any particular assumption

on the spectral density and so they

couplings 17j. To be consistent with

will be expressed in general in terms of

the second-order perturbation treatment,

the

the

two-time operators [lZ(~)lZ(t)]s and [lX(~)lY(t)]s, in the last term on the right hand

side (rhs) of the second and third equations, must be evaluated at the zeroth order.

From Eqs. (5.26)–(5.28), one gets the following zeroth-order approximations

:L4) = ~zL/(o , (5.30)

;Iy(t) = –bJzIz(t) , (5.31)

-&(t) = 0. (5.32)

Solving the set of differential equations, one obtains the zeroth-order solutions

I.(t) = 1.(0) cos w.t + lY(0) sinuzt, (5.33)

lV(t) = .IV(0)cos wZt – 1.(0) sin w.t, (5.34)

I.(t) = 1.(0). (5.35)

Therefore, the two-time operators, when evaluated at the zeroth order, become

[Iz(T)Iz(t)]s= 0, (5.36)

[~z(T)~v(~)]s = ~ sin[wz(~ - ~)]. (5.37)
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Here we have used the following properties

Still focusing on Eqs. (5.26)–(5.28), we note that lZ@), appearing in the third term

on the right-hand side (rhs) of the second equation, and Iy (t), in the second term on

the rhs of the third equation, should be evaluated at the first order in A. The first

order approximation to Eqs. (5.26)–(5 .28) reads

Solving the set of differential equations, one obtains the first-order solutions

!
t

+A dT cos[wz(t – T)][@’qT)Iz(T)]s,
0

pt

I.(t) = 1.(0) – A j d@y(T)q(T)]s’.
o

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)
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Insert the zeroth-order and first-order solutions into Eqs. (5.26)-(5.28) and then

take ensemble average:

(5.46)

JO

– T)](Iz(t)) , (5.47)

0)0:) (–T)) (Iz (t – T)) cos(uz~)

t

lx–2A2 dr r; Sin[~j(t – r)]: sin[w,(r – t)]
o ~

t

/z
–2A2a dr r; SiIl[Vj(t – T)] (Iv(t)) . (5.48)

o j

Here we have invoked the key assumption that tij~) (t) N (tiLR)(t)). Its physical

reasons will be discussed below.

5.5 Mean-Field Approximation

Form a general point of view, the motion of the two-level system can be seen as

a superposition of three processes with distinct time scales. First, there is a slow

and systematic process. As demonstrated in Chapter 4, in the weak coupling limit

(i.e., small A or large WZ), this is a damped oscillatory motion with frequency = w=.

In the strong-coupling limit, this motion becomes much slower. Thus we can say

that the time scale of the systematic motion of the spin is comparable to w~l or else
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larger. The second process characterizing the dynamics of the spin system is due to

the interaction with the bath of oscillators. This interaction, in addition to heavily

affecting the free oscillations with frequency U., also makes the system fluctuate with

approximately the same time scale as that of the bath. The third and fastest process

concerns the merely quantum-mechanical fluctuations of the system.

The bath coordinate tiZ certainly is affected by the first process, since this is much

slower than its own dynamics. In principle, the coordinate Q. can also be influenced by

the second process, with precisely its own time scale. As to the quantum fluctuation,

on the contrary, it must be imagined as being an infinitely fast process stemming from

the uncertainty principle itself of quantum mechanics, and the dynamics of u. can be

safely imagined as being independent of them. This would lead us to the following

sound assumption:

.
L&(t) = ((.2.(t))s (5.49)

where we adopt the following definition:

(tiZ(t))S s Trs[tiZ(t)ps(0)] (5.50)

and ps(0) = I+)z(+[z is the initial density operator of the spin-1/2 dipole. This
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means that the following assumption should be adopted:

(5.51)

Equation (5.51) is supposed to be the best possible approximation because it only sets

equal to zero the time scale of the quantum fluctuations. Unfortunately, this scheme

involves the moments of lZ (t) at all orders. To get a closed equation for (lZ (t)) alone,

we must have recourse to the less accurate approximation

(5.52)

which is sort of mean-field approximation. This is equivalent to saying that the

dynamics of the coordinate U.(t) is affected only by the systematic part of the spin

motion, but not by the thermal and quantum fluctuations around it. This is not

a completely correct physical assumption, since the thermal fluctuations of the spin

system have the same time scale as that of the bath, which therefore should be affected

by them. However, we believe that keeping the mean value of the reaction field is

certainly a beeter approximation than neglecting it completely.

The time evolution of IV(t – ~) and 1. (t – ~) from t – ~ up to t, within their

respective time-convoluted expressions, must be evaluated at the zeroth order in A to
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have a consistent second-order perturbation treatment in A, This means

By adopting the

:(Ix(t))

-&v(t))

~(Iz(t))

above approximations, one finally reaches

W(W)) ,

–(JZ(IZ(t)) – 2Aa(1z(t)) – yl (t) (Iv(t))

–’yz(t)(~z(t))+ za~(t) (~z(f)),

2Aa(Iy(t)) – y~(t) (Iz(t))

where -yI(t),-y2(-t),A(t), and El(t) are defined as

+ ~A(t) – 2d3(t) (Iv(t)).

72(t)

A(t)

B(t)

J J

(5.53)

(5.54)

(5.55)

(5.56)

(5.57)

(5.58)

(5.59)

The final step is to describe the evolution of (Iz(t))by solving the set of differential
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equations, Eqs. (5.55)–(5.57). Define

I+(t) = Iv(t)+ l~z(t) . (5.62)

From the second and third equations of Eqs. (5.55)–(5.57), one obtains

$(~+(~))+{m(t) + 12c@(~) - A]}(~+(0) = -[w + m(f)] (L(~)) + +@). (5.63)

The homogeneous solution of Eq. (5.63) is

(5.64)(I+(t)) = (I+(0) )e-J:d7{71(r)+’a[B(T) -2A]},

while its particular solution. reads

(~+(t)) = ~’ d~{-[~.z + 7z(~)](~Z(~)) + lA(~)}e-f~~~’l~’ t~’J+’~l~(~’J-’All- (565)
o

Since

(Iv(t)) = !q(l’+(t))]

J
t

/
t——— &e- J: d7’’7l(T’)

[%+ 72(7) ](L(7)) Cos{ dT’24B(T’) - A]}
o T

I

t
+; &e- J: dT’’n(T’)

I
A(T) sin{ ‘ oh-’a[l?(r’) - 2A]} (5.66)

o T
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and

$(w))=w(~,(~)) , (5.67)

the evolution of (lX(t)) is finally governed

&(t))

by

pt

[

t
J —(IJZ d,re– f; ~~’~1(T’)

[L+ + 72(T)] (~z(7)) COS{/ dT’2a[B(T’) - A]}
JO

It
+-jwz

/
&e- J;dT’71(T’)

I
A(T) sin{ t d#2a[B(#) – A]},

o ‘i-
(5.68)

This is the central result of this chapter. For the reader’s

of 71(t), 72(t),A (-t), and B(t) are listed below again

convenience, the definitions

m(t)

72 (~)

A(t)

B(t)

/

t

A2 a!T(L3y(0)i)y (–7)} COS(C+’T),
0

JO

t

/EA2 (I!T r; Sin(VjT)
0.

t
= lx2~2 dr r; sin[vj(t – ~)].

0.
J J
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5.6 Trapped States

When a = O (i.e., ignore the dipolar order), the initial density operator becomes

(5.69)
“.

J

and Eq. (5.68) can be simplified to

I
t

f-(Iz(t))=-w= dre- f: ‘T’7’(’’)[LJ.+ T2(7-)](IZ(T)).
0

For time t very large, the above equation can be further simplified to

I
t

$(Ix(t))=---U.(LUZ+ -y2) d~e-(’-”)” (I.(T)),
o

where the constants

(5.70)

(5.71)

(5.72)

(5.73)

Solving with Laplace transform, one can show that, if 2~~ > YI, (~~(t))

will be an exponentially damped sinusoid function described by

q(w)+71:(W}+W(% +’Y2)(L(~))= 0. (5.74)
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If we assume the resulting equation to be valid also in the case of small w., then after

reaching the critical condition

2/bJz(QJz + ’72)=71 , (5.75)

the decay of (I.(t)) would change from a damped oscillation to a mere exponential

behavior (Chapter 4). Furthermore, the lifetime of the exponential decay would

become larger and larger. This is analogous to the inertialess motion of an oscillator

moving very slowly from its initial nonequilibrium position. Thus for UZ tending to be

zero, the state with positive polarization in the x direction would be a virtually stable

state (trapped state). Therefore, keeping w= small or A large allows us to discover a

trapping mechanism distinct from that of the standard spin relaxation process.

The above simple analysis is confirmed by numerically evaluating the transverse

magnetization (lZ (t)) and reaction field (tii~) (t)) according to Eqs. (5.68) and (5.25),

respectively. Here the spectral density is assumed to have the following functional

form

(5.76)

where J is the Dirac delta function and UCis the cut-off frequency. The results are

depicted respectively in Figs. 4.3 (Chapter 4), 4.4 (Chapter 4), and 5 .lfor various

values of UZ, A, and a.
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Figure 5.1: The evolution of (a) the transverse magnetization (I.(t)) and (b) the

reaction field (ti~~)(t)), obtained by numerically solving Eqs. (5.68) and (5.25), re-
spectively. The dipolar-order parameter a = O (solid line), –0.5 (dash line), and – 1
(dash-dot line). Other parameters used are: Uz = I,A = 1, (1.(0)) = 0.5, cut-off
frequency VC= 0.5, and c = 1.



Consider the following two-dimensional spin-boson Hamiltonian

where

WY = E%i>
j

LJyj s ryj (byj + b~j) .

The corresponding set of Heisenberg equations reads

(5.78)

(5.79)

(5.80)

(5.81)
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5.7 Two-Dimensional Spin-Boson Hamiltonian
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After a 7r/2 pulse along -g axis, the initial density operator can be written as

where a is a parameter used to study the dependence of spin dynamics on the initial

density operator, especially on the magnitude of the dipolar order.

Define the following polaronic transform:

~.rzj
~Zj E bZj + —~ , (5.88)

~~j

Gzj ~ rzj (~mj+ ‘~j) > (5.89)

(.3Z = x G-fj . (5.90)

~

The initial condition of Eq. (5.87) expressed in terms of the new operators is

In the new

P(o) ~ I+)z(+Iz ew[-il~ ‘xjGLjixj + ~ ‘yjbLjbYj)l . ~ (5.91)

~ ~

reference system, the set of Heisenberg equations of Eqs. (5.82)–(5 .85)



128 Chapter 5. Spin-Boson Hamiltonian

becomes

-j-w=~zL4(~l –MJJv(wzw> (5.92)

:Ij(t) = –LJJzIz(t) – 2AQ!Iz(t) + Aztiz(t)lz(t) , (5.93)

where

Solving Eqs. (5.95) ancl (5.96) one obtains

(5.97)

(2Z(t)

Wp (t)

L& (t)

L&(t)

(0)(t)
‘Y

tip (t) .—

do)(t) + L3y)(t),x (5.98)

> (5.99)

(5.101)

> (5.102)

(5.103)
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The terms ti$o)(t) and 0$)(-t) describe the free fluctuations of the lattice in the absence

of the interaction with the spin-1/2 system (the direct fields), while the terms ti~~) (t)

and ti$) (f) are the reaction fields. Insert these solutions into the set of Heisenberg

equations in the new reference frame, one finally reaches:

(5.104)

jw) = wy(~) – AV[J:WM)]S

t
–2A2 IX dr{ r;j sin[vvj (t – T)]} [IV(~)~z(t)]s,Y

o 3

&Y(t) = –L&(t) – 2AaIZ(t) + Ax[ti$) (t) IZ(t)]S

t

+2A: /x dr{ r~j sin[vZj(t – ~)]}[(~x(~) + ~)~.(t)]s, (5.105)
o ~

-&) = 2Acdv(t) – ~.[ti~)(t)~y(t)]s

J

(5.106)

where

(5.107)[ab]s= j(ab+ba)

for two arbitrary operators a and b. Equations (5. 104)–(5. 106) are formally exact,

and are the starting point for perturbation treatment.
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From Eqs. (5.104)-(5.106),

Solving the set of differential

LJ,t)

Iy(t)

Iz(t)

one gets the following zeroth-order approximations

:IZ(t)

:I,(t)

-&t)

equations

= WZIV(t) ,

= –WZIZ(t) ,

= o.

one obtains the

(5.108)

(5.109)

(5.110)

zeroth-order solutions

1.(0) cos wZt + IV(0) sin wZt,

IV(0) coswzt – 12(0) sinwZt,

IZ(0) .

(5.111)

(5.112)

(5.113)

Therefore, the two-time operators, when evaluated at the zeroth order, become

[Iz(7-)Iz(t)]~ = 0, (5.114)

[~Z(~)~y(t)]S = ~ sin[wz(~ - t)]. (5.115)

[Iy(T)Iz(t)]s= 0, (5.116)

[~v(~)~Z(t)]S = -~ sin[w.(~ - f)]. (5.117)
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The first order approximation to Eqs. (5.104)-(5.106) reads

-&.(t)= LJ&/(t)– A@’qt)Iz(t)]s,

-&(t) = –L&(t) + Az[tiy (t)lz(t)]s ,

-&(t) = –,A.[L3y(t) IJt)]s + Av[qy (t)lz(t)]s .

Solving the set of differential equations, one obtains the first-order solutions

(5.118)

(5.119)

(5.120)

I.(t) =

I,(t) =

I,(t) =

I
t

IZ(0) Cos(ozt) + IY(0) sin(wzt) + Az dT sin[oz(t – ~)][ti~) (T).12(7)]s
o

/

t

–Av (5.121)dr COSIWZ(t– 7)] [~~) (~)~. (~)]S
o

/

t
IV(0) cos(uzt) – IZ(0) sin(wZt) + & dr sin[tiZ(t – 7)][U$) (~)lZ(~)]S

o

I

t
+A. dr COSIUz(t– T)][L$) (T)~z (T)]s , (5.122)

o

[

t

dT[ti:) (T)~V(T)]S + ‘Y
/

t d@:)(T)~z(T)]S .1.(0) – A. (5.123)
o 0

Insert thezeroth-order and first-order solutions into Eqs. (5.104) –(5.106) and then

take ensemble average by using the key assumptions that tii~)(t) = (tii~)(t)) and

ti~) (t) N (fir)(t)). The time evolution of Jm(t – ~), lV(t – ~) and lZ(t – T) from t – T

up to t, within their respective time-convoluted expressions, must be evaluated at

the zeroth order in A to have a consistent second-order perturbation treatment. This
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means

(IZ(t - ~)) ~ (lZ(t)) cos(w.~) – (Iv(t)) sin(ti.~),

(Iv(t - ~)) % (Iv(t)) cos(wz~) + (Is(t)) sin(wz7_) ,

(Iz(t - T:)) % (l.(t)).

(5.124)

(5.125)

(5.126)

By adopting the above approximations, one finally reaches

:(M)}= %(~,(~)) - ‘h,(m)+ %,u,(q) ,

:(I.(t)) ==–w. (Iz(t))– 2A4. (~))– ~lz(t) (~u(t))

–’y2z(t) (L(t))+ 2@x(q(~z(~)) ,

-@t)) = 2Aa&/(t)) – ~ux(t)(~z(t)) + ;A(t)

–2aBx(t) (Iv(t)) – -Yly(~z(q)“

(5.127)

(5.128)

(5.129)
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where ?b (~), ?2~(~), ‘YIv(~), 72v(~), A(t), Bz (t), and BU(t) are defined as

(5.130)

(5.131)

(5.132)

(5.133)

(5.134)

(5.135)

(5.136)

This is the central result of this section.

By assuming the functional forms of the spectral density

one can then numerically solve the coupled differential equations of Eqs. (5. 127)–



(5.139)
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(5.129) with the following initial condition

(1,,(0)) =;, (Iv(o)) = (1.(0))= 0.

The results are similar to those depicted in Figs. 4.3 (Chapter 4), 4.4 (Chapter 4),

and 5.1 for various values of WZ,A, and a.

5.8 Conclusion

In this chapter, we focus our attention on the interesting spin dynamics described

by the spin-boson Hamiltonian. We find an analytical result based on the polaronic

transform and a second-order perturbation treatment. The adoption of the polaronic

transform results in a component of the “magnetic field” with an x component de-

pending on the state of the spin. In the weak coupling regime (i.e., large WZor small

A), (lZ (t)) exhibits damped oscillations around the standard equilibrium (~r(t)) = O.

Upon decrease of w, or increases of A and a (dipolar order), a transition to the

overdamped’ motion takes place. It is concluded that a reliable analysis of a general

fluctuation-dissipation process requires a proper inclusion of the reaction field, in ad-

dition to the direct field. The other striking consequences of the reaction field will be

discussed in the next chapter under strong semiclassical assumptions.
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Chapter 6

Hamiltonian Renormalization

6.1 Abstract

The role of the reaction

system) is the missing key

chapter, we illustrate how

field (the bath motion induced by the coupling with the

property of current NMR relaxation theories. In this

to carry out a semiclassical analysis of the spin-boson

Hamiltonian without losing the influence of the

approximation allows us to simplify the analysis by

reaction field. The semiclassical

replacing the quantum-mechanical

dissipation process with the standard classical fluctuation-dissipation process. With

such approximation, the spin dynamics can be described in terms of a set of nonlinear

stochastic differential equations. The resulting unusuaI spin relaxation process can

then be satisfactorily accounted by a reaction-field induced renormalization of the

Hamiltonian of interest.
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6.2 Introduction

The stochastic Liouville equation (SLE) developed by Kubo [1], thanks to its ele-

gance and simplicity, becc~mes very popular and is currently applied to many branches

of spectroscopy, especially in the field of magnetic resonance. In the past decade, there

have been some proposals to amend this theory by removing its main fault: the mag-

netization does not relax towards its equilibrium value corresponding to the given

external Zeeman field but towards the zero value, due to the fact that the influence

of the reaction field is disregarded.

resistance is assumed to accompany

Kubo and Hashitsume show that if a frictional

the random field causing Brownian motion, the

stochastic Liouville equation leads to a Fokker-Planck equation that guarantees ap-

proach to equilibrium [2]. A completely different attitude is adopted by Seshadri

and Lindenberg [3]. These kuthors ground their analysis on a rigorous microscopic

description, which leads them to the important conclusion that the phenomenolog-

ical structure of the Kubo theory is always accompanied by a nonlinear dissipation

term. This is a result of remarkable interest since this nonlinear dissipation also af-

fects the spin dynamical behavior, thereby leading to effects which are in principle

experimentally observable. A more phenomenological approach is followed by Still-

man and Freed [4]. These authors study the rot ational dynamics of a molecule within

the theoretical framework of the SLE. They make the assumption that the rotor

reaches a canonical equilibrium distribution, and use the detailed balance method to

supplement the SLE with a conventional reaction field.
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In all these works, the system of interest reaches a canonical equilibrium distri-

bution either as a consequence of a rigorous microscopic description or of explicit

constraints stemming from statistical mechanics. In this chapter, we study the effects

of the reaction field without imposing any constraint on the equilibrium distribution

of the spin system, but only the canonical equilibrium condition for the initial state of

the bath. We find out that the bare Hamiltonian must be replaced by a renormalized

one, which results in an unusual precessional motion. In additional to the constant

longitudinal local field along the z-axis, a component orthogonal to it, which depends

on the mean value of the x component of the dipole, appears.

6.3 Semiclassical Approximation

The Kubo theory [1] has essentially a phenomenological foundation. This is made

especially clear by the so-called Kubo stochastic oscillator. This is a stochastic model,

written as

+p(t)=i[u(t) + u.]p(t). (6.1)

This means that, due to the influence of the bath, the dipole p(t) is driven by a

stochastic process as well as by the time-independent longitudiiial field WO. Within

the Kubo picture, the random frequency w(t) is assumed to be a colored Gaussian



140 Chapter 6. Hamiltonian Renormalization

noise, whose dynamics is described by

-&) =J-)’u(t) + f(t) , (6.2)

where j(t) is a white Gaussian noise, with vanishing mean value, defined by

(f(o)f(~))= %NJJ2}.,W. (6.3)

The imaginary frequency mimicks a precession process that actually takes place in a

three-dimensional space.

Our theoretical investigation restson the following microscopic Hamiltonian:

%! = –wzIz – wzIz + %B , (6.4)

where tiZ is a constant longitudinal field and WZis a fluctuating transverse field. This

means that we restrict ourselves to study a strongly nonisotropic model

interaction along the x direction prevails over that along the y direction.

in which the

The variable

w. represents the therma!l bath degrees of freedom interacting with

and ‘?-lBdrives the free motion of WX.We are interested in the time

magnetic moment vector:

p = [z(~z)s,z(~y)s,z(~z)s] ,

the spin system

evolution of the

(6.5)



6.3 Semiclassical Approximation 141

which univocally describes the spin-1/2 density matrix (os means the average over

the spin degrees of freedom). To write the equation of motion of ~, we proceed as

follows. First, from the Hamiltonian of Eq. (6.4), we derive the set of Langevinenberg

equations providing the time evolution of lZ (t), 19(t), lZ(t), and WZ(t). These equations

also involve terms such as WZ(t)ly (t) and WZ(t)lZ (t), the mean values of which in

principle can not be factorized into a system and a bath part. By application of the

semiclassical approximation, according to which WZis regarded as being a fluctuating

c number, it is natural to make this factorization assumption. We thus obtain

-$/40= wz/@~) , (6.6)

-&(f) = –Wzpz (t) + W*jLz(t) , (6.7)

$& (~) = –W(f)Pg(O , (6.8)

$W. (t) = –rwz(t) – rpz(t) – ~(t), (6.9)

where the friction I’ and the white Gaussian noise F’(t), with vanishing mean value,

are related to each other by the standard fluctuation-dissipatlm relation

(IF) = 2r(w:)qtl - t,), (6.10)

with

{W:) = 21c~T . (6.11)
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The semiclassical approximation allows us to simplify the problem by replacing the

quantum-mechanical dissipation process with the standard classical fluctuation-dissipation

process of Eq. (6.10). Equation (6.9) means that the bath variable w. is thought

of as the coordinate of an overdamped oscillator, driven by the white and Gaus-

sian stochastic force F(t). This corresponds to the semiclassical approximation of

a quantum-mechanical Harniltonian of a spin-1/2 system interacting with a dissipa-

tive oscillator. The quantum mechanical oscillator is now replaced by a classical and

stochastic oscillator in the overdamped regime. With a few mild assumptions, this in

turn is equivalent to a spin coupled to a linear oscillator interacting with an infinite

number of degrees of freedom, which may be taken to simulate a canonical thermal

bath under a suitable hypothesis. Consequently, the quantum-mechanical variable

WEhas dissiptive properties due to the interaction with a virtually infinite number of

degrees of freedom.

The new and relevant aspect is the presence of the reaction field (the term I’~Z)

in Eq. 6.9), which has precisely the same structure as that of a rigorous Hamiltonian

description (Chapter 5). If one disregards this term, the dynamics implied by the set

of Heisenberg equations, Eqs. (6.6)–(6.9), is fairly well understood. In the Markovian

case (fast relaxation of the coupled oscillator, i.e., large r), the system is qualitatively

well described by the Bloch equation [5]. The use of the SLE would allow us to extend

the investigation to the case of non-Markovian process.
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6.4 Fokker-Planck Equation

The Fokker-Planck equation for the probability distribution n(pZ, py, pZ, o.; t) cor-

responding to the set of Langevin equations, Eqs. (6.6)–(6.9), reads

where

(6.13)

(6.14)

(6.15)
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by the standard fluctuation-dissipation relation, and via the spin-bath interaction,

transmits its own canonical properties to the system. As a result

system is driven towards the following equilibrium distribution:

of this, the whole

(6.16)

It is straightforward to verify that this is the stationary solution to Eq. (6.12). Such

a solution natually leads one to describe the thermal bath in terms of a new variable,

&z ==Wx+px, (6.17)

so that the total equilibrium distribution of Eq. (6.16) appears to be factorized into

a system and a bath part, with no coupling term:

Teq(p$,p,,pz,tix) cx exp[-&(wZpZ - ~ + ~)] . (6.18)

Integrating over & in Eq. (6.18), one can show that the spin part happens to be

canonical with respect to the effective Hamiltonian

%!. = ;[WZILZ– $1 ~ (6.19)

Put in another way, the canonicity of the bath, represented by the standard fluctuation-
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dissipation process driving the overdamped oscillator in contact with the spin variable,

is transmitted to the system of interest.

The renormalized Hamiltonian of Eq. (6.19) also means that the traditional pre-

diction of usual statistical mechanics

must be replaced by the following more reliable prediction:

(6.20)

(6.21)

In the case of Wz > 1/2, the two equilibrium distribution, Eqs. (6.20) and (6.21),

almost coincide. In the case of OJZ<< 1/2, on the contrary, one has a quite significant

discrepancy, due to the term that is quadratic in p. that ultimately comes from our

proper treatment of the reaction field. Such renormalized Hamiltonian leads to a

dynamics under the action of a nonlinear potential which at a critical value of the

longitudinal local field UZ becomes bistable.

The above picture can also be obtained by briefly analyzing the dynamics de-

scribed by the set of Langevin equations. By applying the transformation of Eq. (6. 17),
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Eqs. (6.6)–(6.9) are replaced by

(6.22)

(6.23)

(6.24)

(6.25)

In this new reference frame, the reaction field is given by the term UzpV(t). Thus,

when the system is close to equilibrium (i.e.,

reaction field turns out to be weak. From the

Pv(t) = O), this new expression of the

first equation of this set, we see indeed

that at equilibrium py (t) must vanish, thereby making the reaction field equal to zero.

In the adiabatic limit, one can regard the variable tiz as being so fast fluctuating as

to make it possible to replace it with its vanishing mean value. In this way, one gets

the systematic motion of the spin system, which is described by the renormalized

Hamiltonian of Eq. (6.19) and whose equation of motion are

,

;+(~)= ~zPy(~) ,

-&(t) = +&p.(t) – pz(t)pz (t) ,

-&z(t)= N.(qpg(q .

(6.26)

(6.27)

(6.28)

In the case of u. << 1/2, this set of equations results in a bistable precessional motion,
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This is so because a systematic x component of the reaction field appears. When this

x component is large enough with respect

prevented from executing a full precession

to the longitudinal field Wz, the dipole is

around the z axis. Therefore, this simple

analysis shows the transition from the untrapped state (one precessional cone around

the z axis) to the trapped state (two distinct precessional cones).

6.5 Numerical Simulation

The numerical simulation of Eqs. (6.6)-(6.9) corresponds to a treatment of the

semiclassical dynamics with no approximations, thereby fully including the reaction

field. We assume that the initial condition is given by P.(O) = 1, pV(0) = O,P.(O) = O.

In Fig. 6.1, we plot three typical trajectories.

The result looks quite different than expected on the basis of standard linear

theories. In the initial part of the motion, p, executes fast oscillations of small

amplitude around a nonvanishing mean value. Then it jumps into the symmetric

state with just the opposite mean value and fluctuates for a while around the new

equilibrium position. This behavior is closely reminiscent of a Kramers-like process:

the coordinate of a particle moving in a double-well potential executes stochastic

oscillations around the bottom of the potential well and then, from time to time,

makes random jumps into the other well.

The transition from a trapped precessional state to an untrapped one implies the

existence of an activation process, i.e., a very precise energy level has to be reached. It
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Figure 6.1: Typical trajectory of p.(t) by numerically solving the set of Langevin
equations, Eqs. (6.6)–(6.9). The values
o.l, r = 10.

of the parameters are: WZ= WE= 1, kBT =
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seems to suggest that the spin-relaxation process takes place via an energy activated

process and supports our theoretical interpretation based on the renormalization of

the Hamiltonian of interest. We are taught, by the theory of thermally activated pro-

cesses, that if the relaxation process takes place through. an escape over a potential

barrier, then the relaxation process consists of two subsequent steps. At the begin-

ning, over a very short time scale, a sort of quasistationary state is reached within

the potential minima, corresponding to the attainment of a nonvanishing mean value

of px. This fact by itself is quite unusual in the field of spin relaxation. Then the

activation process sets in over a much more extended time scale and the final and

true equilibrium state is reached. The numerical trajectory also suggests that the

dynamics can not be simply described be a standard Kramer-like process. From

Fig. 6.1, it is clear that the motion soon evolves into something different from the

Kramer process, with p. executing large amplitude oscillations around the zero mean

value. These large amplitude oscillations are quite persistent and, once brought into

existence, they continue for virtually unlimited periods of time.

As a comparison, Fig. 6.2 shows some unusual trajectories of an arbitrarily tagged

classical spin embedded in a simple cubic lattice containing 125 equivalent classical

spins with periodic boundary condition (Chapter 7). All the spins are first treated

by an ideal 90° pulse along –g axis and then evolves under the truncated dipolar

Hamiltonian in the rotating frame processing with the Larmor frequency. To mimick

the spin-boson Hamiltonian and to make the self-trapping phenomena more obvious,
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t=l-125 t=l 26-250
,,.,,.

t=251-375 t=376-500

Figure 6.2: Trajectories of an arbitrarily tagged classical spin in a simple cubic lattice
containing 125 equivalent classical spins with periodic boundary condition. To mimick
the spin-boson Hamiltonian and to make the self-trapping phenomena more obvious,
the longitudinal local field acting on the tagged spin is fixed. The dipolar coupling
in the y direction between the tagged spin and its neighbors is ignored, while in the
x direction is increased by 3 times. Time is in arbitrary unit.
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the longitudinal local field acting on the tagged spin is fixed. The dipolar coupling in

the g direction between the tagged spin and its neighbors is ignored, while in the x

direction is increased by 3 times. It shows that, as an effect of bath fluctuations, the

dipole indeed jumps from one to the other metastable state in a way similar to the

dynamics predicted by the semicalssical approximation of spin-boson Hamiltonian.

6.6 Deterministic Chaos

Before ending this chapter, it is worthwhile to briefly mention that there are other

striking manifestations of semiclassical nonlinearity associated with the spin-boson

Hamiltonian and the classical spin dipoles. Besides the spin self-trapping demon-

strated here, there are quantum irreversibility and the fast growth of quantum me-

chanical uncertainty [6, 7, 8, 9]. Both are provoked by semiclassical chaos, which

in turn is triggered by

on initial conditions is

the reaction field. The phenomenon of sensitive dependence

a quality that all chaotic systems definitely have. This is il-

lustrated in Figs. 6.3, 6.4, and 6.5 for typical trajectories of pZ(t) and pZ(t) of an

arbitrarily tagged classical spin in a simple cubic lattice containing 125 equivalent

classical spins with periodic boundary condition. All the spins are first treated by an

ideal pulse along —y axis and then evolves under the truncated dipolar Hamiltonian

in the rotating frame processing with the Larmor frequency. The trajectory is numeri-

cally solved by explicit Runge-Kutta (4,5) algorithm of Dormand-Prince [4]. All these

trajectories show signs of chaos: sensitivity nonlinearly amplifies even the smallest
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difference in the initial conditions. Figure 6.3 even shows that the finite-precision

numerical calculation, paradigm of computer reliability

by a simple feedback mechanics: the reaction field.

and precision, is knocked out

.

6.7 Conclusion

The semiclassical approximation to the spin-boson Hamiltonian leads to interest-

ing nonlinear effects, triggered by the important action of the reaction field. The main

effect of the reaction field is the renormalization of the Hamiltonian of the system of

interest. The system equilibrium distribution turns out to be canonical with respect

to the renormalized Hamiltonian of Eq. (6.19). Its direct consequence is the two-step

relaxation process. Initially, the system relaxes towards one of the two quasiequi-

Iibrium states, characterized by a nonzero value of (pZ). Subsequently, the system

tends to leave this state and relaxes towards the final equilibrium state characterized

by (~$) = O. It is also possible to make another prediction, stemming from the fact

that, for the trapped state, the transition from a precessional cone to another is an

incoherent process with a mean transition time that is the inverse of such a rate.

It is then expected that a stochastic resonance effect takes place when an external

coherent excitation is tuned to the mean frequency of this process.



6.7 Conclusion 155

1 1 1 I t I 1 I I I

1 ! 1 I 1 ) I I 1
--

0 20 40 60 80

Time (reduced unit)
100

Figure 6.3: A typical trajectory of (a) pz(t) and (b) p.(t) of an arbitrarily tagged
classical spin in a simple cubic lattice containing 125 equivalent classical spins with
periodic boundary condition. All the spins are first treated by an ideal 90.0° pulse

along –g axis and then evolve under the truncated dipolar Hamiltonian in the rotating
frame processing with the Larmor frequency. The trajectory is numerically solved by
explicit Runge-Kutta (4,5) algorithm of Dormand-Prince with relative error tolerance
Of 0.1% and 0.2%.
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(a)

Figure 6.4: A
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typical trajectory of (a) px(t) and (b) p.(t) of an arbitrarily
classical spin in a simple cubic lattice containing 125 equivalent classical spins with

tagged

periodic boundary condition. All the spins are first treated by an ideal O.OOor 0.1°
pulse along –y axis and then evolve under the truncated dipolar Hamiltonian in
the rotating frame processing with the Larmor frequency. The Ljapunov exponent is
estimated to be 0.32.
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Figure 6.5: A typical trajectory of (a) p.(t) and (b) p.(t) of an arbitrarily tagged
classical spin in a simple cubic lattice containing 125 equivalent classical spins with
periodic boundary condition. All the spins are first treated by an ideal 89.9° or 90.0°
pulse along –y axis and then evolve under the truncated dipolar Hamiltonian in
the rotating frame processing with the Larmor frequency. The Ljapunov exponent is
estimated to be 0.11.
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Chapter 7

Classical Spin Simulations

7.1 Abstract

We have used Monte Carlo simulations, combined with microscopic Heisenberg

equation of motion, to calculate accurately the many-spin FID waveform. The re-

sults are employed to verify the validity of our previous analysis in the limit of spin

quantum number 1 + m. It is shown that the spin self-trapped states could manifest

themselves as small, yet persistent, components in the FIDs and may be the physical

origin of the anomalous long-time behavior recently reported by Ding and McDowell.

When the spin-lattice coupling strength and/or the dipolar order is increased, the

resulting nonlinear polaronic/solitonic dynamics becomes even more pronounced.
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7.2 Introduction

Spin dynamics in quantum dissipative systems constitutes one of the most funda-

mental problems in the fields of magnetic resonance and condensed matter physics.

A system with few quantal degrees of freedom (the “spin”) is coupled to a fluctuating

and dissipative bath (“lattice” ). For abundant spins in condensed phases, particularly

those with high gyromagnetic ratios, the homonuclear dipole-dipole interaction ?& is

the dominant mechanism responsible for the spin-lattice coupling. When probing the

spin dynamics, one first employs an external excitation which drives the whole system

away from equilibrium and then measures its time-dependent response, the so-called

free-induction decay (FID). Rigorous theoretical predictions of the waveforms of the

FID are complicated by tlhe many-body nature of the Hamiltonian. Nevertheless, nu-

merous approximate analytical theories have been proposed that can quantitatively

or qualitatively describe the FID’s short-time behavior: Gaussian decays for time

smaller than the transverse relaxation time T2 [1]; however, many essential features

in the longer-time regimes still remain to be explored and verified, such as the beat

structure [2] and the recently-reported anomalous long-time tails[3].

Advances in computer technology make spin-dynamics simulations very attractive.

A genuine numerical app:roach to calculate the FID would require diagonalization of

matrices of dimension (2,! + 1)’, where 1 is the spin quantum number and N is the

number of coupled spins in the system. This would create a hopeless situation for N

sufficiently large to faithfully bring out the many-spin effects. In the classical limit,



7.2 Introduction 161

however,

(7.1)

(~: gyromagneticratio, p: magneticmoment) and the dimensiongreatly reducesto

2N: two polar angles for each classical spin. Such computationally feasible classical-

spin simulations can then be used to verify the

the limit of I + CQ. One can also monitor a

validity of theoretical predictions in

single trajectory; whereas in a real

experiment one can only obtain an ensemble average over all trajectories.

For a system

external Zeeman

frame processing

approximated by

of N identical classical spins in a rigid lattice subject to a large

field B. along the z axis, the effective interaction in the rotating

with the Larmor frequency w. = —~.l?. about the z axis can be

the truncated dipolar Hamiltonian %;

(7.2)

(7.3)

(7.4)

where T is the internuclear distance, and 19is the angle between the internuclear vector

and the Zeeman field [2]. Since the Zeeman energy of a spin is around three orders of

magnitude greater than its dipolar energy, high-field

motions conserving the zeeman energy are allowed.

truncation is used so that only

Denote the interaction in the
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one-spin picture for a tagged spin labeled with subscript “.” as

N–1

inl j>i

where ho = [hzo, huo, h~o] are the dipolar local fields acting on the tagged spin pro-

duced by its neighbors, P,I = [P~o,UYO,p~o], and

N–1

i=l

N–1

(7.7)
i=l

The classical equation of motion for

the following differential equation:

any dynamical variable A can be obtained by

= {A, Hj , (7.8)

where {—, —} indicates a Poisson bracket. The resulting dynamics is that each spin

precesses under the torque exerted by its local fields,

~Pi(t) = ‘Y Pi(t) x ‘i(t) (i ‘o>””” IN – 1, “ (7.9)
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7.3 Computational Procedures

The computational procedures are summarized as follows. Consider a simple-cubic

lattice containing N = 53 = 125 spins. Periodic boundary condition is applied to

ensure that all dipoles have the same number of neighbors. We describe the spins in a

coordinate system rotating about the Zeeman field with the Larmor frequency. Each

spin sees in this system the dipolar field from its 32 nearest neighbors. Our restriction

to the 32 nearest neighbors is immaterial in the FID’s waveform, as dipolar coupling

in condensed phases is a short-range interaction. The spin located at the center will

be our observed spin, while the rest 124 spins will be regarded as the lattice. Based

on the high temperature approximation (k~’T >> [P IBO), the initial density operator

in the laboratory frame can be approximated as (Chapters 4 and 5)

N–1 N–1 N–1

P(O) u 1+).(+1. ew[-@ ~ %,oj)l ed-~(-~o ~ M + ~ ~ %,ij)], (7.10)
j=l i= 1 i=l j>i

where ~ = l/kBT is the inverse temperature, ]*)Z are the eigenstates of 13 of the

observed spin, and Q is a parameter used to study the effect of dipolar order on the

spin dynamics. For normal dipolar coupling, a is equal to 1. Following the initial

density operator, the tagged spin can be assumed to start from the initial condition

P.(0) = [0, O, Ipl], while the initial configuration for the lattice spins is obtained by

generating N uniformly distributed random vectors

radius Ip I[3]. All the spins are first treated by an

on the surface of a sphere with

ideal pulse along –y axis with
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tipping angle 0. The corresponding rotation in the spin space is

/4(0+)=

CCIS(@)O – sin(~)

010

[ ()si:n e o Cos(e)

I-%(0),2=0,”””,N-1 (7.11)

where time t = 0+ denotes the point immediately after the pulse. The time evolution

of all the magnetic moments {Ni (t) }Ii=o,...,N_lj is then numerically solved by inte-

grating the system of differential equations, Eq (7.9), based on explicit Runge-Kutta

(4,5) algorithm of Dorma,nd-Prince [4]. Finally, the FID is estimated by averaging

p..(t) over the trajectories weighed by the equilibrium Boltzman probabilities of the

initial configurations

(jJzo(t)} Ix ~ p(o)pzo(i) . (7.12)
trajectories

For a given set of initial configurations and calculated trajectories, one can use the

symmetry of the equations of motion to generate additional sets of inital configura-

tions whose trajectories are related by symmetry to the calculated trajectories(Table

1). This increases the number of initial configurations sampled, thereby reducing the

error due to finite Monte Carlo sampling, without having to due any additional tra-

jectory calculations. For systems consisting of just one type of particle, it is sensible
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Initial Confbzurations Trajectories ,

Table 7.1: New Trajectories Based on Symmetry Considerations (i = O,. . . . N – 1)

[

{1-do+)>Pm+),%(0+)} {w(f),t%(~)>fd~)}
{-MO+), -/%(0+)>PZi(o+)} {-hi(t), ‘hi(t), hi(t)}
{-P.i(o+)> Wi(”+), ‘P.i(O+)} {-Pxi(t), I-%i(t), ‘Pi(t)}
{Pxi(O+), ‘Pui(O+), ‘P.i(O+)} {Pxi(t), ‘Pvi(t), ‘Pi(t)}

to use the reduced units. In this chapter, the time t is expressed in the unit of

3’y@l

where TOis the lattice constant.

(7.13)

7.4 Simulation Results

Figure 7.1 shows the FID of the tagged spin based on 40,000 trajectories with

dipolar-order parameter a = 1. The other physical parameters used in the chapter

are: kBT = 200,130 = 10. In conventional NMR theory, the transverse magnetization

is completely dephased within tens of microseconds due to the observed spins evolving

under different local fields. With the assumption that the spin does not affect the

evolution of the lattice, one obtains the typical NMR result, as shown in Fig. 7. lb.

However, when one takes into account the effect of the spin on the evolution of the

lattice, that is, takes into account the reaction field, one obtains a small, yet persistent
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component buried in the FID [ Fig. 7. la].

Such long time tail becomes even more obvious when one increases the coupling

strength of the tagged spin to the lattice, as shown in Fig. 7.2 (dipolar-order param-

eter a = 1). The oscillatory beat structure in the FIDs is the manifestation of the

cooperative coherent dipole motions [7]. In Fig. 7.2b, the oscillation of the FID is

center at (pZo(t)) = O. This is consistent with the prediction made by Kubo and

Toyabe, who treats the local field at a given spin as a stochastic process independent

of that spin [8]. As discussed in Chapter 6, this appealing theory conflicts with the

proper attainment of a canonical equilibrium due to the fact that the influence of the

reaction field is disregarded. On the contrary, when the reaction field is turned on, as

shown in Fig. 7.2a, the FIID oscillates about a new equilibrium state with (pzo (t)) # O.

It verifies the physical picture portrayed in the previous chapters based on the spin-

boson Hamiltonian: solitclnic modes originated from the nonlinearity

joint action of the lattice fluctuations and the reaction field. This is

triggered by the

even more clear

when one looks at the individual trajectories shown in Fig. 7.3. Certain events ex-

hibit states where the spi:n evolves into a trapped state due to the reaction field, i.e.,

the local fields and spin evolve to align, which causes the spin to be trapped, since

P.(t) x ho(t) = O. Random fluctuations of the other lattice spins eventually cause

the local fields to become misaligned with the tagged spin, thus causing the spin to

be no longer trapped.

It is also interesting to observe the effect of the dipolar order in the initial density
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Figure 7.1: The FID of a tagged spin in a simple cubic lattice of spins (a) with
reaction field and (b) without. The dashed line represents a magnification by a factor
of 5. Figure (b) corresponds to the typical free induction decay, which goes to zero
for long times; on the other hand, figure (a) shows a nonvanishing component.
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Figure 7.2: The FID of a tagged spin coupled to a simple-cubic lattice of spins (a)
with and (b) wihtout reaction field. The dashed line represents a magnification of a
factor of 5. The coupling constants of the tagged spin to the lattice spins have been
increased by a factor of 3 relative to Fig. 7. 1‘s coupling constants. In figure (a), one
sees a larger amplitude of the long time tail relative to Fig. 7. la.
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Figure 7.3: Trajectories of the tagged spin in a simple-cubic lattice. The solid lines
exhibit self trapping, due to the reaction field, whereas the dashed trajectories, which
do not include the reaction field, do not evolve into trapped states.
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operator towards the development of the solitonic modes. This is shown in Fig. 7.4

for dipolar-order parameter a = 30 (solid line) and a = 15 (dash line). It reveals the

possibility of enhancing tlhe long-time tails by converting zeeman order into dipolar

order. If this observation is further confirmed by quantum spin simulations and

experiments, then, without resorting to demanding decoupling techniques in the spin

and/or spatial spaces, the phenomena of spin self-trapping under dipolar local fields

may provide solid-state NMR a convenient way to achieve better resolution. One can

use a sufficiently long delay between simple pulse preparation and data acquisition to

filter out the initial fast-decaying part before performing Fourier transformation.
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with and (b) wihtout reaction field. The dipolar-order parameter a equals to 30 (solid
line) and 15 (dash line).
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Appendix A

Advanced NMR Signal Processing

Package

Within the last decade, there has been a flurry of research activity into formulating

and comparing alternative means of NMR signal processing [1, 2, 3, 4, 5, 6, 7, 8, 9,

10]. The primary motivation has apparently been the development of techniques

for accurate spectral quantification and enhanced spectral resolution. One of the

most effective ways to gain a deep appreciation and understanding of such advanced

techniques is to process NMR signals. There is a great deal of information to be

gained by experimenting with algorithms, testing them on real FIDs, developing

new approaches, and discovering at what point the theory begins to break down in

practice. Therefore, to assist in the implementation of these advanced NMR signal

processing techniques, a package of MATLAB programs is constructed, as summarized
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in Table A. 1. MATLAB [11] has the advantage of providing easy access to matrix

software developed by the LINPACK [12] and EISPACK [13] projects, and allowing

rapid code development and refinement [14]. None of these programs in this package

are particularly long and may be typed-in by hand without too much difficulty.

A. 1 Matrix Pencil

Assume the FID can be decomposed into a set of exponentially damped sinusoids,

yn=xn+wn = ZE1lf41ew(jei)ew[(-~i + M.fi)n] + W. (Al)

=~~laizin+wn n= O,l,...,l-l (A.2)

where Iai [, Qi, ~i, Oi represent the absolute amplitudes, damping factors (inverse time

constants), frequencies, and phases of the AZ distinct exponential, respectively; j is

used to denote ~. .q - exp(–ai + j2nfi) is the “signal pole” and ai s Iai]exp(jdi)

is the “complex amplitude”. There is an important difference between the complex

amplitude ai and the signad pole .zZin the functional form of Eq. (A.2); the signal model

is linear in the first and nonlinear in the second. The complications of nonlinearity

can be circumvented by invoking the linear prediction principle or the matrix pencil

method.
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Table Al: Summary of Advanced NMR Signal Processing Package

Section

Matrix Pencil

Set Theoretic Estimation

System Identification

Spectral Estimation

Program

mp-rnp.m
mplp.m

ste-..rnoom.m
ste_rank.m
ste.eigen
ste_toep.m
ste_herm.m
ste_sub.m

si-pade.m
si-prony.m
siiter.m
si-auto.m
si-cov. m

se-rnlm.m
se.mem. m
se-phd.m
semmsic. m
se-ev.m
seminnorm.m
se-principal. m

Description

matrix pencil
linear prediction

B. de Moor algorithm
matrix rank mapping
eigenstructure mapping
Toeplitz structure mapping
Hermitian structure mapping
subsequence property mapping

Pad6 approximation
Prony method
iterative prefiltering method
autocorrelation method
covariance method

maximum likelihood method
maximum entropy method
Pisarenko harmonic decomposition
MUSIC method
eigenvector method
minimum norm method
principal component method
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A.1.l Matrix Pencil Method with Information Theoretic Cri-

teria

The matrix pencil met hod involves finding the signal poles, Zi, directly by solving

a generalized eigenvalue problem. Let X. and X1 be two noise-free data matrices

with dimension (N – L) x L defined by

X()=

L

XL–1 2-L-2 “ “ “ Xo

XL xL_l “ “ “ xl

“.

EN–2 XN_S “ “ “ XN–L– I

XL XL–1 “ - “

XL+l XL “ “ “

“.

1xN–~ XN–2 ---

xl

X2

XN.L

(A.3)

where L is called the pencil parameter. The the signal poles .q can be identified with

the Ill non-zero generalized eigenvalues of the matrix pair (Xl, Xo),

where qi is the eigenvector associated with the eigenvalue (and signal pole) .zZ.

f unct ion [para, M,it c] ==mp_mp(y ,M)

% function [para,14, itc] =mp_mp(y,14)
% matrix pencil method with information theoretic criteria
%
% y: complex vector, lIMR FID time series

(A.4)

% M: real scalar, number of signals or effective matrix rank

% M=-1 using AIC; M=-2 using MDL;

% M >= O using ‘the user’s input value
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% para: real M*4 matrix, estimated damping factor,

% frequency, amplitude, phase -
% itc: real vector, containing AIC or MDLfunction values
% ********** begin of function mp_mp.m **********

y=y(:);
N=length(y);

% --- pencil parameter
L=floor(N/3);

% ‘-- YO=Y(:,2:L+1), Y1=Y(:,I:L)

Y=toeplitz(y(L~l :N),y(L+l:-1: l));

% --- singular value decomposition

DJ,S,vl=svd(y(:,2:L+l) ,0);
S=diag(S);
itc=zeros(l,L) ;

% ‘-- determining M by AIC
if M==-l

for k=O:L-l;
itc(k+l)=-2*N*sum(log(S(k+l :L))) . . .

+ 2*N*(L-k)*log( (sum(S(k+l :L))/(L-k))) + 2*k*(2*L-k);

end

[terapy, ternpll=rnin(itc); M=’cernpl-l;
end

% ‘-- determining M by MDL
if M==-2

for k=O:L-l;
itc(k+l)=-N*sum(log(S(k+l :L))) . . .

+ N*(L-k)*log((sm(s(k+l :L))/(L-k))) + k*(2*L-k)*log(N)/2;

end

[ternpy, ternpIl=rnin(ltc);
M=tempI-l;

end

% --- signal pole z=exp(s)
s=log(eig(diag(l./S(l:M)) * . . .

((u(:,l:M) ’*Y(:,l:L))*v( :,l:M))));
Z=zeros(N,M);
for k=l:M;

Z(:,k)=exp(s(k)) .-[O:N-l] .’;
end;

% --- linear least squares analysis
a=z\y ;
para=[-real(s) imag(s)/2/pi abs(a) imag(log(a.labs(a)))];
return
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% ********** end of function mp_mp. m **********

A.1.2 Linear Prediction with Singular Value Decomposition

The principles of linear prediction with singular value decomposition (LPSVD)

have been extensively documented. In summary, one first solves the following linear

prediction equations for the coefficients {cz}l~i<~ of the prediction polynomial,

!/L-1 ~/L–2 “““ Yo

YL ~/L–l ..0 YI

“..

YN-2 >’N-3 “““ YN-L-I

c1

C2

cL

YL

YL+l

YN-1

(A.5)

The roots of the prediction polynomial P(z) = 1 – ~i=l,L Ciz-i then produce the AI

signal poles {z~}l~~~~. The success of LPSVD resides in the ability of linear pre-

diction to extend truncated FIDs for resolution enhancement, or to estimate missing

or corrupted initial data l?oints for baseline and phase corrections. The corrupting

effects of noise can be mitigated through a judicious combination of an over-estimated

prediction order (L >> M, introducing extra L – M noise-related poles) to account

for the noise in the measurements, and SVD-based signal-subspace techniques to

discriminate between signal and noise.

f unct ion para=mp_lp (y,, M)
% f unct ion para=mp_lp (y ,M)
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% linear prediction with singular value decomposition
% reference:
% R. Kumaresan, D. W. Tufts IEEE Trans. Acoust. Speech Signal Processing

% vol. ASSP-30, 837-840, 1982.
% arguments:

% y: complex vector, NMRFID time series
% M: real scalar, number of signals or effective matrix rank

% para: real M*4 matrix, estimated damping factor,

% frequency, amplitude, phase
% ********** begin of function mp_lp.m **********

y=y(:);

% --- number of complex data points in FID
N=length(y);

% --- linear prediction order L = 3/4*N
L=floor(N*3/4);

% --- backward prediction data matrix
A=hankel(conj(y(2 :N-L+l)),conj(y(N-L~l :N)));

% --- backward prediction data vector
h=conj(y(l:N-L) );

x --- singular value decomposition
[U,S,V]=svd(A,O) ;
clear A;
S=diag(S);

% --- bias compensation
bias=mean(S(M+l :min([N-L,Ll)));

% --- prediction polynomial coefficients
b=-V(:,l:M)*(diag(l./(S(l:M)-bias))*(U( :,1:11) ’*h));

% --- polynomial rooting
s=conj(log(roots( [b(length(b) :-1:1) ;11))); .

% --- extract true signal poles

s=s(find(real(s) <0));
Z=zeros(N,length(s) );
for k=l:length(s);

Z(:,k)=exp(s(k)) .-EO:N-l].’ ;

end;

% ‘-- linear least squares analysis
a=Z\y;
para=[-real(s) imag(s)/2/pi abs(a) imag(log(a./abs(a)))l;
return
% ********** end of function mp_lp.m **********
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A.2 Set Theoretic Estimation

If (Vi) l<i<I is the collection of 1 propositions representing a priori knowledge on.—

the observed NMR signal and = is the solution space, a collection of so-called property

sets (Si) l~i~z can be constructed in a propositional manner, namely,

S’z= {a E E [vi holds for a}. (A.6)

A set theoretic estimate is any object consistent with all available information, i.e.,

any point in the set intersection

I
S=n S~={a~E IVi~{l, ”””,l}IV~ holds foru}. (A.7)

i=l

A signal-enhanced FID, ?J, can be formally obtained by solving the following best

feasible approximation problem

where “inf” denotes the greatest lower bound

and “d (m, g)” refers to a distance measure.

In the following, the algorithm proposed

to solve the

general and

(A.8)

operator, x is the measured noisy FID,

by B. de Moor [19, 20] is first adopted

resulting best feasible approximation problem Eq.

efficient algorithm, iterative parallel projections, is

(A.8). Then, a more

presented.



A.2 Set Theoretic Estimation 183

A.z.I B. de Moor algorithm

If the spin relaxation can be treated as a first order process, the measured NI.IR

FID will be a sum of exponentially damped sinusoids perturbed by additive noise.

Consider the data matrix X formed from such a FID x = [z., xl,. . . , ZN_l]~,

[

q) Z1 ““” XAT_L,

xl X2 ““’ XN–L+l
x(x) = (A.9)

where “~” denotes matrix transpose and L is a parameter chosen by the user. It

follows that X, when constructed from noiseless FID, possesses two important prop-

erties, (i) VI, Hankel structure, and (ii) W2, rank deficiency. A Hankel matrix is one

which is symmetrical about any cross-diagonal, while the rank deficiency of X results

from x being the impulse response of a finite dimensional linear system of relatively

low order.

With above a priori knowledge, the general expression of the best feasible approx-

imation problem can be specified as

infyes=slnsa d (z, Y) , (A.1O)

where property sets S’l = {x E = IX(Z) is a Hankel matrix}, S2 = {Z < E [ rank[X (z)] =
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M}, and X(z) ~ C(~+lJ ‘(~-~+ 11. The specific projection operator required to solve

Eq. (A.1O) has recently been developed in the context of constrained total least

squares [15, 16, 17, 18]. The algorithm proposed by B. de Moor [19, 20] is adopted

here, and its MATLAB implementation is listed below. Much work needs to be done

on possible refinements, accelerations, and memory-thrift.

function x_bfa = ste-moor(x, M,epsilon)

% function x_bfa = ste_moor(x, M,epsilon)

% Set theoretic estimation by B de Moor algorithm
% ##l: Hankel Structure + Rank Deficiency
% references:
% (1) B. de Moor, Linear Algebra & Its Applications, 188-189,

% 163 (1993).
% (2) B. de Moor, IEEE Trans. Signal Process. 42, 3104 (1994).
% arguments:

% x: real vector, NMR/MRI FID time series

% M: real scalar, effective rank.

% If x i.s the real/imaginary part of a FID

% containing I complex exponential, M should be set equal to 21

% epsilon: real scalar, convergence test [ref. (2) p. 3107 step 10]

% x_bfa: real vecl;or, best feasible approximation of x
% ********** begin of function ste_moor.m **********

N=length(x); % length of FID
X=hanktl(x(l:N-M),x(N--M:N) ); % data matrix Eq. [5]

[U,S,V]zsvd(X,O); % ref. (1) p.3107, initialization
u=IJ(:,M+l); u=u/norm(u,2) ;
v=V(:,M+I); v=v/norm(v,2) ;

tau=S(M+l,M+l) ;
Tu=toeplitz([u(l) ;zeros(M,l)], [u;zeros(N-length(u) ,1)1);
Tv=toeplitz([v(l) ;zeros(N-M-1,1)] ,[v;zeros(N-length(v) ,1)1);
Du=Tu*Tu.’; Dv=Tv*Tv.’;
[~, R]=qr(X) ;
tJl=Q(:,l:M+l);

Q2=Q( : ,M+2: N-M) ;
R=R(l:M+I, :);
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x-bf a=x;
while S(M+l, M+l)/S(l,l) >= epsilon % ref. (1) p.3107, step 10

S(M+l, M+l)/S(l,l)
z=inv(R. ‘)*Du*v*tau; % ref. (1) p.3107, step 1
w---inv(Q2. ‘*Dv*Q2)*(Q2. ‘*Dv*QI)*z; % ref. (1) p.3107, step’ 2
u=QI*z+Q2*w; % ref. (1) p.3107, step 3
v=inv(R)*tJl. ‘*Dv*u*tau; %ref. (1) p.3107, step 4
v=v./norm(v,2); % ref. (1) p.3107, step 5
Tu=toeplitz([u(l) ;zeros(M,l)l, [u;zeros(N-length(u) ,1)1);
Tv=toeplitz([v(l) ;zeros(N-M-1,1)] ,[v;zeros(N-length(v) ,1)1);

Du=Tu*Tu.’; Dv=Tv*Tv.’;
ga=(u.’*Dv*u) -0.25; % ref. (1) p.3107, step 6
u=u/ga; v=vjga; % ref. (1) p.3107, step 7
Du=Du/ga/ga; Dv=Dv/ga/ga; % ref. (1) p.3107, step 8
tau=u.’*X*v; % ref. (1) p.3107, step 9
for ii=l:N

b=zeros(size(x) );
b(ii)=l;
x_bfa(ii)=x(ii)-u. ‘*hankel(b(l:N-11) ,b(N-M:N))*v*tau;

end

[U,S,V]=svd(hankel(x_mse(l :N-M),x_mse(N-M:N) ),0);
end
return
% ********** end of function ste_moor.m **********

A.2.2 Iterative Parallel Projections .

The algorithm of iterative parallel projections, instead of attacking Eq. (.&8)

directly, exploits the techniques of best approximation and nonlinear programming

to solve the potentially more tractable set of problems

(.4.11)
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It then invokes the technique of parallel projections to constitute a local approximate

solution to Eq. (A.8), which consists of the following recursive sequence

k=l

(A.12)

where j ~ 1, x(o) is the initial estimate, and the weight satisfies ~fl=l &)k= 1. In such

a

a

scheme, all the property sets are activated simultaneously and the new iteration is

combination of the projections of the current iterate onto each property set. The

following programs implement some of the most useful property mapping operators.

Matrix Rank

Let X be an arbitrary matrix in C~x”, the metric space consists of all m x n

complex valued matrices, whose singular value decomposition is given by

(A.13)
j=l

where “t” stands for taking the Hermitian conjugate, r s min(m, n) is equal to

the

the

are

rank of X, the (~j) I<j<r are real and nonnegative singular values ordered in——

monotonically nonincreasing fashion ~j > aj+l ~and the (Uj ) l<j<r and (V ~ ) l<j<r

the corresponding orthonormal left and right singular vectors, respectively. The

matrix X is thus constructed from the contribution of r rank-one matrices weighted

by the respective singular values. It follows that if aP # ~P+I, the unique matrix XR
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of rank p or less contained in property set SR that lies closest to X in the minimum
-“

F’robenius norm sense is given by the norm-reducing closed mapping lls~

(A.14)

The nonconvexity of S~

can have a rank greater

is established by noting that the sum of two rank-p matrices

than p.

function Y = ste_rank(Y, M)

% function Y = ste_rank(Y, M)

% Set theoretic estimation: matrix rank mapping
% ‘==’ arguments ====
% Y: input arbitrary matrix
% Y: output matrix with rank=M
% M: the desired rank
% ********** begin of function ste_rank.m **********

[U, S, Vl=svd(Y, O) ;
Y=U(:, I:M)*S(l:M,l:M)*V( :,I :M)’;
return
% **********bend of function ste_rmk.rn **********

Eigen Structure

Let Xc C”’”be aHermitian matrix whose eigendecomposition is specifiedby

XVj=AjVj (A.15)

where (Aj)l~j<n are the n real eigenvalues,

vectors. Let the eigenvalues be ordered in

and (vj)l<j<~ are their associated eigen-——

the monotonically nonincreasing fashion
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Aj ~ Aj+l inwhich the first q

positive. The unique positive

Frobenius norm sense is given

eigenvalues are positive and the rest (n – q) are non-

semidefinite matrix XP that lies closest to X in the

by the following mapping II,sP:

u
w (A.16)

j=l

Furthermore, lls, is a norm-reducing closed point-to-point mapping.

f unct ion Xnew = ste_ei.gen(X, choice, ifrank, M)

%

%

%

%

%

%

%

%

%

%

function Xnew = ste_eigen(X, choice, ifrank, M)
Set theoretic estimation: eigen structure mapping
Hermitian matrix -> (1) positive semidefinite

(2) plsitive definite (3) negative semidefinite (4) negative definite
==== arguments ====
X: input Hermitian matrix
choice: I=positive semidefinite, 2=positive definite,
ifrank: O=forget the rank, l=rank property, 2=equal smaller evs.
Xnew: output matrix
********** begin of function ste_eigen.rn **********

[V,Dl =eig(x);
d=diag(real(D));

-[Y, I]=sort(d);
Xnew=zeros(size(X) );

% ‘-------------------”--
if choice== 1 %positive semidefinite

nn=sum(d ~= O);
end
if choice==2 %positive definite

nn=sum(d > O);
end
n=length(I);
if ifrank==O

for ii=l:nn
ind=I(n-ii+l) ;
Xnew=Xnew+d(ind;l *V(:,ind)*V(: ,ind)’;
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end%ii
else

if M s= nn
M=nn;
for ii=l:M

ind=I (n-ii+l) ;
Xnew=Xnew+d(ind) *V(: , ind) *V(: , ind) ‘ ;

end%i i
else

for ii=l:M
ind=I (n-ii+l) ;
Xnew=Xnew+d(ind) *V(:,ind)*V(:, ind)’;

end%i i
if ifrank==2

meand=O;
for ii=(M+l):nn

ind=I(n-ii+l) ;
meand=meand+d (ind);

end%ii
meand=meand/ (nn-M);
for ii=(M+l):nn

ind=I(n-ii+l) ;
Xnew=Xnew+meand*V(:,ind)*V(:,ind) ‘;

end%ii
end%ifrank==2

end%M>nn
end%ifrank==O
return
% ********** end of function ste_eigen.m **********

Toeplitz Structure

AToeplitz matrix has the property that all the elements along the diagonal are

identical andso are those along each subdiagonal. Assume the uniqueToeplitz matrix

X~thatlies closest to an arbitrary matrixX ● Cmxn in the Frobenius norm sense

is obtained by the mapping lls~. Itis found that the Toeplitz-structured mapping
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II,s~, when applied toX, results inX~ whose kthsubdiagonal elements equal the

average value of the kth subdiagonal elements of X,

function Y=ste_toep(Yll

% function Y=ste_toep(Y)

% Set theoretic estimation: Toeplitz structure mapping
% ‘=== arguments ====

% Y: input arbitrary matrix
% Y: output Toeplitz matrix
% ********** begin of function ste_toep.m **********

[nr ,ncl =size(Y) ;
L=nc;
N=L+nr-l;
y=zeros(N,l);
for ii=(L-l) :-1:-(N-L)l

y(-il+L)=rnem(diag(y,li));
end
Y=toeplitz(y(L:N) ,y(L:-l:l));
return
% ********** end of function ste_toep.m **********

Hermitian Structure

The unique Hermitian matrix XH that lies closest to a matrix X G C“x’ in the

Frobenius norm sense is givenby the following Hermitian-structured mapping ns~,

x~ =rIsH(x)= ;(x+x~). (A.17)

All linear-structured matrix property sets (e.g., ST and SH) are both closed and

convex.



A.2 Set Theoretic Estimation 191

function X=ste_herm(X)

% function X=ste.herm(X)
% set theoretic estimation: Hermtian mapping

% ‘=== arguments ====

% x: input arbitrary matrix
% x: output HermitLan matrix
% ********** begin of function ste_herm.m **********

x=(x+x’)/2;
return
% ********** end of function ste_herm.m **********

Subsequence Property

Assume x = {x(l), x(2),... ,x(~)} comprises a sum ofQ noiseless complex ex-

ponential. This sequence may be decimated by a positive integerp 2 2 to formp

subsequences

z,:, =={z(q), z(P + q), “o“ ,z(FIX(~/P - I)p + q)} . (A.18)

Here 1 s q s pand “FIX” denotes rounding toward zero. Each such subsequence

will also comprise a sum ofQ complex exponentials with the exponents being equal

to those of the original raised tothept~ power. We can then construct the composite
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subsequence data matrix .XP

Xp=

Xp:l

xp:~

Xp,p

(A.19)

where submatrix XP:g(l S; q s p) denotes the data matrix formed from subsequence

ZP:~. It follows that Xp w~ll also possess rank Q. The projector IIs.U,Passociated with

the subsequence property set SU,P for an arbitrary standard data matrix X E Cmxn

can be described as follows. (i) Extract the sequence x from X. Decimate z by

p to form p subsequences (Zp,~)l<~SP. (ii) For each Zp,q, form submatrix XP,~, and

then construct the composite subsequence data matrix XP by Eq. (A.19). (iii) Find

the nearest rank Q approximation to Xp by program ste.-rank. m. (iv) Perform the

inverse operation of (i) and (ii), i.e., extract the submatrix and subsequence and then

form the enhanced standard data matrix XU,P. Consequently, XU,P = Hsu,, (X).

function X = ste_sub(I, M,K)

% function X = ste_sub(X ,M, K)
% Set theoretic estimation: subsequence property mapping
~ .=.. a~gurnents .===

% X: input arbitrary Toeplitz data matrix
% X: output subsequence-enhanced Toeplitz data matrix
% M: # of exponential components (integer, 1*1)
% K: decimation number (integer, 1*1)
% ********** begin of function ste_sub. m *********
% --- extract the original time series
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[m,nc]=size (X);
L=nc-l; %the data matrix will be (N-L) *(L+l)
N=nr+L; %length of original time series
y=zeros(l,N);
for ii=l:N

y(il)=rnean(dlag(X,-il+L+l));
end
Nt=fix(length(y)/K)*K; %length of the truncated time series
nn=Nt/K; %length of the decimated time series
ll=floor(nn/2); %sub data matrix will be (nn-11)*(11+1)
Xk=zeros((nn-11) *K,ll+l);

% --- construct composite data matrix
ynew=zeros(l,Iit);
for mm=l:K

ykm=y(mm:K:Nt);
Xk(((nn-ll)*(mm-l)+l) :((nn-ll)*mm) ,:)= . . .

toeplitz(ykm(ll+l :nn),rot90(ykm(l :11+1),2));
end

% --- rank projection
Xk=mserank(Xk,M) ;

‘ %--- extract enhanbced subsequence
for mm=l:K

ykm=zeros(l,nn) ;
for ii=l:nn

yam=...
mean(diag(Xk(((nn-ll)*(mm-1)+1) :((nn-ll)*md ,:),-li+ll+f) );

end
ynew(mm:K:Nt) =ykm;

end
if N==Nt
else

ynew=[ynew y(Nt+l:N)];
end

% ‘-- corrstruct enhanced data matrix
X=toeplitz(ynew(L+l :N),rot90(ynew(l :L+I) ,2));
return
% ******** end of function ste_sub.m **********
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A.3 System Identification

An important application of system identification in NMR is the prediction

extension of truncated FID. A FID x(n) is known over a given interval of time,

and

and

the goal is to determine z(n) over some other interval. If a model can be found

that provides an accurate representation for the system that generates z(n), then the

model may be used to estimate the unknown values of z (n). In general, there are two

steps in the modeling process. The first is to choose an appropriate parametric form

for the model. In system identification, one frequently assumes that the model has a

rational system function clf the form

B*(z)
H(z) = —

~;=o bq(k)z-’
AP(z) = 1 + ~~=1 aP(k)z-k “

Once the form of the model has been selected, the next step is to

parameters that provide the best approximation to the given FIDs.

A.3. 1 Pad6 Approximation

Given a FID z(n), the Pad6 approximation finds the coefficients

(A.20)

find the model

in the model of

Eq. (A.20) by matching the first p + q + 1 FID data points exactly, i.e., x(n) = h(n)

forn=O,l, ””” , p + q, where h(n) is the unit response function. There are three

required inputs to this program. The first is the vector x that contains the values

of the FID x(n) that is to be modeled. The other two inputs, p and q, specify the
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model order, i.e., the order of the polynomials AP(z) and B*(z), respectively. The
.

output consists of two vectors, a and b, that contain the model coefficients aP(k) and

b~(k), respectively. As indicated in Eq. (A.20), the first coefficient of the vector a will

always be equal to one.

function [a, b] =

%

%

%

%

%

%

%

%

%

%

%

%

x

function [a, b]
Model a signal

si-pade(x, p,q)
= si_pade(x, p,q)
using the Pade approximation method

The input sequence x is modeled as the unit sample response of
a filter having a system function of the form
H(z) = B(z)/A(z)
The polynomials B(z) and A(z) are formed from the vectors
b=Lb(0), b(l), . . . b(q)]
a=[l , a(l), . . . a(p)]
The input q defines the number of zeros in the model
and p defines the number of poles.
*********** begin of function si_pade.m

= x(:);
if p+q>=length(x), erroro”odel order too large’), end’
x = convm(x,p+l);
Xq = x(q+2:q+p+l,2:p+l);

a = [l; -xq\x(q+2:q+p+l,l)l;
b = X(l:q+l,l:p+l)*a;
return
% *********** end of function si_pade.m

function X = convm(x,p)
% function X = convm(x,p)
% Generates a convolution matrix

%
% Given a vector x of lenght N, an N+p-1 by p convolution
% matrix of the following form is generated

%
% I x(o) o 0 . . . 0 I
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% I X(l) x(o) o . . . 0 I

% I x(2) x(1) x(o) . . . 0 I

% X=1 I

% l“.”.”. I

% l.. I

% ! x(N) x(N-i) x; N-2)” . . . x( N-p+l) (

% 10 x(N) x(N-1) . . . x( N-p+2) I

% 1 . . . . I

x I I

% I o 0 0 .$. “x(N) I
% *********** begin of function convm.m

N = length(x)+2*p-2;

x = x(:);
xpad = [zeros (p-ljl) ;x; zeros (p-1,1)] ;

for i=l:p
X(:,i)=xpad(p-i.+l:N-i+l) ;

end;
% *********** end of functj.on convrn.rn

A.3.2 Prony Method

As with Pad6 approximation, Prony method finds a model for a FID z(n) of the

form given inEq. (A.20). Unlike the Pad6 approximation, however, the denominator

. .
coefficients aP(k) are found by minimlzmg the Prony error &PrOnYdefinedas

Eprony = s le(n)l’ = 5 lx(n)+ 5%(M - w’ ~
n.q~IL ~=q+l 1=1

(A.21)

Once the denominator coefficients have been determined, the numerator coefficients

b~(k) are found usingthe Pad6 approximation tomatchthe FID exactly for the first

q + 1 values of z(n).

Inthederivationof Pronymethod,it is assumedthatthe FIDx(n) isknown forall



A.3 System Identification 197

n >0. Therefore, there is an important practical issue that concerns how to address

the problem of only being able to record and process a finite-length observation of

x(n). In the following program, we assume that the FID x(n) is zero for all values

of n that are greater than the length of the input vector x. Therefore,’ it uses the

autocorrelation method

the Pad6 approximation

(described below) to find the denominator coefficients, and

to find the numerator coefficients.

function [a, b,errl = si_prony(x, p,q)

%

%

%

“%
x

%

%

%

%

x

%

%

%

x

N

f unct ion [a, b, err] = si_prony (x, p, q)
Model a signal using Prony method

The sequence x is modeled as the unit sample response of
a filter having a system function of the form
H(z) = B(z)/A(z)
The polynomials B(z) and A(z) are formed from the vectors
b=[b(0), b(l), . . . b(q)]
a= [1 , a(l), . . . a(p)]
The input q defines the number of zeros in the model
and p defines the number of poles. The modeling error

is returned in err.
*********4* begin of function si_prony.m

= x(:);
= length(x);

if p+q>=length(x), error(’Model order too large’), end

x = convm(x,p+l);
Xq = X(q+l:N+p-l,l:p);

a = [l; -xqW(q+2:N+p,l)l ;
b = X(l:q+l,l:p+l)*a;
err = x(q+2:N) ’*X(q+2:N,l:p+l) *a;
return
% *********** end of function si.prony.m
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A.3.3 Iterative Prefiltering

Iterative prefiltering, or the method of Steiglitz and McBride, is an iterative al-

gorithm to find the rational model of Eq. (A.20) for a FID z(n) that minimizes the

least squares error

(A.22)
n=o

where h(n) is the unit response function. Although there is no general proof of

convergence, iterative prefiltering often reaches an acceptable solution after 5 to 10

iterations. The inputs that are required are the signal vector, x, the number of poles .

in the model, p, the number of zeros, q, and the number of iterations n. In addition,

there is an optional input vector, aO, that is used to initialize the recursion with a

given set of denominator coefficients. If this input is left unspecified, then the initial

condition is found using Prony method. The outputs of the program are the model

coefficients aP(k) and bq(k), which are stored in the vectors a aild b, respectively, and

the squared error, err.

function [a, b,errl = si_iter(x, p,q, n,a)
% function [a, b,err] ‘= si_iter(x, p,q, n,a)
% Pole-zero signal modeling using iterative pref iltering.

%
% The sequence x is modeled as the unit sample response of

% a filter having a system function of the form
% H(z) = B(z)/A(z)

% The polynomials II(z:) and A(z) are formed from the vectors
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%

%

%

%

%

%

%

%

%

%

%

%

%

x
N

b=[b(0), b(l), . . . b(q)]
a= Cl , a(l), . . . a(p)]
The inputs are

x: input sequence to be modeled

P: number of poles in the model

q: number of zeros in the model
n : number of iterations to be used to find A(z) and B(z)
a: initial estimate for the denominator (default is zero) .

and the outputs are
a : vector of coefficients for A(z)
b : vector of coefficients for B(z)
err : model error

*********** begin of function sl_iter.m

= x(:);
= length(x);

if p+q>=length(x), error(’Model order too large’), end
if nargin < 5

a = si_prony(x,p,q);
end

delta = [1; zeros(li-l,l)];
for i=l:n

f = filter(l,a,;);

g = filter(l,a,delta);
u = convm(f,p+l);
v = convm(g,q+l);
ab = -[u(l:N,2:p+l) -v(l:N, :) ]\u(l:N,l);

a = [1; ab(l:p)];
b = ab(p+l:p+q+l);
err = norm( u(l:N,l) + [u(l:N,2:p+l) -v(l:N, :)]*ab);

end;
return
% *********** end of function si_iter.m

A.3.4 Autocorrelation Method

The autocorrelation method is an all-pole modeling technique that finds the all-

pole coefficients aP(k) from the values ofz(n) for n= O, l, ”””, lV by minimizing the
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Prony error Eq. (A.21). Since z(n) is assumed to be known only for O s n < N,

the error e(n) may only be evaluated forp s n s N. Therefore, SP.O.Y can not be

minimized unless some assumptions are made about the values of x(n) outside the

interval [0, N]. With the a,utocorrelation method, x(n) is assumed to be equal to zero

for n <0 and n > N, which is equivalent to applying a rectangular data window to

x(n). Although this winclow biases the solution, it ensures that the all-pole model

will be stable.

The input x is a vector that contains the signal values ~(n), and p is an integer that

specifies the model order (number of poles). The output a is the vector of coefficients

aP(k), and err is the modeling error, cprOny= min{cp~ony ).

function [a, err] = si..auto (x, p)
function [a, errl = si_auto (x ,p)
Find an all-pole model using the autocorrelation method

The input sequence x i.s modeled as the unit sample response of
a filter having a system function of the form
H(z) = b(0)/A(z)
where the coefficients of A(z) are contained in the vector
a=[l, a(l), . . . a(p)]
The input p defines the number of poles in the model.
The modeling error is returned in err.
The numerator b(0) i.s typically set equal to the square
root of err.
*********** begin of function si_auto. m

= x(:);
= length(x);

if p>=length(x), error(’Model order too large’), end
x = convm(x,p+l);
Xq = X(l:N+p-l,l:p);
a = [l; -Xq\X(2:N+p,l.)];
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err = abs(X(l:N+p,l) ’* X*a);
return
% *********** end’of function sl_auto. rn

A.3.5 Covariance Method

The covariance method is an alternative to the autocorrelation method for find-

ing an all-pole model for a finite-length sequence x(n),n = 0,1,... ,N. Instead of

assuming that the unknown values ofz(n) are equal to zero, thecovariance method

modifies the error that is to be minimized. The modification simply involves redefin-

ing the limits on the sum for &p,O.Vto begin at n = p and end at n = N. Since the

covariance method does not window the data, the model is generally more accurate

than the autocorrelation method. However, the model is not guaranteed to be stable.

function [a, err] = si_cov(x ,p)

%

%

%

%

%

%

%

x

%

%

x

N

function [a, errl = si_cov(x, p)
Find an all-pole model using the covariance method

An all-pole of order p is found for the input sequence
x using the covariance method. The model is of the form
H(z) = b(0)/A(z)
The coefficients of A(z) are returned in the vector
a=[l, a(l), . . . a(p~l
and the-modeling error is returned in err.
*********** begin of function si_cov.m

= x(:);
= length(x); -

if p>=length(x), error(’Model order too large’), end
x = convm(x,p+l);
Xq = X(p:N-l,l:p);
a = [l; -xq\x(p+l:N,l)];
err = abs(X(p+l :N,l)’*X(p+l:N, :)*a);
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return
% *********** begin o:f function si_cov. m

A.4 Spectral Estimation

In this section, we co:nsider the problem of estimating the frequency spectra of

NMR FIDs. If the FID x(n) is known for all n, estimating the frequency spec-

trum is straightforward, in theory, since it can be computed by its Fourier transform.

However, there are two practical difficulties that make spectral estimation both an

interesting and a challenging task. First, the amount of FID points may be very

limited. Secondly, the FID is often corrupted by noise or contaminated with an inter-

fering signal. Thus, NMR spectral estimation is a problem that involves estimating

the frequency spectrum l; (e~”) from a finite number .of noisy measurements of the

FID z(n).

The approaches for spectral estimation may be generally categorized into two

classes: classical (nonparizmetric) and nonclassical (parametric). In the first class,

the frequency spectrum is estimated by directly Fourier transforming the FID, while

the second class is based on using a model for process which drives the FID. For

example, if it is known that z(n) is a pth-order autoregressive process, then measured

values of z(n) may be used to estimate the parameters of the all-pole model, aP(k),

and these estimated model parameters, iiP(k), may then, in turn, be used to estimate
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F’z(e~u) as follows:

(A.23)

where j = @.

A.4.1 Maximum Likelihood Method

For a FID z(n), the maximum likelihood estimate of the frequency spectrum is

where & is the p x p autocorrelation matrix and e = [1, e~’”,”.” , e@].

Instead of evaluating Eq. (A.24) directly, the following program finds the maxi-

mum likelihood estimate using the expansion

where & and vi

function Px =

%

%

%

%

%

P~~~(e~U) =
~~=1 ~le~v~]2

are the eigenvalues and eigenvectors, respectively, of I&.

(A.25)

se_mlm(xlp)
= se_mlm(x, p)function Px

Spectrum estimation using

The spectrum of a process
method.

the maximum likelihood method.

x is estimated using the maximum likelihood
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%

%

%

%

%

x

R

x: Input sequence

P : Order of the minimum variance estimate - for short
sequences, p is typically about length(x)/3
The spectrum estimate is returned in Px using a dB scale.
*********** begin of function se.mlm.m

= x(:);

= covaiance(x,p);

I-v,d ‘eig(R);
U = diag(inv(abs(d)+e:ps));
V = abs(fft(v,1024)) .”2;
Px = lo*loglo(p)-lo*loglo(v*u);
return
% *********** end of function si_pade.m

A.4.2 Maximum Entropy Method

The maximum entropy method ofspectral estimation finds an all-pole model fora

process using the autocorrelation method, and then uses the model parameters aP(k)

to estimate the spectrum as follows:

function Px = se_mem(:~,p)
% function Px = se_mem(x,p)

% Spectrum estimation using the Maximum Entropy Method (MEM).

%
% The spectrum of a p:rocess x is estimated using the maximum
% entropy method, which uses the autocorrelation method to

(A.26)

% find a pth-order all-pole model for x(n), and then forms
% the estimate of the spectrum as follows:

% PX = b-2(0 )/l A(ornega) 1-2
% The spectrum estimate is returned in Px.
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% x: Input sequence

x P : Order of the all-pole model
% *********** begin of function se_mem.m

[a,el = autocorr(x,p);
Px = 10*loglO(e/length(x) )-20*log10(abs(fft (a,1024)));

return
% *********** end of function se_rnern.rn

A.4.3 Noise Subspace Methods

In this subsection, we describe the programs that are used for FIDs that consist

of a sum of complex exponential in white noise. We begin with the noise sub-

space methods, which are frequency estimation algorithms and include the Pisarenko

harmonic decomposition, the MUSIC algorithm, the eigenvector method, and the

minimum norm algorithm. In the next subsection, we discuss the program that use

a signal subapace approach, which involves a principal component analysis of the

autocorrelation matrix&.

Pisarenko Harmonic Decomposition

Anoise subspace method to estimate the frequenciesof p

in noise involves the use of a frequency estimation of the form

1

~fip+lcuileHvi12

complex exponential

(A.27)
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where vi are vectors that lie in the noise subspace of RZ, and a~ are constants. In

the Pisarenko harmonic clecomposition, the frequency estimation function is

Ppi.a,e.ko(f+’)= ,eH~min12 (A.28)

where v~in is the eigenvector of & that has the minimum eigenvalue. The input

of the program is the FI.D vector, x, and an interger p that defines the number of

complex exponential in x(n). The output is the eigenvector having the smallest

eigenvalue, a! along with the minimum eigenvalue, sigma, which may be used as an

estimate of the white noise variance.

function [a, sigma] = se.phd(x, p)

%

%

%

%

x

%

x

%

%

%

%

%

%

70
%
%
%
%
x

R

function [a, sigma] = se_phd(x, p)
Frequency estimation using the Pisarenko harmonic decomposition.

The input sequence x is assumed to consist of p complex
exponential in white noise. The frequencies of the
complex exponential and the variance of the white noise
are estimated using the Pisarenko harmonic decomposition.

The frequency estimates are found from the peaks of the
pseudospectrum

1
——---------------- ------------------

1 + a(l)exp(jw) + . . . + a(p)exp(jpw)

or from the roots of the polynomial forme”d from the ‘
vector a. The estimate of the white noise variance is
returned in sigma.
*********** begin o:f function se_phd.m
= x(:);
= covar(x,p+l);
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[v ,d] ‘eig(lU;
sigma=min(diag(d) ) ;
index=f ind(diag(d) ==sigma) ;

a= v(: ,index);
return
~ *********** end of function se_phd. m

MUSIC Method

in

of

The MUSIC algorithm is anotherfrequency estimationtechnique ofthe form given

Eq. (A.27). Theconstants ai areequaltooneandvi are the AZ-p eigenvectors

& that havethe smallesteigenvalues.

function Px = se_music(x, p,M)

%

x

%

%

%

%

%

%

%

%

%

%

%

%

%

x

function Px = se_mus~c(x, p,M)
Frequency estimation using the MUSIC algorithm.

The input sequence x i.s assumed to consist of p complex
exponential in white noise. The frequencies of the
complex exponential and the variance of the white noise
are estimated using the MUSIC algorithm.

x: input sequence

P : number of complex exponential to find
M: number of noise eigenvectors to use

The frequency estimates are found from the peaks of the
pseudospectrum Px.
*********** begin of function se_music.m

= x(:);
if M<p+l I length(x)KM, error(’Size of R is inappropriate’), end
R = covar(x,M);
[v, d] =eig(R) ;
[y, i] =sort (diag(d) ) ;
Px=o ;
for j=l:M-p
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Px=Px+abs (fft (v(: , i (j) ) , 1024))
end;
Px=-20*loglo(Px) ;

return
% *********** end of function se_music.m

Eigenvector Method

The eigenvector method is a frequency estimation algorithm thatis similar tothe

MUSIC algorithm. As wuththe MUSIC algorithm, the vectors vzfori=p+lto~

are the eigenvectors that have the smallest eigenvalues. The constants, ai, however,

are equal to the inverse of the eigenvalues, Qi = I/A;,

function Px = se_ev(x,p,M)

%

%

%

%

%

%

%

%

%

%

%

%

%

%

x

%

x

function Px = se-ev(x}p,M)
Frequency estimation using the eigenvector method

The input sequence x is assumed to consist of p complex
exponential in white noise. The frequencies of the

complex exponential and the variance of the white noise
are ,estimated using the eigenvector method.

x : input sequence

P : N~mber of complex exponential in x
M: Size of the autocorrelation matrix to use in

estimating the complex exponential frequencies

The frequency estimates are found from the peaks of the
pseudospectrum Px.
*********** begin o:f function se_ev.m

= x(:);
if Ncp+l, error(’Spec:ified size of R i.s too small’), end
R = covar(x,N);

[v, dl =eig(R) ;
[y, ll=sort(dlag(d));
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Px=o ;
for j=l:N-p

Px=Px+abs(fft (v(: ,i(j)) ,1024)). ‘2/abs(y(j)) ;
end;
Px=-lo*loglo(Px) ;
return
~ *********** begin of function sl_ev.m

Minimum Norm Method

The last frequency estimation algorithm included in this package is the minimum

norm method, which uses a frequency estimation function of the same form as that

used for the Pisarenko harmonic decomposition,

(A.29)

However, instead of using the eigenvector having the smallest eigenvalue, the mini-

mum norm method uses the vector a in the noise subspace that has the minimum

norm.

f unct ion PX = se_minnorm(x, p ,M)
% function Px = se_mirmorm(x ,p, M)

% Frequency estimation using the minimum norm algorithm.

%
% The input sequence x is assumed to consist of p complex
% exponential in white noise. The frequencies of the
% complex exponential and the variance of the white noise
% are estimated using the minimum norm algorithm.

%
%x: input sequence

%p: Number of complex exponential in x
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% M : Size of the autocorrelation matrix to use in

% estimating the complex exponential frequencies

%
% ‘I’he frequency estimates are found from the peaks of the
% pseudospectrum Px.
%
% *********** begin of function se_minnorm.m

x = x(:);
if N<p+l, error(>Specified size of R is too small’), end
R=covar(x,N);
[v,d]=eig(R);

[y,i]=sort(diag(cl) );
for j=l:N-p

V=[V,v(:,i(j))I;
end;
a=V*V(l, :)’;
Px=-20*log10(abs (fft(;l,1024)));
return
% *********** begin o:f function si.minnorm.m

A.4.4 Signal Subspace Method

For sNMRFID consistingofp complex exponentials in noise, asignal subspace

method of spectral estimation finds a reduced rank approximation to the autocorre-

lation matrix using the pprincipal eigenvectors and eigenvalues,

2=1

and then estimates the frequencyspectrum from R., as described previously.

function Px = se_principal(x,p,M)

% function Px = se_principal(x, p,M)
%

(A.30)
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%

%

%

%

%

%

%

%

%

x
%
%
x

The spectrum of a process x is estimated using a principal
components analysis of the autocorrelation matrix.
The model for the process is that x(n) consists of a sum of
complex exponential in white noise.
After a principle components analysis, the principal eigenvectors
are used in the Blackman-Tukey estimate.

x : input sequence

P : number of complex exponential in x
M : size of autocorrelation matrix

The spectrum estimate is returned in Px using a dB scale.
*********** begin of function se_principal.m

= x(:);
if M<p+l, error(’Specified size of R is too small’), end
R=covar(x,M);

[v,d]=eig(R);
[y,i]=sort(diag(d) );
Px=o ;
for j=M-p+l,M;

Px=Px+abs(fft(v( :,i(j)), 1024))*sqrt(real(y(j)) );
end;
Px=20*log10(Px)-10*loglO(M) ;
return
% *********** end of function se_principal.m
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Appendix B

Many-Spin FID Simulation

Package

B.1 Quantum Spins

The past few years have brought a rapid increase in the importance of scien-

tific computation. Computer performance has improved tremendously, and powerful

new software concepts have been introduced. This is particularly true for many-spin

FID calculation, where the absence of exact and general theoretical treatment makes

numerical simulation very attractive. Computer simulation of magnetic resonance

experiments, however, still requires a rather tedious programming step because stan-

dard computer languages do not include many of the data types commonly used to

describe the quantum-mechanical spin dynamics. To overcome these deficiencies and
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to assist in the user’s im:plementation, a concise GAMMA program is listed below,

which simulates the FID of a polycrystalline dipole-coupled

der magic-angle spinning, The GAMMA (general approach

many-spin system un-

to magnetic resonance

mathematical analysis) library, developed by Ernst group, extends the computer lan-

guage C++ by adding data type typically used in NMR, such as operators, super-

operators, and tensors[l]. This framework enables individual end users to write their

particular simulations in an abstract formalism analogous to the analytical descrip-

tion of the problem. None of these programs in this package are particularly long and

may be typed-in by hand without too much difficulty.

For systems consisting of just one type of particle, it is sensible to use the reduced

units. In this package, the time t is expressed in the unit of

2 r:

where TOis the lattice con.st ant.

/*

homo_mas_da. cc
Simulation of hornonuclear dipolar coupled spin system under MAS
Can run up to 10 spins without the CSA tensors.
Brute force integration of the MAS rotation (one cycle)
Use Monte Carlo sampling for crystal orientation
+/

(B.1)

// include files and definition
#include “gamma.h”
#include Ksys/time .h>
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#include <sys/resource.hz
#define NPROP 100
#define MAXSPIl?S 10

// main program
main(int argc, char *argv[])

t

// variables declare
spin_system ax(2);
gen_op Ham, UINPROP], H[5], det, sigma;
spin_T HdipCMAXSPINS] [MAXSPINS];
space_T Adip[MAXSPINS] [MAXSPINS], Adip_RIMAXSPINS] [MAxSpIIEl ;
double DIMAXSPINS]CMAXSPINS];
int i,j,k,nfree,nmas,count ,detspin;
String name, names;
const double thetam=54.73561032;
double dw, scale;
int nspins, index, nprop;
double alpha,beta,gamma;
double alpha-DIMAXSPINS] [MAXSPINS],beta_DIMAXSPINS] [MAlCW1N31;
double gamma_DIMAXSPINS][MAXSPINS];

// inputs
count = 1;
query_parameter(argc,argv,count++, “Spin System Name ? “, names);
ax.read(names) ;
nspins = ax.spinso;

// !!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!

// -delta/qpi = omegaD/2Pi = +mu/4Pi gammal*gamma2*hbar/2Pi /r”3
//!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!

for(i=O; iznspins-1 ;++i){
for(j=i+l;j<nspins;++j){
query_parafneter(argc,argv, count++,’’Dipolar Coupling Constant ? “,

D[i.] [j]);
query_parameter(argc,argv, count++,’’Euler angle alpha ? “,

alpha_D[i] [j]);
query_parameter(argc,argv,count++, “Euler angle beta ? “,

beta_D[i] [j]);
query_parameter(argc,argv,count++, “Euler angle gamma”? “,

gamma_D[i] [j]);

}}
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query_parameter (argc, argv, count+ +,’’Dwell Time (see) ? “,
dw) ;

query_parameter(argc,imgv,count++,”# Points in free FID ?“,
nfree) ;

query-parameter(argc,imgv,count++,”# Points in MAS FID ?“,

nmas) ;
query_parameter (argc,argv,count++, “# Points per Rotor Cycle ?“,

nprop) ;
query_parameter(argc,argv,count++, “Spin Detected (nth) n= ? “,

detspin);
query_parameter(argc,argv,count++, “Output Filename ? “,

name);

// output log
tout << “\n\nSimulation of dipolar coupling\n”;
Cout << ‘============’====’============ \n\n”;
tout << “Program version: “ << __FILE_- << “ compiled at “

<< __DATE__ “, “ << __TIME__ << “\n\n”;
tout << “Parameters:\n”;
tout << “rotation angle thetam: “ << thetam << “ Degree\n”;
tout << “size of spin system: “ << nspins << “ spins\n”;
for(i=O; i<nspins-l ;++i)

{ for(j=i+l; j<nspins; ++j)
{ tout << “dipolar coupling constant (“ << i ~< “,”

<< j << “;I : II << D[i] [j] << “ Hz\n”;

tout << “relativ orientation of D tensor: t“
<< alpha_Dl[i] [j] << “,” << beta_D[i] [j]
<< Il,li ~~ ~:~a_D[i] [J] ‘< “)\n”;

}

}

Cout <<
Cout <<
Cout .<<
Cout <<
Cout <<
Cout <c
Cout <<

“Dwell Time (see): “ << dw << “\n”;
“Number of Data Points in free FID: “ << nfree << “\n”;
“Number of Data Points in MAS FID: “ << nmas << “\n”;
“# of Sampling Points per Rotor Cycle: “ << nprop << “\n”;
“Spin Detected (nth) n= “ << detspin<< “\n”;
“Output filename: “ << name << “\n”;
II\n,l ;

// hamiltonian
for(i=O; i<nspins-l;++il)
{ for(j=i+l;j<nspins;++j)

{ Hdip [i] [j] = T_D(i?tx,i,j);
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3
3

// space tensor
matrix help(3,3,0);

f or(i=O; i<nspins-1 ;++i)
{ for(j=i+l; j<nspins; ++j)

{ help. put_h(-l.0,0,0) ;
help.put_h(-l.O,l,l);

help.put_h( 2.0,2,2);
help = - (complex) Il[lI[jl * help;
Adip [i] [j] = A2(help);
Adip[i] [j] = Adip[il [j] .rotate(alpha_D[i] [j] ,

beta_D [i] [j] ,gamma_D [i] [j]);

3
3

// detection operator and IC
det = Im(ax,detspin);
sigma = Fx(ax);

// rotate the space tensor, molecular frame to lab frame
beta = 30.0;

alpha = 30.0;
gamma = 30.0;
scale = sin(beta/180.O*PI);
for(i=O;i<nspins ;++i)
{ for(j=i+l;j<nspins;++j)

{ Adlp-RCil [jl = Adip[i] [j] .rotate(alpha,beta,gamma) ;

// dipolar part
for(i=O;i<5;++i)

H[i] = gen_opo;
for(k=-2;k<=2; ++k)
-( for(i=O; i<nspins-l;++i)

{ for(j=i+l; j<nsplns; ++j)
{ H[k+2] += Adip_R[i] [j] .component(2,k) * d2(k,0,thetam) *

Hdip[i] [j].component (2,0);

>
)
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// free FID, nfree pts
Ham = gen_opo;
if (nfree>O)
{ f or(i=O; i<nspins-1 ;++i)

{ for(j=i+l;j<nspins;++j)
Ham += Adip_R[i] [j] .component(2,0)*HdipCi-] [j] .component(2,0);

//Ham += ax. shift(i)*Iz(ax,i);

1
block_lD fidfree(nf:ree);

String namel = name+’’f.mat”;

String name2 = name+’’f”;

FID(sigma,det,Ham,d#,nfree,fidfree);

MATLAB(namel,name2,:fidfree,l);

evolve_ip(sigma,Ham,dw*nfree);

1

// MAS f id, nmas pts, propagator over one cycle of the MAS
if(nmas z O)
{ block_lD f idmas (nmas);

Ham = gen_opo;
for(index=O;index<nprop ;++index)
{ for(i=-2;i<=2;++:i)

Ham += exp(complex(0,i*2.O*PI*i.ndex/double(nprop) )) * H[i+2];
U[index] = prop(hn,dw);

~

for(i=O; i<nprop;++i)
U[i].set_DBR();

det.set_D13R();
sigma.set_DBR() ;
for(i=O;i<nmas ;++:i)
{ fidmas(i) += trace(det,s.igma)*scale;

sigma. sim_trans,_ip (U[i%npropl);

3
String namel = narne+’’m.mat”;

String name2 = neme+’’rn”;

MATLAB(nemel,name:2,fidmas,l);
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B.2 C1assical Spins

Table B.1: Summary of Subroutines for Classical Spin Simulations

Program Description

spinmd.m main program
spinmd~ig.m dipolar Hamiltonian tensor
spinmd-bloc.m dipolar local fields

spinmd-dot .m evolution under local fields
spinmd_crd.m simple-cubic lattice coordinates
spinmd.ed.m dipolar energy
spinmdndx.m periodic boundary condition
spinmd-rot y.m pulse rotation along y axis
spinmd-avg.m canonical ensemble average

A genuine numerical approach to calculate the FIDs would require diagonalization

of matrices of dimension (21 + 1)’, where 1 is the spin quantum number and IV is

the number of coupled spins in the system. This would create a hopeless situation

for Al sufficiently large to faithfully bring out the many-spin effects. In the classical

limit, however,

I + m, FL+ o, @L/qI+ 1) + [/.4[, (B.2)

(~: gyromagnetic ratio, P: magnetic moment) and the dimension greatly reduces to

2N:

spin

two polar angles for each classical spin. Such

simulations can then be used to verify the

computationally feasible classical-

validity of theoretical predictions
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in the limit of 1 + m. One can aIso monitor a single trajectory, where as a rez

experiment can only provide ensemble average of all the trajectories.

The main program is listed below. Its subroutines and computational procedure

are summarized in Table B. 1.

%

%

‘x
%
%

%

%

spinmd. m
spinmd: molecular dmamics simulations for classical spins
main program:

FII)s of observed spins in dissipative simple-cubic lattice
subject to many-spin homonuclear dipole-dipole interaction

=== simulation parameters
number of trajectories

mcno=10000;

% length of the simple-cubic lattice = 2*RG1+I
RGI=2;

% radius of interaction sphere
RG2=2;

% radius of observed sphere (the “spins”)
RG3=2;

% initial seed for random number generator
seed=O;

% dipolar Hamiltonian: =0, truncated; =1, complete
ham=O;

% g=[gx gv gzl, strength of the spin-lattice coupling.

% for normal dipolar interaction, g=[1 1 1]

g=[l 1 1];

% structure of config: [randseed,hx,hy,hz,Ez,Edl where
% hx,hy,hz are the dipolar local-fields acting on the tagged spin
% after the pulse and Ez (Ed) 1s the total Zeeman (dipolar)
% energy of the spin+lattice system
config=zeros (mcno,6);

% ‘“= central cell

% crdl, eO, et, H share the same index rule and structure
% ndx=(crdl(:,l)+RGl)K(2*RGl+l)”2 +
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% (crdl(:,2)+RGl)*(2*RGl+l) + (crdl(:,3)+RGl) + 1

% crdl: absolute coordinates [x y z a] of the

% central lattice containing N1=(-RG1:RGI)”3 spins

% eO, et: [elx ely elz;....eNlx eNly eNlz]

% H: [IIIx Hly IIIz; . . ..HNIx HNly HNIz]
[crdl,Nl]=spinmd_crd(RGl);

%

%

%

%

=== interaction sphere

local field: consider only spins within a sphere of radius RG2

N2: number of neighbors within the sphere

structure of crd2: [x y z a], a=r/rO

[crd2,N2]=spinmd_rad(RG2);

x ‘== observed sphere

[crd3,N3]‘Spimirad (RG3);
% index of the observed spins

ndxO=spinmd_ndx(crd3,RGl);

X ===sigma: spatial part of the dipolar Hamiltonian

sigma=spinmd_sig(crd2,ham_ic);

% ‘== initial configurations

rand(’seed>,seed);

for ii=l:mcno

config(ii,l)=rand(’seed’);

% eO et: size N1*3

eO=spinmd_ic(Nl,config(ii,1),1);

% fixed the observed spins at [1 O 01
eO(ndxO,:)=[ones(N3,1) zeros(N3,2)];

% local fields acting on the observed spins

ndx=spinmd_ndx(crd2(:,l:3),RGl);

tagged=l;

config(ii,2:4)=spinmd-bloc(sigma,eO,ndx,ndxO,tagged,g);

% total Zeeman Energy

config(ii,5)=-sum(eO(:,3));

% total dipole Energy

[Edtotal,Edl=spimd-ed(eO ,RGl,crdl,crd2,sl~a,ndX0 ,g);
config(ii,6)=Edtotal;

end %mcno
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% ‘== evolution
ham_evo=O;
f ileno= [0: 241 ;
iterno=400;
tspan=[o:o .02:3 .51.’;
options=odeset (’RelTol.’, le-2) ;

% reaction field: =0 without; =1 with;
ifrf=l;

% === dipolar Hamiltonian

sigma=spinmd.sig(crd2,,ham_evo);

for filecnt=l:length(fileno)

filecnt

et=zeros(length(tspan),3*N1);

mux=zeros(iterno,length(tspan));

muy=zeros(iterno,length(tspan));

muz=zeros(iterno,length(tspan));

for itercnt=l:iterno

eO=spinmd_ic(Nl,,config(fileno(filecnt)*iterno+itercnt,1),1);
eO(ndxO,:)=[l O 01;

% ‘== evolution in the rotating frame
% change eO’s structure to: [elx;ely;elz;....eNlx.eNly;eNlz]

[t,et]=ode45(’spinmd-dot‘,tspan,reshape(e0.’,3*Nl,l),options,.
crdl,Nl,RGl,crd2,sigma,ndx0,g,ifrf);

mux(itercnt,:)=et(:,3*(ndx0-1)+1).’;

muy(itercnt,:)=et(:,3*(ndx0-1)+2).’;

muz(itercnt,:)=et(:,3*(ndx0-1)+3).’;
% save file

if rem(itercnt,50)==0

[filecnt itercnt]
aavc uLuL- .!.11 llUILIL=bL \.Ld.J.C1lV\J.J.J.GL-Ub) J . . .

mux mllymuz tspan itercnt ham_evo ifrf’]);
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B.2. 1 Dipole-Dipole Interaction

For a system

external Zeeman

of N identical classical spins in a rigid lattice subject to a large

field B. along the z axis, the effective interaction in the rotating

frameprocessingwiththeLarmor frequencyLJO= –~130can be approximatedby the

truncateddipolarHamiltonian?& (spinmdsig.m)

(B.3)

(B.4)

(B.5)

where r is the internuclear distance, and 0 is the angle between the internuclear

vectorand the Zeeman field. The presence of a strong Zeeman field servesto identify

the z component ofmagnetizationwith a largeZeeman

truncationisdesignedsuchthatonlymotionsconserving

function sigma=spinmd.sig(crd,hamiltonian)

% function sigma=spinmd.sig(crd,hamiltonian)

% spinmd_sig.m

energy, and the high-field

this energy areallowed[2].

% spinmd: molecular dynamics simulations for classical spins

% sig: generate the spatial tensor for the homonuclear

% dipolar Hamiltonian

% crd: N*4 real matrix,’structure [x y z sqrt(x-2+y-2+z-2)]

% ha.miltonian:O=secular dipole, l=full dipole

% sigma: 3N*3 real matrix, contains ALL the spatial parts

% (angles and distances)

[N,M]‘size(crd);
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sinth=sqrt(crd(:,1).-:2+crd(:,2).-2crd(:,4);4);

costh=crd(:,3)./crd(:,4);

sinph=zeros(N,1);

cosph=zeros(N,1);

for ii=l:N

if crd(ii,l)-2+crd(.ii,2)”2==0

sinph(ii)=l;

cosph(ii)=l;

else

sinph(ii)=crd(ii,~2)/sqrt(crd(ii,1)-2+crd(ii,2)”2);

cosph(ii)=crd(ii,1)/sqrt(crd(ii,l)”2+crd(ii,2)-2);

end

end

sigma=zeros(3*N,3);

if hamiltonian==O % secular dipole

sigma(l:3:3*N,1)=1-13*costh.‘2;

sigma(2:3:3*N,2)=l-;3*costh.‘2;

sigma(3:3:3*N,3)=-2:~(1-3*costh.‘2);

end

if hamiltonian==1 % full dipole

sigma(l:3:3*N,l)=l-:3*costh.‘2+3*sinth.-2.*(cosph.‘2–sinph.”2);

sigma(l:3:3*N,2)=6*sinth.‘2.*sinph.*cosph;

sigma(l:3:3*N,3)=6*:~inth.*costh.*cosph;

sigma(2:3:3*N,l)=sigma(l:3:3*N,2);

sigma(2:3:3*N,2)=l-;3*costh.“2–3*sinth.”2.*(cosph.-2-sinph.‘2);

sigma(2:3:3*N,3)=6*sinth.*costh.*sinph;

sigma(3:3:3*N,l)=sigma(l:3:3*N,3);

sigma(3:3:3*N,2)=sigma(2:3:3*N,3);

sigma(3:3:3*N,3)=-2’~(1-3*costh.“2);

end

sigma=sigma/2;

for ii=l:N

sigma((ii-1)*3+1:ii’*3,:)=sigma((ii-l)*3+l:ii*3,:)/(crd(ii,4)-3);

end

return
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B.2.2 Dipolar Local Fields

Rewritetheinteractionintheone-spinpictureforan arbitraryspinlabeledwith

subscript“.”,

N–1

(B.6)
i=l j>i

where ho = [hxo,hvo,hzo]T are the dipolarlocalfieldsactingon the tagged spin

producedby itsneighbors,P. = [p.0,pvO,Pzo]T,and ~

function bloc=spinmd_bloc(sigma,et,ndx,ndxO,tagged,g,ifrf)

% function bloc=spinmd_bloc(sigma,et,ndx,ndxO,tagged,g,ifrf)

% spinmd_bloc.m

% spired: mlecular dynamics simulations for classical spins
% bloc: calculate dipolar local fields

et(ndxO,:)=et(ndxO,:).*g;

if ifrf==O % ignore the tagged spin’s reaction field

et(ndxO,:)=[O O 01;
end

et=et(ndx,:).’; -

bloc=((sigma.’)*et(:)).’;

if tagged==l

bloc=bloc.*g;

end

return
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B.2.3 Equation of Motion

Each and everyspinprecessesunder the torqueexertedby itslocalfields,as

describedby thesetofdilferentialequations

-&i(t)=’Y/-%(ox k(~)(~=u””” IN– 1)’ (B.9)

The time evolution of all the magnetic moments {Pz(t)}(i=o,..., I-I J is then numerically

solved by integrating the system of differential equations, Eq (B .9), based on explicit

Runge-Kutta (4,5) algorithm of Dormand-Prince [4].

function edot=spinmd_dot(t,et,flag,crdl,Nl,RGl,crd2,

%

%

%

%

%

%

sigma, ndxf) ,g, ifrf )
function edot=spinmd_dot(t,et,flag,crdl ,NI,RGI,

crd2,s@na,ndx0 ,g,ifrf)
spinmd_dot. m
spinmd: molecular d:ynamics simulations for classical spins
dot: calculate the time derivative of magnetic moment vectors

change et’s structure to: [elx ely elz;. ..;eNlx eNly eNlz]
et=reshape(et,3,Nl).’;

bloc=zeros(size(et)); % dipolar local fields

edot=zeros(size(et));

% ‘== local field
for ii=l:Nl

% absolute coordinates of the interacting spins

crdtmp=[crd2(:,l)+c:rdl(ii,1) crd2(:,2)+crdl(ii,2) ...

crd2(:,3)+crdl(ii,3)];

ndx=spinmd_ndx(crdtmp,RGl);

tagged=O;

if ii==ndxO

tagged=l;

end
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bloc(ii,:)=spinmd_bloc(sigma,et,ndx,ndxO,tagged,g,ifrf);

end

% ‘== magnetic moments corss product local fields

edot(:,l)=et(:,2).*bloc(:,3)-et(:,3).*bloc(:,2);

edot(:,2)=et(:,3).*bloc(:,l)-et(:,l).*bloc(:,3);

edot(:,3)=et(:,l).*bloc(:,2)-et(:,2).*bloc(:,l);

% change edot’s structure to: [elx;ely;elz;....eNlx.eNly;eNlz]
edot=reshape(edot.’,3*Nl,1);

return

B.2.4 Initial Configurations

The initialconfiguration{p~(0)}(~=O,..,,N_l]isobtainedbygenerating~uniforrnly

distributed random vectors onthe surface ofasphere with radius[pl [3]. Theassoci-

atedtotal dipolarenergy?-lj and total Zeemanenergytio are calculated respectively

by Eqs. (B.3)-(B.5) (spinmd-ed.m) and
.

iv-l

i=(l

function [crd;N]=spinmd_crd(r)
% spinmd.crd.m

% spinmd: molecular dynamics simulations for classical spins
% crd: generate coordinates of the integer points

% within a sphere of radius rad, but not include [0 O 01

% r: 1*1 integer, helf-length of the simple-cubic lattice
% structure of crd: [x y z sqrt(x”2+y-2+z”2)~
% crd has the following index rule and structure
% ndx=(crd(:,l)+r)*(2*r+l)”2 +
% (crcl(:,2)+r)*(2*r+l) + (crd(:,3)+r) + 1
% crd: coordinates [x y z sqrt(x”2+y”2+z”2)] of the

x central lattice containing N=(–r:r)”3 spins

(B.1O)
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N=(2*r+l)”3;

crd=zeros((2*r+l)-3,4);

cnt=O;

for ii=-r:r

for jj=-r:r

for kk=-r:r

cnt=cnt+l;

crd(cnt,:)=[ii jj kk sqrt(ii”2+jj”2+kk-2)];

end

end

end

return

function [Edtotal,Ed]:=spinmd_ed(eO,RGl,crdl ,crd2,sigma,ndx0,g)

% function [Edtotal,Ed]=spinmd_ed(eO,RGl, crdl,crd2,sigma,ndx0,g)
% spinmd.ed.m

% spinmcl: molecular dynamics simulations for classical spins
% ed: calculate the dipolar energies for that specific configuration

[N,M]=size(crdl);
Ed=zeros(N,l);

for jj=l:N

crdtmp=[crd2(:,l)+c:rdl(jj,1) crd2(:,2)+crdl(jj,2) ...

crd2(:,3)+crdl(jj,3)];

ndx=spinmd_ndx(crdtmp,RGl);

tagged=O;

if jj==ndxO

tagged=l;

end

Ed(jj)=-sum(eO(jj,:).*spinmd_bloc(sigma,eO,ndx,ndxO,tagged,g,l));

end

% compensate for double count
Edtotal=sum(Ed)/2;

return

function eO=spinmd_ic(N,randseed)
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% function eO=spinmd-ic(N,rmdseed)
% spinmd_ic.m

% spinmd: molecular dynamics simulations for classical spins
% ic: generate N uniformly distributed random vectors on the

% surface of a unit sphere

% refs: G. Marsaglia, Ann. Math. Stat. 43, 645 (1972).

rand(’seed~,randseed);

eta=zeros(N*10,3);

eta(:,l:2)=l-2*rand(N*10,2);

eta(:,3)=eta(:,1).-2+eta(:,2).-2;

tmp=eta(find(eta(:,3)<1),:);

% eO: size N*3

eO=[2*tmp(l:N,l).*sqrt(l-tmp(l:N,3)), ...
2*tmp(l:N,2).*sqrt(l-tmp(l:N,3)), l-2*tmp(l:N,3)];

return

function ndx=spinmd_ndx(crdtmp,RGl)

% function ndx=spinmd_ndx(crdtmp,RGl)
% spinmd_ndx.m

% spinmd: molecular dynamics simulations for classical spins

% ndx: periodic boundry condition

% ‘== periodic BC

crdtmp=crdtmp-round(crdtmp/(2*RGl+l))*(2*RG1+1);

% ndx: index of spins, map to crdl

ndx=((crdtmp(:,l)+RGl)*(2*RG1+1)”2 +...

(crdtmp(:,2)+RGl)*(2*RGl+l)+ (crdtmp(:,3)*RGl) + 1);
return

function [crd,N]=spinmd_rad(rad)

% function [crd,Nl=spinmd-rad(rad)
% spinmd_rad.m

% spinmd: molecular dynamics simulations for classical spins

% rad: generate coordinates of the integer points

% within a sphere of radius rad, but not include [0 O 01
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% rad: I*I integer, radius of the sphere

% N: number of neighbors within the sphere
N=O;

for ii=-floor(rad):ce:il(rad)

for jj=-floor(rad):ceil(rad)

for kk=-floor(rad):ceil(rad)

if ii”2+jj-2+lkk”2<= rad”2 & ii”2+jj”2+kk”2 > 0
N=N+l;

end

end

end

end

% structure of crcl: bcy z sqrt(x”2+y-2+z-2)1
crd=zeros(N,4) ;
cnt=O;
for ii=-floor(rad) :ceil(rad)

for jj=-floor(rad) :ceil(rad)
for kk=-floor(rad) :ceil(rad)

if ii”2+jj-2+kk”2 <= rad”2 & ii-2+jj-2+kk-2 > 0

cnt=cnt+l;

crd(cnt,:)=[ii jj kk sqrt(ii”2+jj-2+kk-2)];

end

end

end

end

return

B.2.5 Pulse Rotation

All the spins are first treated by an ideal pulse along –y-axis with tipping angle

0.The correspondingrotationinthe spinspaceis

I 1
cos(~) O – sin(8)

I-@+) = o 1 0 Pj(0))forj =0, .”.,~–l (B.11)

sin(d) O cos(d)
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where time t = 0+ denotes the point immediately after the pulse,

function eO=spinmd_roty(eO,theta)

% function eO=spinmd_roty(eO,theta)

% spinmd_roty.m

% spinmd: molecular dynamics simulations for classical spins

% roty: rotate vector along +y axis by theta angle (in radius)

% rotation matrix [COS(theta) O -sin(theta);O 1 O;

% sin(theta) O cos(theta)l

eO=([cos(theta) O -sin(theta);O 1 O;...

sin(theta) O cos(theta)]*eO.’).’;

return

B .2.6 Canonical Ensemble Average

Finally, the FID is estimated by averaging ~~=~lpZj(t) over the trajectories

weighed by the equilibrium Boltzman probabilities of the initial configurations

N–1 N–1

(~ Aj(t))~ ~ e-9(H”+%:)~ pzj(-t)
jsl trajectories j=o

function [fidO,fidl]=sphmd_avg(M,beta,Es ,E1,Es1)

%function [iidO, f idl] ‘spinmd_avg(M, beta, Es ,El ,Esl)
%

%

x
%
%
%
%
%

spinmd_sl.m
spinmd: molecular dynamics simulations for classical spins

avg: canonical ensemble average
M: magnetization data, (# trajectories)*(# fid points)
Es: spin energy, (# trajectories)*l
El: lattice energy, (# trajectories)*l
Esl: spin-lattice coupling energy
fidO=exp[-b(Es+El)] *M

(B.12)
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% fidi={[exp(-b*Esl) -11 *exp [-b* (ES+E1)I 3*M

f idO=(exp(-beta* (Es+El) ) . ‘ ) *M;

%fidl=(((exp(-beta*Esl) -1) .*exp(-beta* (Es+E1))).’)*M;
fidl=((-beta*Esl .*exp(-beta*(Es+El) )). ’)*M;

return
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