Raman and Infrared Studies of the Sharp 890 cm\(^{-1}\) Mode in Organic Superconductors

J. E. Eldridge, Y. Lin

Department of Physics & Astronomy
University of British Columbia
Vancouver, B.C. V6T 1Z1 Canada

J. Schlueter, H. H. Wang, A. M. Kini

Argonne National Laboratory
Materials Science Division
9700 S. Cass Avenue
Argonne, IL 60439

Molecular Crystals and Liquid Crystals

Pacifichem 2000 Meeting
December 14-19, 2000
Honolulu, Hawaii

Work supported by the U.S. Department of Energy, BES-Materials Sciences, under contract W-31-109-ENG-38.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Raman and infrared spectra of several organic superconductors are presented, showing some unusual behaviours of a sharp line at 890 cm\(^{-1}\) in both spectra. These include a frequency shift below \(T_c\), a positive deuterium isotope shift, frequency softening at low temperatures and sensitivity to lattice superstructure. It is proposed that either the ion or the neutral molecule has a distortion with a strong \(v_{60}(B_{3g})\) mode component.

Keywords Raman; Infrared; Organic; Superconductors; Electron-phonon

INTRODUCTION

Figure 1 shows the Raman spectra of \(\kappa-(BEDT-TTF)\)_\(2\)Cu[N(CN)\(_2\)]Br taken with a visible laser and with an infrared laser [1]. Eleven of the twelve totally-symmetric \((A_g)\) modes of vibration, assuming \(D_{2h}\) symmetry, are indicated on the visible spectrum. The infrared-laser spectrum is a resonant spectrum and not all of the \(A_g\) modes are seen. The resonant modes which are seen are also the modes which are very intense in the infrared spectrum, where they have been activated.
through an electron-phonon interaction. This may be seen in figure 2.
The most intense of these A_g modes are $v_3 (A_g)$, and $v_9 (A_g)$. They have been shifted down in frequency in the infrared spectrum again due to the electron-phonon interaction.

![Figure 1](image_url)

FIGURE 1 The Raman spectra taken with two lasers.

The electronic transition responsible for the resonant Raman spectrum is clearly the same as that producing the infrared activity. For the totally-symmetric modes the transition is the transfer of charge between two molecules in a dimer, oscillating out of phase. The totally-symmetric modes change the size of the molecule, as does the amount of charge on the molecule. Charge therefore moves from the molecule decreasing in size to the molecule increasing in size. The infrared dipole is perpendicular to the molecular plane, as may be seen in the α and β-phase materials, where the molecules are arranged in stacks.

The sharp line near 890 cm$^{-1}$ in figs. 1 and 2, on the other hand, appears not to be due to an A_g mode. We have assigned it to $v_{60}(B_{3g})$. This paper presents some new and some previously-published unusual properties of this spectral line and we attempt to explain them. (In our earlier papers we assigned it to $v_{49}(B_{2u})$.)
RAMAN AND INFRARED STUDIES OF 890 cm$^{-1}$ MODE

FIGURE 2 The Raman and infrared spectra (from [1]).

ASSIGNMENT

The assignment has been based on several infrared and Raman studies of various compounds, involving five different isotopic substitutions [2-4]. The measured shifts in two conducting salts along with the calculated shifts of some modes in the neutral ET compound are listed in Table 1. For a summary of the reasoning behind the $v_{60}(B_{3g})$ assignment see [4]. The atomic displacements in the $v_{60}(B_{3g})$ normal mode are drawn below in figure 3.

FIGURE 3 Atomic displacement vectors for $v_{60}(B_{3g})$ normal mode of vibration, assuming D$_{2h}$ point-group symmetry.
TABLE 1. Experimental frequencies and shifts of the “890 cm\(^{-1}\)” feature in two conducting ET salts, \(\kappa-(ET)_2[\text{Cu(NCS)}_2]\) and \(\kappa-(ET)_2\text{Cu[N(CN)}_2]\)Br, together with the calculated frequencies and shifts of modes which have approximately the same frequency in neutral ET.

<table>
<thead>
<tr>
<th>Natural (\nu)</th>
<th>(^{13}\text{C}(2))</th>
<th>(^{13}\text{C}(4))</th>
<th>(^{13}\text{C}(6))</th>
<th>(^{34}\text{S}(8))</th>
<th>(^{2}\text{H}(8))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infrared</td>
<td>881</td>
<td>2</td>
<td>2</td>
<td>25</td>
<td>4</td>
</tr>
<tr>
<td>Raman</td>
<td>890</td>
<td>+1</td>
<td>3</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>ET Calculated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\nu_6(A_g))</td>
<td>983</td>
<td>1</td>
<td>1</td>
<td>32</td>
<td>6</td>
</tr>
<tr>
<td>(\nu_7(A_g))</td>
<td>918</td>
<td>0</td>
<td>21</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(\nu_{48}(B_{2u}))</td>
<td>904</td>
<td>7</td>
<td>0</td>
<td>25</td>
<td>7</td>
</tr>
<tr>
<td>(\nu_{49}(B_{2u}))</td>
<td>872</td>
<td>20</td>
<td>0</td>
<td>27</td>
<td>5</td>
</tr>
<tr>
<td>(\nu_{60}(B_{3g}))</td>
<td>885</td>
<td>2</td>
<td>0</td>
<td>26</td>
<td>6</td>
</tr>
</tbody>
</table>

Another consideration in the assignment of \(\nu_{60}(B_{3g})\) is the fact that all 12 of the totally-symmetric \(A_g\) modes are observed in the spectrum of the neutral ET compound, along with their expected isotope shifts. The sharp 890 cm\(^{-1}\) line is not present in this spectrum but appears only in the spectra of the ET salts. (See figure 4)

EFFECT OF \(T_c\)

Figure 5 shows the frequency of the \(\nu_{60}(B_{3g})\) feature in the Raman spectrum of \(\kappa-(\text{BEDT-TTF})_2\text{Cu[N(CN)}_2]\)Br as a function of temperature[1]. A frequency increase of \(2.2 \pm 0.4 \text{ cm}^{-1}\) is observed at temperatures below the \(T_c\) of 11.6K. This increase was measured in
RAMAN AND INFRARED STUDIES OF 890 cm$^{-1}$ MODE

FIGURE 4 The Raman spectra of neutral ET at three temperatures, taken with an infrared laser [5].

FIGURE 5 The frequency of the $\nu_{60}(B_{3g})$ Raman feature as a function of temperature.
two different refrigerators, a Janis and a heli-tran. In the former the sample was immersed in superfluid liquid helium at the lowest temperature. When the sample is rapidly cooled, which suppresses the superconductivity, the frequency shift is no longer present, (see fig. 5). Clearly the shift is superconductivity-induced. We see no shift in any of the other strong features in our spectrum, although shifts have been measured by Pedron et al. [6] in the low-energy lattice modes.

In a similar experiment with κ-(BEDT-TTF)$_2$[Cu(NCS)$_2$] we observed no frequency shift but it is possible that we were not able to cool it sufficiently slowly. We did, however, observe a shift in α-(BEDT-TTF)$_3$ below the T_c of 8K. This time the shift was a decrease of $1.7 \pm 0.4 \text{ cm}^{-1}$ in the upper component of the doublet structure (see fig. 6 below).

FIGURE 6 The frequency of the two components of the $v_{60}(B_{3g})$ feature in $\alpha(\text{BEDT-TTF})_3$ as a function of temperature.

DEUTERIUM ISOTOPE SHIFT

In all of the ET compounds investigated so far we measure a frequency increase of 7-9 cm$^{-1}$ of the $v_{60}(B_{3g})$ feature upon deuteration. The
same increase is measured in the Raman and in the infrared spectra. This shift may be seen for κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Br in figure 7 below.

![Raman and infrared spectra](image)

FIGURE 7 The Raman line due to $v_{60}(B_{3g})$ in protonated and deuterated κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Br, as well as in β-(BEDT-TTF)I$_3$, all at 10K.

The hydrogen atoms are not directly involved in the $v_{60}(B_{3g})$ ring deformation of fig. 3. The above shift must result from a lattice effect involving the interaction of the ethylene groups with those of their nearest ET neighbours as well as the adjacent anions.

SUPERSTRUCTURE

Figure 7 above shows the $v_{60}(B_{3g})$ doublet seen in β-(BEDT-TTF)I$_3$. This doublet develops below 190K, at which temperature neutron [7] and x-ray studies [8] have shown an incommensurate structural modulation of the triiodide anions and ET molecules. However, no
splitting is observed for any other of the strong Raman lines, indicating that $v_{60}(B_{3g})$ is particularly sensitive to effects from the surrounding lattice.

TEMPERATURE EFFECT

Figure 8 below shows the effect of temperature on the frequencies of the Raman lines due to the $v_{60}(B_{3g})$ and $v_9 (A_{g})$ modes in κ-(BEDT-TTF)$_2$[Cu(NCS)$_2$]. Both of them show a definite softening below about 100K at which temperatures evidence has been found for magnetic fluctuations. An interaction between the fluctuating antiferromagnetism and these phonon modes may therefore be responsible for these softenings. (In fig. 5 no softening is seen for $v_{60}(B_{3g})$ in κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Br but the very flat temperature dependence of the frequency may be due to the competition between the magnetic softening and the usual lattice hardening.)

![Figure 8](image)

FIGURE 8 The frequencies of two Raman lines in κ-(BEDT-TTF)$_2$[Cu(NCS)$_2$] as a function of temperature.
DISCUSSION

How therefore does \(\nu_{60}(B_{3g}) \) become infrared-active and strongly Raman resonant? Because of the nature of the mode we have previously speculated that it may involve transfer of charge not between dimers but between other neighbouring ET molecules. However, inspection of the infrared spectra from \(\alpha \) and \(\beta \)-phase materials shows that the \(\nu_{60}(B_{3g}) \) infrared line is also polarized along the ET stacks. Kaplunov and Lyubovskaya [9] have discussed electron-vibrational bands involving non-totally symmetric phonons. If the symmetry of the neutral ET molecule and the ET\(^+\) ion are both totally-symmetric then only \(A_g \) phonons are allowed. If, however, one of them is not totally-symmetric then other phonons are allowed. This means therefore that in these salts either the ET molecule or the ET\(^+\) ion has a small ring deformation with a strong \(\nu_{60}(B_{3g}) \) component. Since the neutral ET molecule is already distorted in a "boat-like" structure, then it may also have this ring deformation. Whichever of the two is distorted, the electron-phonon mechanism is then strong and obvious, as the charge will oscillate between the two in a dimer as they vibrate out of phase in the distortion mode, giving rise to infrared activity and Raman resonance.

The distortion would explain the different intensities of the Raman \(\nu_{60}(B_{3g}) \) line in the molecular and ionic spectra. The removal of free carriers, involved in the presence or absence of the distortion, in the superconducting phase may explain the frequency shift below \(T_c \). If the distortion depends not only on charge but on the presence of nearest ET neighbours, which interact through the ethylene groups, then the positive deuterium shift may be understood. The distortion would of course be sensitive to any lattice superstructure, and perhaps the doublet in the triiodide results from separate ionic and neutral-molecule vibrations. Certainly with strong electron-phonon coupling the mode would be sensitive to the ordering of electron spins in antiferromagnetism as seen in several compounds and also in the \(\nu_9 \) \((A_g) \) Raman line.
Acknowledgements
The work at the University of British Columbia was supported by Grant 6-85653 from the Natural Sciences and Engineering Research Council of Canada. The work at Argonne National Laboratory was performed under the auspices of the Office of Basic Energy Sciences, Contract No. W-31-109-Eng-38.

References