TRAC-M
Fortran 77, Version 5.5

PROGRAMMERS GUIDE

VOLUME III

by
R. G. Steinke, S. J. Jolly-Woodruff, and J. W. Spore

Nuclear Systems Design and Analysis Group TSA-10
Technology and Safety Assessment Division

Los Alamos National Laboratory

Los Alamos, New Mexico

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

TRAC-M
 Fortran 77, Version 5.5
 PROGRAMMERS GUIDE
 VOLUME III

by
R. G. Steinke, S. J. Jolly-Woodruff, and J. W. Spore

Abstract

The Transient Reactor Analysis Code (TRAC) was developed to provide advanced best-estimate predictions of postulated accidents in light-water reactors. The TRAC-M program provides this capability for pressurized water reactors and for many thermal-hydraulic test facilities. The code features a one- (1-), two- (2-), and three-dimensional (3D) treatment of the pressure vessel and its associated internals. The code includes a two-fluid nonequilibrium hydrodynamics model with a noncondensable-gas field and solute tracking, flow-regime-dependent constitutive equation treatment, optional reflood tracking capability for bottom- and top-flood and falling-film quench fronts, and a consistent treatment of the entire accident sequences, including the generation of consistent initial conditions. The stability-enhancing two-step numerical algorithm is used in the 1-, 2-, and 3D hydrodynamics, and permits violation of the material Courant limit. This technique permits large timesteps, hence the running time for slow transients is reduced.

TRAC-M has a heat-structure (HTSTR) component and a radiation heat-transfer model that allows the user to model heat transfer accurately for complicated geometries. An improved reflood model based on mechanistic and defensible models has been added. TRAC-M also contains improved constitutive models and additions and refinements for several components.

This manual is the third volume of a four-volume set of documents on TRAC-M. This guide was developed to assist the TRACM programmer and contains information on the TRAC-M Version $1.10+$ code and data structure, the TRAC-M calculational sequence, and memory.

CONTENTS

ABSTRACT iii
TABLE OF CONTENTS iv
LIST OF FIGURES x
LIST OF TABLES x
AUTHORS AND ACKNOWLEDGMENTS xi

1. INTRODUCTION 1
2. CODE ARCHITECTURE 1
2.1. Code Structure 1
2.2. Data Structure 4
2.2.1. 1D Data Structure 4
2.2.1.1. Adding a 1 D database variable 5
2.2.2. 3D Data Structure 7
2.2.2.1. Mesh-wise vs cell-wise data storage 7
2.2.2.2. Mesh-wise implementation for 3D data 8
2.2.2.2.1. Include file PARSET1.H 9
2.2.2.2.2. Loop limits 10
2.2.2.2.3. Mesh-wise storage for one variable in one level 14
2.2.2.3. Classification of array variables 15
2.2.2.3.1. Relation of position and classification 17
2.2.2.3.2. Special restrictions on ordering elements of array variables 17
2.2.2.3.3. Miscellaneous restrictions on the positions of VESSEL array variables 18
2.2.2.4. Referencing 3D arrays for VESSEL coding 18
2.2.2.5. Boundary or phantom cells 19
2.2.2.6. Adding or deleting a 3D database array variable 21
3. TRAC-M CALCULATIONAL SEQUENCE. 22
3.1. General Summary 22
3.2. Input Processing 27
3.3. Initialization 30
3.4. Prepass, Outer-Iteration, and Postpass Calculations 32
3.4.1. Prepass Calculation 32
3.4.2. Outer-Iteration Calculation 35
3.4.3. Postpass Calculation 37
3.5. Timestep Advancement and Backup 38
3.6. Output Processing 40
4. INPUT/OUTPUT IN SI OR ENGLISH UNITS 43
5. MEMORY MANAGEMENT 46
6. TRAC-M FOR VARIOUS COMPUTER SYSTEMS 48
APPENDIX A TRAC-M SUBPROGRAMS A-1
A.1. C-Language Routines A-1
A.2. FORTRAN-Language Routines A-2
APPENDIX B TRAC-M SUBROUTINE CALLING SEQUENCE B-1
APPENDIX C DESCRIPTION OF TRAC-M COMPONENT COMMON-BLOCK VARIABLES C-1
C.1. POINTER TABLES C-1
C.1.1. DUALPT.H C-1
C.1.2. HYDROPT.H C-6
C.1.3. INTPT.H C-12
C.1.4. HEATPT.H C-12
C.2. BREAK COMPONENT C-14
C.2.1. BREAKVLT.H-BREAK Specific Component Table with Common Block breakCom C-14
C.2.2. BREAKPT.H-BREAK Pointer Table C-17
C.3. FILL COMPONENT C-17
C.3.1. FILLVLT.H—FILL Specific Component Table with Common Block fillCom C-17
C.3.2. FILLPT.H-FILL Pointer Table C-20
C.4. HEAT-STRUCTURE COMPONENT C-21
C.4.1. RODVLT.H-Heat-Structure ROD or SLAB Specific Component Table with Common Block rodCom C-21
C.4.2. RODPT.H-Heat-Structure Pointer Table C-34
C.4.3. RODPT1.H—Heat-Structure Pointer Table C-40
C.5. PIPE COMPONENT C-46
C.5.1. PIPEVLT.H—PIPE Specific Component Table with Common Block pipeCom. C-46
C.5.2. PIPEPT.H-PIPE Pointer Table C-50
C.6. PLENUM COMPONENT C-50
C.6.1. PLENVLT.H-PLENUM Specific Component Table with Common Block plenCom C-50
C.6.2. PLENPT.H—PLENUM Pointer Table C-52
C.7. PRESSURIZER COMPONENT C-54
C.7.1. PRIZEVLT.H—PRIZER Specific Component Table with Common Block prizCom C-54
C.8. PUMP COMPONENT C-57
C.8.1. PUMPVLT.H—PUMP Specific Component Table with Common Block pumpCom C-57
C.8.2. PUMPPT.H-PUMP Pointer Table C-63
C.9. SEPD AND TEE COMPONENTS C-64
C.9.1. TEEVLT.H—SEPD or TEE Specific Component Table with Common Block teeCom. C-64
C.9.2. TEEPT.H-SEPD or TEE Pointer Table C-74
C.10. TURBINE COMPONENT C-75
C.10.1. TURBNVLT.H—TURB Specific Component Table with Common Block turbCom C-75
C.10.2. TURBPT.H-TURB Pointer Table C-80
C.11. VALVE COMPONENT C-81
C.11.1. VALVEVLT.H—VALVE Specific Component Table with Common Block valveCom C-81
C.11.2. VLVEPT.H-VALVE Pointer Table. C-85
C.12. VESSEL COMPONENT C-86
C.12.1. VSSELVLT.H—VESSEL Specific Component Table with Common Block vssCom C-86
C.12.2. VSSLPT.H—VESSEL Pointer Table C-94
C.12.3. EQUIV.H—VESSEL Arrays. C-102
APPENDIX D DESCRIPTION OF TRAC-M COMMON-BLOCK VARIABLES D-1
D.1. BANDW.H D-1
D.2. BKCNTRL.H D-1
D.3. BKPOST.H D-2
D.4. BLANKCOM.H D-2
D.5. BOIL.H D-5
D.6. CCFLCM.H D-6
D.7. CDBLKS.H D-7
D.8. CFLOW.H D-7
D.9. CHECKS.H D-8
D.10. CHFINT.H D-9
D.11. CHGALP.H D-9
D.12. CIFLIM.H D-9
D.13. CNRSLV.H D-10
D.14. CONCCK.H D-10
D.15. CONDHT.H D-11
D.16. CONSTANT.H D-11
D.17. CONTRLLR.H D-11
D.18. COUPLE.H D-20
D.19. CDAMPER.H D-20
D.20. DECAYC.H D-20
D.21. DEFVAL.H D-21
D.22. DETC.H D-22
D.23. DF1DC.H D-22
D.24. DIDDLE.H D-25
D.25. DIDDLH.H D-27
D.26. DIDDLI.H D-28
D.27. DIMNSION.H D-29
D.28. DLIMIT.H D-30
D.29. DMPCK.H D-32
D.30. DMPCTRL.H. D-32
D.31. DTINFO.H D-33
D.32. DTPC.H D-35
D.33. EDIFF.H D-36
D.34. ELVKF.H D-37
D.35. EMOT.H D-37
D.36. ERRCON.H D-38
D.37. FILM.H D-41
D.38. FIXEDLT.H D-42
D.39. FIXUM.H D-43
D.40. FLUID.H D-43
D.41. GENPT.H D-44
D.42. GRAPHICS.H D-44
D.43. H2FDBK.H D-45
D.44. HPSSD.H D-45
D.45. HTCAV.H D-47
D.46. HTCREF1.H D-47
D.47. HTCREF2.H D-49
D.48. HTCREF3.H D-49
D.49. HTCS.H. D-49
D.50. IFCRS.H D-50
D.51. IFDPTR.H D-56
D.52. INFOHL.H D-57
D.53. IOUNITS.H. D-57
D.54. ITERSTAT.H D-59
D.55. JUNCTION.H. D-59
D.56. LABELV.H D-60
D.57. MASSCK.H D-63
D.58. MELFLG.H D-63
D.59. MEMORY.H D-63
D.60. NAVGN.H. D-63
D.61. NMFAIL.H D-64
D.62. NRCMP.H D-64
D.63. OVLI.H. D-64
D.64. PMPSTB.H D-64
D.65. POINTERS.H D-65
D.66. PSE.H. D-69
D.67. RADATA.H D-70
D.68. RADNEL.H D-70
D.69. RADTMP.H D-77
D.70. REFHTI.H D-77
D.71. REFHTI2.H D-78
D.72. RESTART.H D-78
D.73. ROWS.H D-79
D.74. RSPARM.H D-79
D.75. SEPCB.H D-79
D.76. SIGNAL.H D-80
D.77. SOLCON.H D-80
D.78. STDYERR.H D-80
D.79. STNCOM.H D-82
D.80. STRTNT.H D-82
D.81. SUPRES.H D-82
D.82. SYSSUM.H D-83
D.83. TEEOPT.H D-83
D.84. TF3DC.H D-84
D.85. THERM.H D-84
D.86. THERMV.H D-85
D.87. TMP.H D-85
D.88. TOTALS.H D-86
D.89. TSATCN.H D-87
D.90. TST3D.H D-87
D.91. TWOSTEP.H D-88
D.92. VCKDAT.H D-88
D.93. VDVMOD.H D-89
D.94. VELLIM.H D-89
D.95. WEBNUM.H D-90
D.96. XTVCOM1.H D-91
D.97. XVOL.H D-91
APPENDIX E EXAMPLE OF MAKING CHANGES TO TRAC-M E-1
E.1. INTRODUCTION E-1
E.2. INPUT-DATA FILE LABNEW FOR LABPRG.F E-3
E.3. UP1DPTR CHANGES TO TRAC-M E-3
APPENDIX F LABPRG FOR UPDATING UNITS LABELS IN TRAC-M. F-1
F.1. INTRODUCTION F-1
F.2. LABPRG.F INPUT DATA F-1
F.3. LABPRG.F OUTPUT DATA F-4
F.4. ARCHIVE FILES F-5
F.5. LISTING OF FILE LABIN F-6
F.6. LISTING OF FILE LABELV.H F-32
F.7. LISTING OF FILE BLKDAT2.H F-33
APPENDIX G TRAC-M CONTROL-LOGIC BIT DEFINITIONS G-1
G.1. INTRODUCTION G-1
G.2. LISTING OF FILE BITFLAGS.H G-1

LIST OF FIGURES

1 TRAC-M module structure. 2
2 Transient calculation flow diagram 23
3 Steady-state calculation flow diagram 26
4 Outer-iteration calculation flow diagram 36
LIST OF TABLES
1 TRAC-M modules 3
2 First index of the component-junction array, JUN 29
3 Component-driver subroutines. 34

ACKNOWLEDGMENTS

Many people contributed to recent TRAC-P and TRAC-M code development and to this report. We would like to acknowledge the contributions of Laura A. Guffee, who was a major contributor to an earlier version of the TRAC code. Because it was a team effort, there was considerable overlap in responsibilities and contributions. The participants are listed according to their primary activity. Those with the prime responsibility for each area are listed first.

Principal Investigators:	Jay W. Spore, Susan J. Jolly-Woodruff, Ju-Chuan Lin, Ralph A. Nelson, Robert G. Steinke, and James F. Dearing
Fluid Dynamics:	Jay W. Spore, Susan J. Jolly-Woodruff, Ju-Chuan Lin, and Robert G. Steinke
Heat Transfer:	Ralph A. Nelson, Kemal Pasamehmetoglu, Norman M. Schnurr, and Cetin Unal
Neutronics:	Robert G. Steinke and Jay W. Spore
Code Development and Programming:	James F. Dearing, Susan J. Jolly-Woodruff, Paul T. Giguere, Ju-Chuan Lin, Victor Martinez, Jay W. Spore, and Robert G. Steinke
Control Procedure:	Robert G. Steinke
Graphics:	James F. Dearing, Victor Martinez, and Michael R. Turner
Report compilation:	Jay W. Spore, Paul T. Giguere, and Robert G. Steinke
Editing:	Gloria E. Mirabal

In addition to those listed on the previous page, we acknowledge all others who contributed to earlier versions of TRAC. In particular, the two-step numerics and network solver developed by John Mahaffy are a major part of the TRAC-P and TRAC-M codes. Dennis R. Liles contributed heavily to the thermal-hydraulics modeling and to the overall direction of MOD1 code development. Frank L. Addessio developed the steam-generator component, and Manjit S. Sahota developed the critical-flow model and the turbine component. Thad D. Knight provided direction for improvements to TRAC based on assessment-calculation feedback and he coordinated the development of the MOD1 Correlation and Models document. Richard J. Pryor, Sandia National Laboratories, and James Sicilian, Flow Science, Inc., provided major contributions to the code architecture. We also acknowledge useful discussions and technical exchanges with Louis M. Shotkin and Novak Zuber, US Nuclear Regulatory Commission; Terrence F. Bott, Francis H. Harlow, David A. Mandell, and Burton Wendroff, Los Alamos National Laboratory; John E. Meyer and Peter Griffith, Massachusetts Institute of Technology; S. George Bankoff, Northwestern University; Garrett Birkhoff, Harvard University; and Ronald P. Harper, Flow Science Inc.

The TRAC-M Programmers Guide has been developed to assist the Transient Reactor Analysis Code (TRAC) programmer. Much of the information presented here is provided in appendices. The appendices are self-contained and are meant to be used as references. Topics of discussion addressed in the body of this manual include the TRAC-M calculational sequence, the TRAC-M code structure and data structure, computer-memory management, and various machine configurations supported by TRAC-M, FORTRAN 77, Version 5.5.

2. CODE ARCHITECTURE

The description of the TRAC-M code architecture given here is divided into two areas: code structure and data structure. Because the data structure for the onedimensional (1D) hydraulic components differs from that of the three-dimensional (3D) VESSEL component, the structures are detailed separately in the following discussion.

2.1. Code Structure

TRAC was developed in a modular fashion in an effort to strive for a code structure that minimizes the problems of maintaining and extending the code. This modularity manifests itself in two important ways. First, because TRAC analyzes nuclear-reactor systems that consist of specific component types, the code is written to utilize subroutines that handle specific component types. For example, data and calculations pertaining to a PIPE component are handled separately from data and calculations for a VESSEL component. The different TRAC-M components are described in greater detail in the TRAC-M Users Guide, the second volume of manual documentation. Second, the TRAC program is written to be functionally modular; that is, each TRAC subprogram performs a specific function. Some lowlevel subprograms are used by all components, thereby strengthening this modularity. Appendix A lists all TRAC-M subroutine and function routines and their descriptions. For each routine, Appendix B lists all routines that it calls and all routines from which it is called.

Functional modularity within TRAC-M is taken a step further by grouping routines into modules. Figure 1 displays a calling-tree representation of the TRAC modules. A brief description of the function of each module is presented in Table 1. Use of a module overlay structure was mandated originally by computer-memory

Fig. 1.
TRAC-M module structure.
size limitations where only selected module overlays would be in the computer memory at any given time. This is no longer true because sufficient computer memory is available for the entire TRAC-M executable on computer platforms on which TRAC-M is currently run. The module overlay structure in TRAC-M is no longer maintained for users with small-memory computers. Subsequent references to modules refer to that portion of TRAC-M coding that used to be loaded into and unloaded from computer memory as a block but is now resident in computer memory at all times during a calculation.

The overall sequence of the calculation is directed by the TRAC main program. Module INPUT always is invoked at the start of each TRAC execution to read control-procedure and component input data. Component data are initialized by the module INIT. A steady-state calculation (if requested) is performed by subroutine STEADY. During a steady-state calculation, the reactor-core power is initially zero and is set to its steady-state power level after fluid flow has been

TABLE 1
TRAC-M MODULES

Module Description

TRAC Controls overall flow of the calculation
(also contains many service routines used throughout the code).
CLEAN Closes all output files.
DUMP Performs restart dumps.
EDIT Adds an output edit at the current time to the TRCOUT file.
ICMP Initializes component data.
INIT Controls initialization of component and graphics data.
INPUT Controls reading input and restart files and analyzes piping loops.
OUTER Controls one complete outer iteration for all components.
OUT1D Performs one outer iteration on the basic finite-difference flow equations for all 1D hydraulic components.
OUT3D Performs one outer iteration for all 3D VESSEL components.
POST Performs postpass for all hydraulic and heat-structure components.
PREP Performs prepass for all components.
PRP1D Performs the prepass calculations for 1D components.
PRP3D Performs prepass calculation for all 3D VESSEL components.
RDIN1 Inputs and stores 1D hydraulic-component data.
RDIN3 Inputs and stores 3D VESSEL-component data.
RDRES Reads and stores data from the restart-data TRCRST file.
TRIPS Evaluates signal variables, control blocks, and trips for the control procedure.
established. This prevents high rod temperatures early in the steady-state calculation when the input fluid state generally starts from a stagnant (no-flow) condition. A transient calculation (if requested) is performed by subroutine TRANS. Modules EDIT and DUMP are called during a steady-state calculation by subroutine STEADY
and during a transient calculation by subroutine TRANS by calling subroutine PSTEPQ to generate current-time output results at the user's request. Overlay CLEAN is called to close all output files at the end of the calculation or when a fatal error occurs, aborting the calculation.

2.2. Data Structure

TRAC-M divides the data for each component into four blocks: genericcomponent table, specific-component table, pointer table, and array data. The first three blocks are stored in memory as COMMON blocks FLTAB, compCOM, and PTAB, respectively. COMMON Block compCOM has the comp part of its name replaced by the component name; i.e., BREAK, FILL, PIPE, PRIZ, PUMP, ROD, TEE, TURB, VALVE, and VSS. The structure of COMMON area FLTAB is the same for all components. Variables in COMMON blocks compCOM and PTAB differ from one component to another component. The specific-component and pointer tables for each component are described with definitions of their variables in Appendix C. Section D. 38 in Appendix D describes the generic-component table of the include file FIXEDLT.H with definitions of its variables.

Array data are stored in computer memory within the dynamic-storage container A array of blank COMMON. The location of an individual array variable is determined by the value of its pointer variable in the component pointer table for 1D hydraulic (BREAK, FILL, PIPE, PRIZER, PUMP, SEPD, TEE, TURB, and VALVE), 3D VESSEL, and heat-structure ROD or SLAB components. Dynamic storage of data arrays permits effective use of computer memory for different size problems. Aspects of computer-memory management are discussed further in Sec. 4.

In addition to the data that refer to a particular component, TRAC-M uses many variables to describe the overall solution state evaluated by the calculation. These variables are grouped in labeled COMMON blocks according to their use. Appendix D documents these COMMON blocks and lists their variables and the variable definitions.
2.2.1. 1D Data Structure. The pointer tables for all 1D hydraulic components have a similar structure consisting of four groups of pointer variables and one componenttype group. The first group of pointer variables contained in include file DUALPT.H locates dual-time hydrodynamic- and thermodynamic-parameter information. The main group of pointer variables contained in include file HYDROPT.H locates the remaining single-time hydrodynamic- and thermodynamic-parameter information.

Integer data stored as REAL*8 values are located using the third group of pointer variables contained in include file INTPT.H. The fourth group of pointer variables contained in include file HEATPT.H locates data for wall-heat transfer in those hydraulic components that support the wall heat-transfer calculation. Array data that are specific to a particular component type (if any such arrays exist) are located using the last group of pointer variables in the pointer table. The first three groups of pointer-table variables and the last group of pointer-table variables for each component type are defined in Appendix C.
2.2.1.1. Adding a 1D database variable. The standard guidelines given below are followed to add a new database variable to all 1D hydraulic components. Using these guidelines, a programming example, provided in Appendix E, adds a new variable to each group discussed above.

1. Create new pointer names for the new array variables and add them to the pointer tables of the appropriate include files.
a. If the new array variable requires both old-time and new-time REAL*8 values, then two new pointers must be added to the DUALPT.H include file. If the pointers become the first two pointers of the DUALPT.H include file because of alphabetic considerations, the EQUIVALENCE statement in DUALPT.H of LALP to PT(1) must be changed to reflect this.
b. If the new array variable with a single-time REAL*8 value is associated with the hydrodynamic calculation, its new pointer is added to the HYDROPT.H include file.
c. If the new array variable with a single-time integer value is stored as a REAL*8 value, its new pointer is added to the INTPT.H include file.
d. If the new array variable with a single-time REAL*8 value is associated with the wall heat-transfer calculation, its new pointer is added to the HEATPT.H include file.
2. Initialize the new pointers.
a. If new pointer variables were added to DUALPT.H, these new pointer variables are initialized in subroutine S1DPTR during module INPUT in the DUALPT.H pointer section.

- If the new array variable is one for which old-time and new-time values are the same at the start of the OUTER module (that is, the newtime value is reset to the old-time value in the event of a backup due to 1D component water packing, for instance), then the new old-time
pointer should be initialized after the LALP pointer and before the LVV pointer. Similarly, the new new-time pointer should be initialized after the LALPN pointer and before the LVVN pointer in the same relative position as the new old-time pointer.
- If the new array variable is one for which old-time and new-time values are not the same at the start of the OUTER module (that is, the new-time value is not reset to the old-time value in the event of a backup due to 1D component water packing, for instance), then the new old-time pointer should be initialized after the LBIT pointer but before the LVVTO pointer. Similarly, the new new-time pointer should be initialized after the LBITN pointer but before the LVVT pointer in the same relative position as the new old-time pointer.
- Define the value of the array pointer initialized directly after each new pointer you add to reflect correctly the size of the new pointer array storage requirement. Increment the value of LENPTR in the DUALPT.H pointer section of S1DPTR by the number of pointer variables added to the DUALPT.H include file.
b. If a new array pointer variable was added to HYDROPT.H, it is initialized in subroutine S1DPTR. The new pointer should be added before the LNXT pointer in the HYDROPT.H section of S1DPTR. Adjust the value of the LNXT pointer to reflect the size of the array storage of the newly added pointer variable. Increment the value of the variable LENPTR by the number of pointer variables added to the HYDROPT.H pointer section of S1DPTR.
c. If a new array pointer variable was added to INTPT.H, it is initialized in subroutine S1DPTR. The new pointer should be added before the LNXT pointer in the INTPT.H section of S1DPTR. Adjust the value of the LNXT pointer to reflect the size of the array storage of the newly added pointer. Increment the value of the variable LENPTR by the number of pointer variables added to the INTPT.H pointer section of S1DPTR.
d. If a new array pointer variable was added to HEATPT, it is initialized in subroutine S1DPTR. The new pointer should be added before the LNXT pointer in the HEATPT.H section of S1DPTR. Adjust the value of the LNXT pointer to reflect the size3 of the array storage of the newly added pointer. Increment the value of the variable LENPTR by the number of pointer variables added to the HEATPT pointer section of S1DPTR.

3. If the new array variables are to be output to the data-dump TRCDMP file, include a call to BFOUT in subroutine DCOMP for each variable to have its data output. If the new array variable being output is a cell-edge quantity with a size of NCELLS+1 elements, then increment LVEDGE by one. If the new array variable being output is a cell-center quantity with a size of NCELLS elements, then increment LVCNTR by one. If the new variable has dimensions other than NCELLS or NCELLS+1, increase LCOMP by the size of the new array variable.
4. To read in the new array variables from the data-dump file for restarting, file TRCRST, add calls to BFIN in subroutine RECOMP in the same order as the BFOUT calls were added to DCOMP (note that RECOMP must be changed if DCOMP is changed).
5. Add the new array variables to the argument list of the subroutines in which they will be calculated. Also include DIMENSION statements for these arrays. Perform the necessary calculations to determine the new variable values within the subroutines.
6. Add the new array variables to the argument list of all calling statements to the subroutines in which the new variables are calculated.
2.2.2. 3D Data Structure. The data structure used for the VESSEL hydrodynamic data in TRAC-M is mesh-wise, in contrast to the cell-wise data structure used in the TRAC-P implementation. VESSEL coding is defined directly in terms of twodimensional (2D) and 3D arrays. This new data structure was chosen primarily to simplify code development, improve code readability, and eliminate the use of EQUIVALENCE statements required by the inverted cell-wise database. Now the first subscript dimension is the I-direction cell number with a stride of 1 rather than a stride of NV for the total number of array parameters.
2.2.2.1. Mesh-wise vs cell-wise data storage. Data defined on a computational mesh can be stored in two ways: mesh-wise and cell-wise. For mesh-wise storage in TRACM , all values for a given data parameter or a given array (e.g., all pressures) are stored contiguously in computer memory. For cell-wise storage in TRAC-P, however, values for all the different data parameters associated with a single mesh cell (e.g., pressure, temperature, volume, etc.), are stored contiguously in computer memory. Reference to consecutive mesh cells of a given array parameter using cell-
wise storage will, of course, necessitate the use of a stride equal to the total number of data parameters stored for each cell.

Rather than using cell-wise storage as in TRAC-P, TRAC-M uses mesh-wise storage for the VESSEL 2- and 3D data. This methodology was chosen because it has certain advantages over cell-wise storage. These advantages include simpler code development and code maintenance through the avoidance of an NV stride applied to the I-direction cell number and not requiring EQUIVALENCE of the 2 - and 3D arrays to the container A array. The 2-and 3D arrays are now stored in their own labeled COMMON blocks.
2.2.2.2. Mesh-wise implementation for 3D data. TRAC-M stores its 2- and 3D arrays in COMMON blocks VSSWHAT and VSSARCOM, respectively. The 2D arrays are used to pass ($\mathrm{I}, \mathrm{J}, \mathrm{K}$) array data as (I, J) data for a given axial level K to/from the heattransfer calculation of a heat-structure component ROD or SLAB that the VESSEL is thermally coupled to. Include file EQUIV.H defines these COMMON blocks with the form:

```
        REAL*8 hla(ni,nj,nk),hva(ni,nj,l),q3drl(ni,nj,nk), . . .
        286 different parameter arrays
& sc2m(ni,nj,nk), scd2m(ni,nj,nk)
!
    COMMON /vssArCom/ hla,hva,q3drl, . . .
    . . . 286 different parameter-array names . . .
& . . . ,sc2m, scd2m
!
    REAL*8 ualpag(ni,nj),ualprw(ni,nj),ualpsm(ni,nj), . . .
    . . . 16 different parameter arrays . . .
& . . . ,vztb(ni,nj),mrefld(ni,nj)
!
COMMON /vssWhat/ ualpag,ualprw,ualpsm, . . .
. . . }16\mathrm{ different parameter-array names . .
& . . . .vztb,mrefld
```

In the TRAC-M implementation of the 2D array, NI and NJ are used. For the 3D arrays, NK is used for the third dimension. All are defined by PARAMETERstatement constants. This results in an input-data limit on the number of radial
rings or x -direction cells (first dimension), azimuthal sectors or y -direction cells (second dimension), and axial levels or z-direction cells (third dimension). As discussed in Sec. 5, hard-coded array dimensions have both code development and code debugging advantages over variable array dimensions; however, they also have disadvantages, including the possibility of having to change the source code for VESSEL input data with a larger dimension requirement.

The TRAC-M implementation of the VESSEL data may seem very similar to static-memory allocation. In fact, the implementation is flexible and dynamic in that the NI, NJ, and NK PARAMETER constants can be easily changed to redimension the 2 - and 3D arrays, and the number of 3D VESSEL components is arbitrary. Some computer-memory space will be wasted when a single VESSEL input model requires dimensions less than the NI, NJ, and NK constants and when a multi-VESSEL input model has individual VESSEL dimensions that are different and less than the NI, NJ, and NK constants.

We note that most implementation difficulties experienced with either cellwise or mesh-wise storage could be avoided by using widely available but nonstandard POINTER construct that associates arrays with variable starting addresses in a container array. The approach taken in TRAC-M, however, has been to use standard FORTRAN to ensure code portability.
2.2.2.2.1. Include file PARSET1.H. All 2- and 3D array data for the TRAC-M VESSEL component are declared in the include file EQUIV.H. The dimension PARAMETER constants NI, NJ, and NK are defined in the include file PARSET1.H.

All 2D or 3D arrays in the mesh-wise storage scheme have the same dimension. This is accomplished by the use of the following INTEGER PARAMETER constants defined in the include file PARSET1.H.

NV=1	Defines the stride between I-direction adjacent cells.
NXRMX $=24$	The maximum number of radial rings or x-direction cells in the 2D or 3D mesh.
NYTMX $=24$	The maximum number of azimuthal sectors or $y-$ direction cells in the 2 D or 3 D mesh.
NZMX=50	The maximum number of axial or z-direction cells in the 3D mesh.

$\mathrm{NXBCM}=2$	The number of phantom or boundary cells next to radial ring or x-direction cell 1 .
NYBCM $=2$	The number of phantom or boundary cells next to azimuthal sector or y-direction cell 1.
NZBCM $=2$	The number of phantom or boundary cells next to axial or z-direction cell 1.
$\mathrm{NXBCP}=1$	The number of phantom or boundary cells next to radial ring or x-direction cell NXRMX.
$N Y B C P=1$	The number of phantom or boundary cells next to azimuthal sector or y-direction cell NYTMX.
$N Z B C P=1$	The number of phantom or boundary cells next to axial or z-direction cell NZMX.

Combinations of these PARAMETER constants are then used to determine the array dimensions, i.e.,

$N 1 C N=N X R M X+N X B C M+N X B C P=27$	The total number of radial rings or x-direction cells.
$N I=N 1 C N^{*} N V=27$	The first dimension of the 2 D or $3 D$ arrays.
$N J=N Y T M X+N Y B C M+N Y B C P=27$	The total number of azimuthal sectors or y-direction cells and the second dimension of the 2D or $3 D$ arrays.
	The total number of axial or z- direction cells and the third dimension of the $3 D$ arrays.

The TRAC-M user should not change any of these PARAMETER constants, except for $N X R M X=24, ~ N Y T M X=24$, and $N Z M X=50$ when their maximum array dimensions are either inadequate (too small) or too wasteful of computer memory. Further discussion on using phantom or boundary cells is in Sec. 2.2.2.5.
2.2.2.2.2. Loop limits. All array-dimension loop-limit variable names have the same naming convention with the first letter, i.e., I, J, and K, indicating the first (radial- or x-direction), second (azimuthal- or y-direction), and third (axial- or z direction) array dimensions, respectively. The letter C in a name denotes a limit suitable for looping over cells, and the letter F denotes a limit suitable for looping
over cell faces. The convention for cell-face variables in the TRAC-M VESSEL is the same as in TRAC-P: the cell-face data at the outer r or x, forward θ or y, or upper z face of a cell have the same index as the data at the cell center. Note that, as indicated below, cell faces at the VESSEL boundaries are only included in the cell-face loops when their velocities need to be calculated as a result of using the generalized boundary-condition IVSSBF option for a pressure boundary condition.

The numeral 0 in a name denotes a lower limit, and the letter X denotes an upper limit. The suffix M denotes a lower limit that includes the phantom cell adjacent to the first physical cell, whereas the suffix MM denotes a lower limit that includes all the low-numbered phantom cells. The suffix P denotes an upper limit that includes the phantom cell adjacent to the last physical cell, whereas the suffix ALL denotes an upper limit that includes all the high-numbered phantom cells.

The variable names for the radial- or x-direction are:

ICOMM	Lower limit for loop over all radial rings or x direction cells in the computational mesh.
ICOM	Lower limit for loop over radial rings or x direction cells in the physical mesh and the adjacent low-numbered phantom or boundary radial ring or x -direction cell.
IC0	Lower limit for loop over all radial rings or x direction cells in the physical mesh.
IF0	Lower limit for loop over all radial-ring faces or x-direction-cell faces at which velocities are calculated.
ICX	Upper limit for loop over all radial rings or x direction cells in the physical mesh.
IFX	Upper limit for loop over all radial-ring faces or x-direction-cell faces at which velocities are calculated.
ICXP	Upper limit for loop over radial rings or x direction cells in the physical mesh and the adjacent high-numbered phantom or boundary radial ring or x-direction cell.
IALL	Upper limit for loop over all radial rings or x direction cells in the computational mesh.

The variable names for the azimuthal or y-direction loop limits can be obtained by replacing the leading I with a J, and those for the axial or z-direction loops by replacing the leading I with a K .

There is no reason why the code developer should have to change any of the coding of the loop limits in either include file PARSET2.H or in subroutine RVSSL. In fact, this is a major advantage of the TRAC-M VESSEL-data implementation: all maintenance of the memory-management functionality can be accomplished by changing only three variables in the include file PARSET1.H: NXRMX, NYTMX, and NZMX. The coding of the loop limits is described here merely for completeness.

Certain loop limits can, of course, be hard-coded with PARAMETER statements, which are defined as follows in the include file PARSET2.H:

```
JCOP =NYBCM+1
JCOMP =JCOP-1
JCOMMP=JCOP-NYBCM
KC0P =NZBCM+1
KC0MP =KCOP-1
KCOMMP=KCOP-NZBCM
```

The letter P in these names stands for "PARAMETER" because they are PARAMETER constants. These constants are copied to the corresponding COMMON variables JC0, JCOM, JCOMM, KCO, KCOM, and KCOMM using the standard naming convention in subroutine RVSSL.

Additional radial- or x-direction, azimuthal- or y-direction, and axial or z direction lower loop limits, as well as additional upper loop limits, are defined dynamically for each 3D VESSEL component in subroutine RVSSL. This coding is reproduced below (in a restructured form) where

NXR is the input number of physical radial rings or x-direction cells,
NYT is the input number of physical azimuthal sectors or y-direction cells,
NZZ is the input number of physical axial levels or z-direction cells,
IGEOM is 0 for cylindrical geometry and 1 for Cartesian geometry,
IGBCXR is nonzero for generalized radial- or x-direction boundary conditions,
IGBCYT is nonzero for generalized azimuthal- or y-direction boundary conditions, and IGBCZ is nonzero for generalized axial-direction boundary conditions.

In the current version of TRAC-M, IGBCXR and IGBCYT are always 0 and IGBCZ is only nonzero when the VESSEL outer boundary-condition input flag, IVSSBF, is nonzero.

For the first index representing the radial or x direction:

```
icOmm = lasti + 1
ic0 = ic0mm + nxbcm*nv
icOm = ic0 - nv
icx = ic0 + (nxr - 1)*nv
icxp = icx + nv
iall = icx + nxbcp*nv
lasti = lasti + iall
if0 = ic0
IF (igeom.EQ.1.AND.igbcxr.EQ.1) if0=ic0m
calculate nxrv, the number of radial-ring or x-direc-
tion-cell faces where velocities must be calculated.
IF (igeom.EQ.0) THEN
    if0 = ic0
    IF (igbcxr.EQ.0) THEN
        nxrv = nxr - 1
        ELSE
        nxrv = nxr
        ENDIF
ELSE
    IF (igbcxr.EQ.0) THEN
        if0 = ic0
        nxrv = nxr - 1
    ELSE
        if0 = ic0m
        nxrv = nxr + 1
    ENDIF
ENDIF
ifx = if0 + (nxrv-1)*nv
```

The inclusion of constant NV in this coding for the radial- or x-direction loop limits is a holdover from cell-wise storage where NV=291, the total number of different array parameters. The PARAMETER ($\mathrm{NV}=1$) statement in the include file PARSET1.H converts this defining form to mesh-wise storage. LASTI $=0$ for the first 3D VESSEL component and is incremented by IALL for each succeeding VESSEL component in a multi-VESSEL problem.

For the second index representing the azimuthal or y direction:

```
jcx = jc0 + nyt - 1
jcxp = jcx + 1
jall = jcx + nybcp
jf0 = jc0
```

```
IF (igeom.EQ.1.AND.igbcyt.EQ.1) jf0=jc0m
calculate nytv, the number of azimuthal-sector or y-
direction-cell faces where velocities must be calculated.
IF (igeom.EQ.O) THEN
    jf0 = jc0
    IF (nyt.GT.1) THEN
        nytv = nyt
    ELSE
        nytv = 0
    ENDIF
ELSE
    IF (igbcyt.EQ.0) THEN
        jf0 = jc0
        nytv = nyt - 1
    ELSE
        jf0 = jc0m
        nytv = nyt + 1
    ENDIF
ENDIF
jfx = jf0 + nytv - 1
```

For the third index representing the axial or z direction:

```
kcx = kcO + nzz - 1
kcxp = kcx + I
kall = kcx + nzbcp
kf0 = kc0
IF (igbcz.EQ.1) kf0=kc0m
calculate nzzv, the number of axial-cell
faces where velocities must be calculated.
IF (igbcz.EQ.0) THEN
    kf0 = kc0
    nzzv = nz - 1
ELSE
    kf0 = kc0m
    nzzv = nz + 1
ENDIF
kfx = kf0 + nzzv - 1
```

2.2.2.2.3. Mesh-wise storage for one variable in one level. TRAC-M uses temporary mesh-wise storage of a single axial level for input and output of a single 3D array variable. A temporary mesh-wise array sufficient to hold one level of data for one array is allocated with the pointer LTEMPS in subroutine RVSSL. Subroutine LEVELR is a generic procedure for transferring data from this temporary array to the appropriate axial level of the permanent array. Subroutine LEVELI is a generic
procedure for transferring data for a specific axial level from the permanent array to this temporary array.

As an example of using subroutine LEVELR, all VESSEL mesh data input in subroutine RVSSL is read into the temporary array on a level-by-level and array-byarray basis. After each "read," as processed by the LOAD routine, the data are transferred from the temporary array to the axial level of the indicated permanent array via the RLEVEL routine, which calls the LEVELR procedure. The LEVELR procedure is also used directly from routine REVSSL to transfer data when reading the data-dump restart TRCRST file.

The LEVELI procedure for transferring data for a specific axial level from the permanent array to the temporary array is used by two output procedures: DLEVEL to write a restart data dump for one level and one array, and WLEVEL to write output data to the TRCOUT file for one level and one array.

Routines LEVELR, LEVELI, RLEVEL, DLEVEL, and WLEVEL are all generic routines and should not need to be modified unless the TRAC-M code developer wishes to make a major change in implementation.
2.2.2.3. Classification of array variables. Two basic categories of array variables are present in the VESSEL hydrodynamic database: single-time and dual-time array variables. Both categories have subcategories leading to seven classes of array variables:

1. Single-time array variables:
1.1 Single-time, cell-centered (but not old-old-time) array variables that are either cell-centered, defined at the higher numbered cell faces, or defined at the lower numbered radial (x-direction) or axial cell faces.
1.2 Old-old-time array variables that store values at the start of the previous timestep to create an ad hoc "triple-time" capability.
1.3 Single-time, cell-face array variables defined at the backwards or lowernumbered azimuthal sector or y-direction cell face.
2. Dual-time array-variable pairs:
2.1 Old-time array variables for which the new-time values are calculated before the OUTER hydrodynamic stage.
2.2 Old-time array variables for which the new-time values are not calculated before the OUTER hydrodynamic stage.
2.3 New-time array variables for which their values are calculated before the OUTER hydrodynamic stage.
2.4 New-time array variables for which their values are not calculated before the OUTER hydrodynamic stage but may have been incorrectly calculated during OUTER before a backup.

The class of an array variable is determined according to how the array variable needs to be updated as the calculation progresses. Currently, no provision exists for an array variable belonging to more than one class.

Single-time array variables in Class 1.1 do not need to be automatically updated. This does not mean necessarily that their values don't change with time. Single-time array variables in Class 1.2 (currently only the gas volume fraction) are updated in subroutines TIMUPD and BAKUP in a manner analogous to that for dual-time array variables as described below. Single-time array variables in Class 1.3 require special logic, implemented in subroutine SETBDT, to ensure that values defined for azimuthal or y-direction phantom cells have the proper identification with the values for the actual cells.

Dual-time array variables are automatically updated, i.e., the old-time array variables take on the values of new-time array variables at the start of a timestep calculation. This coding is in subroutine TIMUPD for the VESSEL (note that this is the only mechanism for defining old-time values). In addition, the provision for separate classes of dual-time array variables allow for the code to back up (repeat a calculation with a different timestep size or other parameter) starting either at the beginning of a timestep or at the beginning of the OUTER hydrodynamic stage. Both backup procedures are in subroutine BAKUP. The differences in the two types of backups are discussed more thoroughly in Sec. 3.4.

Although an in-depth discussion of implementing the generic procedures applied to the different classes of array variables is outside the scope of this section, two aspects of the implementation affect the addition of array variables: the current implementation uses the relative position of an array variable in the database to determine its classification, and the relative positions of the array variables are known to the code through six parameters that rely on the database having a certain structure. In other words, the code developer must insert a new array variable in a position appropriate to its class and must ensure the maintenance of the assumed structure.

The relative position in memory of a mesh-wise array variable is referred to here either as its position or as its position in the database. This position is specific to its location in the vssArCom COMMON block defined in the include file EQUIV.H. In any case, the use of the word position here refers to the relative position of the array in computer memory when TRAC-M is executed.

Implementation procedures used for the VESSEL 3D database rely on a particular structure. This leads to a number of restrictions that must be observed when the code is modified by inserting an array variable. The major restrictions are related to the classification of array variables and are discussed in the next section. Special restrictions on the elements of array variables are given in Sec. 2.2.2.3.2, and some miscellaneous restrictions are given in Sec. 2.2.2.3.3.
2.2.2.3.1. Relation of position and classification. The current implementation of the generic procedures described above relies on the fact that the various classes of the VESSEL database are in the following order in the include file EQUIV.H, according to the position of the array variables in the class:

1) 1.1 [arrays HLA to SCD3M except ALPO] and 1.2 [array ALPO] (may be intermixed)
2) 2.1 [arrays BIT to CONCO]
3) 2.2 [arrays PA to OWLXR]
4) 2.3 [arrays BITN to CONC] (in one-to-one correspondence with 2.1)
5) 2.4 [arrays PAN to WLXR] (in one-to-one correspondence with 2.2)
6) 1.3 [arrays SPIFZ to SCD2M].

Because the implementation makes implicit use of these restrictions, it is essential that array variables that are added to include file EQUIV.H conform to these restrictions. TRAC-M allows for Class 1.1 array variables immediately before the Class 1.3 array variables. We do not recommend doing this because it complicates code maintenance. These particular restrictions were chosen to simplify implementing the generic procedures and to allow these procedures to be efficient on vector processors.
2.2.2.3.2. Special restriction on ordering components of array variables. For a subset of the cell-face array variables, the coding relies on the three components of the cellface arrays being adjacent in memory and being ordered with the azimuthal-sector or y -direction component first, the axial or z -direction component second, and the
radial-ring or x-direction component third. For example, in the include file EQUIV.H,


```
COMMON /vssArCom/ . . .,fayt,faz,faxr, . . .
```

This restriction also applies to the cell-face array variables referenced in subroutine SVSET3 for evaluating signal variables. Consequently, insertion of new variables must not change the relative order of the components for these cell-face array variables. We recommend, for readability as well as for prevention of future coding errors, that all cell-face array variables be stored so that the components are adjacent and ordered as above.
2.2.2.3.3. Miscellaneous restrictions on positions of VESSEL array variables. Coding in subroutine SVSET3 for evaluating signal variables for VESSEL parameters relies on variable HLA being the first array variable. We are not aware of any other restrictions other than those listed here explicitly. However, if new variables are added, we recommend that they not be put as the first variable of their class. Code developers familiar with TRAC-M have assumed that they can depend on those variables that are now first in their class to remain in that relative position.
2.2.2.4. Referencing 3D arrays for VESSEL coding. All VESSEL hydrodynamic routines are coded in TRAC-M with direct use of 3D arrays for the mesh data, i.e., ALP(I,, K$)$. This implementation considerably reduces the possibility of coding errors. Naturally, with typical TRAC noding, this use of 3D arrays does not provide long vector lengths for inner do-loops. TRAC-M has been coded with the loop over axial levels as the innermost loop because that dimension is generally the largest. Achievement of long vector lengths by looping over the entire mesh would require a change to indirect addressing to encode the mesh connectivity in a vectorizable manner.

Reference to neighboring cells in the VESSEL mesh is straightforward using 3D arrays. From the standpoint of the cell at ($\mathrm{I}, \mathrm{J}, \mathrm{K}$), the adjacent cell in the inner radial or x direction is ($\mathrm{I}-\mathrm{NV}, \mathrm{J}, \mathrm{K}$) and in the outer radial or x direction is ($\mathrm{I}+\mathrm{NV}, \mathrm{J}, \mathrm{K}$). The necessity for the stride, NV, arises from the cell-wise data storage of TRAC-P. TRAC-M defines NV=1 for mesh-wise data storage. The adjacent cell in the lower azimuthal or y direction is ($\mathrm{I}, \mathrm{J}-1, \mathrm{~K}$) and in the higher azimuthal or y direction is
($\mathrm{I}, \mathrm{J}+1, \mathrm{~K}$). Finally, the adjacent cell in the lower axial or z direction is ($\mathrm{I}, \mathrm{J}, \mathrm{K}-1$) and in the higher axial or z direction is ($1, J, K+1$).

Having an abstract method for referencing individual array variables also is convenient. Such a reference is currently used to implement the signal-variable evaluation logic in subroutine SVSET3. Pointers are used for this purpose for 1D data. For 3D data, we have chosen to use the subroutine getVSAR to access the ($1 \mathrm{~J}, \mathrm{~K}$) cell value of an array with name vsvName.

The positions of the VESSEL 1- and 2D array variables in the container A array are defined dynamically in subroutine PNTVSS. Their pointers are stored in COMMON block PTAB of include file VSSLPT.H.

Unless the TRAC-M user is adding a new variable to the signal-variable evaluation logic, it is not necessary to define an identifier for the variable in PTRS and to add the identifier to include file VSSLPT.H. To minimize changes to the code as well as minimize the amount of unused code, we recommend that identifiers not be added unless they are to be used.
2.2.2.5. Boundary or phantom cells. The VESSEL mesh in TRAC-M is constructed with two planes of boundary cells outside the mesh in each of the three lowernumbered directions and with one plane of boundary cells in each of the highernumbered directions. The extra plane in the lower-numbered directions is necessary to accommodate face-centered data. The number of boundary cells in each direction is set by PARAMETER constants as described in Sec. 2.2.2.2.1. The use of boundary cells allows all references from cells within the physical mesh to neighboring cells outside the physical mesh to be valid.

When using a 3D VESSEL component to model a typical cylindrical-geometry reactor vessel with outer-boundary walls, the data in the bottom and top axialboundary cells and in the outer radial-boundary cells do not affect the calculation. However, the inner radial boundary cells can be used to incorporate the effect of radial-momentum convection across the center of the VESSEL. Such a model was implemented using a different mechanism in TRAC-PF1/MOD1. This model, which is partially implemented in subroutine VRBD, is not currently activated in TRAC-M. The azimuthal-boundary cells are used to avoid the special logic necessary to indicate that the first physical azimuthal sector is adjacent to the last physical azimuthal sector. This is accomplished by subroutine SETBDT, which copies the data from the cells in the first and last physical sectors to their appropriate phantom cells.

The boundary-cell implementation makes it simple to include generalized boundary conditions at the bottom- and top-axial and outer-radial boundaries of a cylindrical VESSEL and at all external boundaries of a 3D Cartesian-geometry VESSEL. TRAC-M contains the appropriate coding in all VESSEL hydrodynamic routines to allow for fixed-pressure (BREAK) or fixed-velocity (FILL) boundary conditions at any of these boundaries. However, this coding for the radial or x and azimuthal or y boundaries has not yet been tested. In the currently released version of TRAC-M, there is no input-data mechanism to activate this coding. An input option, IVSSBF, only activates the generalized boundary conditions at the lower and upper axial faces. There currently is no coding to allow for the generalized boundary conditions to be time dependent. However, implementing such a capability should not require major changes to TRAC-M.

In addition to providing for the new generalized boundary conditions, using phantom cells allows for improved implementation of the standard hydrodynamic algorithms. Without the use of phantom cells, special program logic is required to calculate expressions that include gradients and fluxes for cells at the edge of the physical mesh. Such logic would increase the probability of coding errors and inhibit vectorization on hardware such as a Cray computer:

For typical coarse-mesh VESSEL components, a large percentage of the cells are at the edges of the mesh. For example, a 3D VESSEL component with four radial rings and four azimuthal sectors on each level actually has only 4 of the 16 cells on a level that has neither a radial nor an azimuthal boundary. Because straightforward vectorization generally reduces computation time by more than a factor of 5 , it is obviously desirable to design implementations that are vectorizable for all cells.

As stated previously, if phantom cells are not used, special logic would be required to carry out calculations for cells at the edge of the physical mesh. On the other hand, when phantom cells are used, additional procedures are required to define the values associated with the phantom cells. The amount of code that must be maintained is similar in either case; however, the phantom-cell methodology is more easily modularized.

The major disadvantage in using phantom cells is the potential for significantly increased computer-memory requirements for coarse-mesh VESSEL components. In our previous example, a VESSEL with 4 radial rings, 4 azimuthal sectors, and 10 axial levels has only $4 \times 4 \times 10$ or 160 physical mesh cells. However, it will have $(4+3) \times(4+3) \times(10+3)$ or 637 computational mesh cells when including the boundary cells. Naturally, the percentage of boundary cells is smaller for more
finely noded problems. The current VESSEL array data contains ~ 300 different variables; thus, this example would require $\sim 200,000$ words of computer memory for the 48,000 words of physical mesh-cell array data. For most modern computer hardware, however, this is not a large amount of memory, and the cost-benefit ratio of this memory increase is extremely favorable when compared with more efficient coding.

Because both of the lowest-numbered planes of phantom cells in each direction only are used in conjunction with the generalized boundary-condition option associated with a fixed-pressure boundary condition, it should be possible to reduce the memory requirements by changing from 2 to 1 the PARAMETER constants defining the number of lower-numbered phantom cells for the radial or x and azimuthal or y directions. However, doing so has not been tested.
2.2.2.6. Adding or deleting a 3D database array variable. The three steps to adding an array variable to the VESSEL hydrodynamic (mesh-wise) database in COMMON block vssArCom of include file EQUIV.H are summarized below. Note that these steps are incomplete for the case of an old-old-time array variable because the new array variable would replace ALPO as either the first or last array variable in that classification.

1. Determine an appropriate position in the database for the new array variable or dual-time array variable pair according to the classification of the array variable and the structure of the database (see Sec. 2.2.2.3.1).
2. Add the new array-variable name or dual-time array-variable pair names at the appropriate position/s in COMMON block vssArCom of include file EQUIV.H.
3. Add the new array-variable name or dual-time array-variable pair names at the appropriate position/s in the REAL*8 declaration of include file EQUIV.H.

Once a new VESSEL array variable has been successfully added to the VESSEL hydrodynamic database, one then needs to modify the necessary subroutines to calculate, dump/restart, or output the new array variable. The following three guidelines give step-by-step instructions on how this should be accomplished.

1. Program the necessary evaluations to determine the value of the new array variable within the appropriate subroutines.
2. If the new array variable needs to be written to the data-dump TRCDMP file for restart purposes, include a call to subroutine DLEVEL in subroutine DVSSL. In addition, increment the variable LV by one in subroutine DVSSL. To read in the new array variable from the data-dump TRCRST file when restarting, add calls to subroutines BFIN and LEVELR in subroutine REVSSL in the same position that the call was added to subroutine DVSSL (note that REVSSL must be changed if DVSSL is changed).
3. If the new array variable is to be output to the TRCOUT file, add a call to subroutine WLEVEL in subroutine WVSSL to output the new array variable.

3. TRAC-M CALCULATIONAL SEQUENCE

The full TRAC-M calculational sequence involves several stages: input processing; initialization; prepass, outer-iteration, and postpass calculations; timestep advancement or backup; and output processing. Each of these stages is discussed in greater detail from a programmer's point of view in the sections that follow. First, a summary of the overall calculational sequences for transient and steady-state calculations is given.

3.1. General Summary

Depending on the values of the input parameters STDYST and TRANSI (Main-Data Card 4), TRAC-M performs a steady-state calculation, a transient calculation, or both. The general control sequences of each type of calculation are outlined below, and specific details of the calculational sequence are discussed in more detail in the subsections that follow.

A transient calculation is directed by subroutine TRANS. The system state is advanced a timestep through time by a sequence of prepass, outer-iteration, and postpass calculations that TRANS requests by calling subroutines PREP, HOUT, and POST, respectively. In each of these calculations, one or more sweeps are made through all the components in the system model. To provide output results required by the user, TRANS invokes the EDIT and DUMP modules by calling subroutine PSTEPQ. Subroutine TRANS is structured, as shown in Fig. 2. The major control variables within the timestep loop are: NSTEP, the current timestep number; TIMET, the time since the transient began; DELT, the current timestep size;

Fig. 2.
Transient calculation flow diagram.
and OITNO, the current outer-iteration number. The timestep loop begins with the selection of the timestep size, DELT, by subroutine TIMSTP. A prepass is performed for each component by module PREP to evaluate the control parameters, stabilizer motion equations, and phenomenological coefficients. At this point, if the current timestep number is zero, TRANS calls the EDIT module to print the system-state parameter values and the DUMP module to output a restart-data dump at the beginning of the transient. Subroutine TRANS then calls subroutine HOUT, which performs one or more outer iterations to solve the basic hydrodynamic equations. Each outer iteration is performed by module OUTER and corresponds to one iteration of a Newton-method solution procedure for the fully coupled difference equations of the flow network. The outer-iteration loop ends when the outeriteration convergence criterion (EPSO on Main-Data Card 5) is met. This criterion requires that the maximum fractional change in the pressure throughout the system during the last iteration be less than or equal to EPSO.

Alternatively, the outer-iteration loop may terminate when the number of outer iterations reaches a user-specified limit (OITMAX on Main-Data Card 6). When this happens, TRAC-M restores the thermal-hydraulic state of all components to what it was at the beginning of the timestep, reduces the DELT timestep size (with the constraint that DELT be greater than or equal to DTMIN), and continues the timestep calculation with the new reduced timestep size. This represents a backup situation and is discussed in greater detail in Sec. 3.5.

When the outer iteration converges, TRANS calls module POST to perform a postpass evaluation of the stabilizer mass and energy equations and the heattransfer calculation. Then the NSTEP timestep number is incremented by 1 , and the TIMET problem time is increased by DELT. The calculation is finished when TIMET reaches the last TEND time specified by the timestep data.

The transient calculation is controlled by a sequence of time domains input specified by the timestep data. During each of these time domains, the minimum and maximum timestep sizes and the edit, dump, and graphics time intervals are defined. When the EDIT and DUMP modules are invoked, they calculate the time when the next output of the associated type is to occur by incrementing the current time by its time interval. When TRANS later finds that TIMET has reached or exceeded the indicated time, the corresponding output modules are invoked again. Whenever TIMET equals or exceeds the TEND ending time for a timestep data domain, the next timestep data domain is read in. The output indicators are set to the current time plus the new values of the appropriate time intervals.

Subroutine STEADY directs steady-state calculations using the structure shown in Fig. 3. The calculation sequence of subroutine STEADY is similar to that of the transient driver subroutine TRANS. The same sequence of evaluations used for a transient calculation also is used for a steady-state calculation. The main difference in STEADY is the addition of a steady-state convergence test, logic to turn on the steady-state power level, an optional evaluation of constrained steady-state controllers, and an optional hydraulic-path steady-state initialization of the initial hydraulic state estimate. To provide output results, STEADY like TRANS invokes the EDIT and DUMP modules by calling subroutine PSTEPQ.

Subroutine STEADY is called by the TRAC main program whether or not a steady-state calculation has been requested by STDYST. If no steady-state calculation is to be done because STDYST $=0$, STEADY returns to the TRAC main program. The TRAC main program then calls TRANS and performs a transient calculation if ITRANS $=1$.

Timestep control in STEADY is identical to that implemented in TRANS. This includes the selection of the timestep size, the timing for output, and the backup of a timestep if the outer-iteration limit is exceeded. In STEADY, the input variable SITMAX (from Main-Data Card 6) is the maximum number of outer iterations used in place of OITMAX. The maximum fractional rates of change per second of seven thermal-hydraulic parameters are calculated by subroutines TF1DS3 and FF3D. These rates and their locations in the system model are passed to STEADY through the array variables FMAX and LOK in COMMON block SSCON of include file SSCON.H. Tests for steady-state convergence are performed every 5 timesteps and before every large edit. The maximum fractional rates of change per second and their locations are written to the TRCMSG and TRCOUT files, as well as the terminal. The minimum value of the flow velocity, MINVEL, and its maximum fractional rate of change, FMXLVZ, in the hydraulic channels coupled to powered heat structures determine when the steady-state power should be set on. Once MINVEL exceeds $0.5 \mathrm{~m} / \mathrm{s}$ and FMXLVZ falls below 0.5 , the steady-state power is set to its input steady-state value RPOWRI for each powered heat structure. The steady-state calculation is completed when all maximum fractional rates of change per second are below the user-specified convergence criterion EPSS (from Main-Data Card 5) or when STIME reaches the TEND end time of the last time domain specified in the steady-state calculation timestep data.

There are three types of steady-state calculations: generalized (as described above), constrained, and static check. A constrained steady-state calculation (CSS) is

Fig. 3.
Steady-state calculation flow diagram.
a generalized steady-state calculation (GSS) with input-specified controllers adjusting uncertain component-hardware actions to achieve known or desired steady-state, thermal-hydraulic conditions. A static-check, steady-state calculation (SSS) checks for erroneous momentum and energy sources in the system model by having TRAC-M internally set the PUMP momentum source to zero and not evaluate heat transfer with the expectation that any input fluid flow becomes stagnant and temperatures don't change.

Both steady-state and transient calculations may be performed during one computer run. The end of the steady-state timestep cards is signified by a single card containing a -1.0 in columns 4 to 14 . The transient timestep cards should follow immediately. If the steady-state calculation converges before reaching the end of its last time domain, the remaining steady-state timestep data are read in but are not used so that the transient calculation proceeds as planned with its own timestep data.

3.2. Input Processing

The processing of all TRAC-M input data (except for the timestep data) is performed by the INPUT module and its sub-modules RDIN1, RDIN3, and RDRES. The data are of two types: input data retrieved from the input-data file TRACIN and restart data retrieved from the dump-restart file TRCRST. In addition to reading the input data, these modules also organize the component data in memory, assign the array pointer variables for each component, analyze the system-model loop structure, and allocate the initial container-A-array space for part of the global data. The remainder of the space necessary within the A array for the global variables is allocated by subroutine INIT in module INIT

Subroutine INPUT (the INPUT-module driver) reads the Namelist, maindata, and countercurrent-flow-limitation (CCFL) model input data from the TRACIN file. The initial A-array global array variable space is allocated using maindata parameter information. Hydraulic-path, steady-state initialization and CSScontroller data are then input if these options are selected in the main data. The signal-variable, control-block, and trip control-parameter data are read and processed by calling subroutine RCNTL. Subroutine RDCOMP (module RDIN1) reads and processes the 1D hydraulic-component data, and subroutine RDCOM3 (module RDIN3) performs a similar function for the VESSEL-component data from the TRACIN file. Any control-parameter and component data not provided by the TRACIN file are retrieved from the restart-data TRCRST file by subroutine RDREST
(module RDRES). Finally, subroutine INPUT calls subroutine SRTLP to establish hydraulic loops and pointers for the network solver and calls subroutine ASIGN to define the component data-block pointer array COMPTR.

Subroutine RDCOMP calls component input-processing subroutines to read and process each component type. These routines have names that begin with the letter R followed by the letters of the component-type name. For example, the PIPEcomponent input-processing subroutine is named RPIPE. In addition to reading hydraulic and heat-structure component data from the TRACIN file, these component input-processing routines also initialize the generic-component, specific-component, and pointer tables and define the JUN array with componentjunction connective information. Each 1D hydraulic-component input-processing subroutine calls subroutine RCOMP to process input data common to 1D hydraulic components. All input data are echoed as output to the TRCOUT file.

Pointer variables common to 1D hydraulic components are initialized with a call to subroutine SIDPTR. Any additional pointers special to a component type are initialized within that component's input-processing subroutine. An example of specialized pointer variables are those for array variables defining component actions for the component type. When adding a new array variable to a 1D hydraulic component, it is necessary to initialize its new pointer in S1DPTR or in the component input-processing routine, in addition to performing several other steps. The step-by-step procedure involved is discussed in Sec. 2.2.1.1, and an example update that adds five new array variables and their pointers to all 1D hydraulic components in TRAC-M is presented in Appendix E.

The JUN array, defined by the component input-processing routines, is a doubly subscripted array, $\mathrm{JUN}(4,2 * \mathrm{NJUN})$. The four values of the first index are defined in Table 2. The second index indicates the order in which the component junctions were encountered during input processing.

Subroutine RDCOM3 calls the VESSEL-component input-processing subroutine RVSSL. In addition to reading VESSEL input-data parameters from the TRACIN file, this routine also initializes the generic-component tables, specificcomponent tables, and pointer tables and reads VESSEL level data and performs input-data testing.

Subroutine RDREST opens file TRCRST and obtains restart data from the data-dump edit corresponding to the requested timestep number of a previous calculation (as specified by variable DSTEP on Main-Data Card 3 of file TRACIN). If

FIRST INDEX OF THE COMPONENT－JUNCTION ARRAY，JUN

```
Index Description
    1 Junction number.
    2 Component number.
    3 Component-type number.
    4 Junction direction flag.
    0 = positive flow is into the component at this junction (a JUN1 junction);
    1 = positive flow is out of the component at this junction (a JUN2 or JUN3
        junction).
```

the requested timestep number is negative，RDREST uses the last data－dump edit available．If the requested timestep number is -99 ，the problem time from the last data－dump is replaced by TIMET read from file TRACIN．The restart data initialize the signal－variable，control－block，trip，and component data that were not provided by the TRACIN file．Component data are read from the TRCRST file by calls to component restart－processing subroutines．These subroutines have names that begin with the letters RE followed by the letters of the component－type name．They function in much the same way as the component input－processing subroutines that begin with the letter $\dot{\mathrm{K}}$ ．For example，the PIPE－component restart－processing subroutine is called REPIPE．The restart data common to 1D hydraulic components are processed from the restart data using a call to subroutine RECOMP．Details on the structure of the dump－restart TRCRST file are given in Sec．3．6．All restart data are echoed in their input－data form as output to the TRCOUT file．

Subroutine SRTLP sorts through the 1D hydraulic components of the system model and groups them by loops that are isolated from one another by VESSEL components or TEE－component internal junctions．The IORDER array is rearranged to reflect this grouping and to provide a convenient order within each group for the network solution procedure．The $I^{\text {th }}$ element of the array IORDER is the number of the component that is processed after the $I-1^{\text {th }}$ component but before the $I+1^{\text {th }}$ component．

Subroutine ASIGN defines the component pointer array，COMPTR，according to the order of the IORDER array．The $I^{\text {th }}$ element of array COMPTR is the starting
location in the container A array of the component IORDER(I) data block containing its generic-component table, specific-component table, pointer table, and array data.

If the input-data file TRACIN is in FREE format (rather than in TRAC format), TRAC-M creates an additional file TRCINP. The TRACIN data are written into file TRCINP in the TRAC-format form that can be read by the TRAC-M input routines. File TRCINP (in TRAC format) is used as the input-data file rather than file TRACIN (in FREE format).

The user has the option of creating an echo file of the input data contained in file TRACIN by defining Namelist variable INLAB $=3$. With this option, a file named INLAB (INput LABeled) is created during input-data processing and has all the input data from file TRACIN output to it along with variable-name comments contained between asterisks. This provides a useful means of labeling an otherwise difficult-to-interpret TRACIN file. It also allows the user to verify the input data being read by TRAC-M. Comments between asterisks in the TRACIN file are not output to the INLAB file.

All input data from files TRACIN and TRCRST are echoed to the TRCOUT file by subroutines READI, READR, REECHO, WARRAY, and WIARN that are called by the component input (Rcomp) and restart (REcomp) processing subroutines. The input and output echo of all input data has been consolidated in these five subroutines. SI- or English-unit symbols for real-valued input-data variables are output echoed to the TRCOUT file when Namelist variable IUNOUT = 1 (dafault value).

3.3. Initialization

During the initialization stage performed in module INIT, subroutine ICOMP performs the initialization of arrays and variables for each component that is required by TRAC-M but is not read in directly from files TRACIN and TRCRST.

The overall component-initialization subroutine ICOMP first defines the junction sequence array JSEQ and the velocity sign indicator array VSI and then initializes the data for heat-structure, 1D hydraulic, and 3D VESSEL components. The array JSEQ contains junction numbers in the order that they are processed as determined by the component order-of-evaluation array IORDER. The $I^{\text {th }}$ element of the array VSI is the junction flow-reversal indicator for junction JSEQ(I). Using a call to subroutine SETNET, the array IOU is initialized to contain network junction numbers for the junctions of all components excluding BREAKs and FILLs. Finally, VESSEL source connections to 1D hydraulic components are checked to ensure that
all connections for a particular loop are in the same coordinate direction as the VESSEL component/s they are coupled to. This is necessary to ensure that the predictor and stabilizer velocities solved by subroutines FEMOMX, FEMOMY, and FEMOMZ remain independent of one another for numerical stability at high fluid flows.

Subroutine CIHTST controls the initialization of all heat-structure components with calls to subroutines IRODL and IROD. Subroutine IRODL initializes arrays that provide information on the location of hydrodynamic data for heat-transfer coupling. Subroutine IROD initializes various power-related arrays that are not input.

The 1D hydraulic-component initialization routines have names that begin typically with the letter I followed by the letters of the component-type name. For example, the PIPE component initialization subroutine is called PIPE. After determining the junction connection and component sequencing, these routines call subroutine VOLFA to calculate volume-averaged cell flow areas and to perform several input-data tests on valid flow-area configurations between cells and cell interfaces. Subroutine COMPI is called to initialize several variable arrays (e.g., tilde velocities). Thermodynamic properties, transport properties, and stabilizer quantities are initialized by calling subroutine IPROP. A call to subroutine SETBD initializes the boundary-array data. Junction-data consistency is checked using a call to subroutine CHKBD. Finally, subroutine ELGR is called to compute FRICs and GRAVs from input form losses and elevations if these particular input options are selected using the Namelist options IKFAC and IELV, respectively.

Component boundary data are stored in the doubly dimensioned array BD\#(72,NJUN). The data define the current solution state of the adjacent component across the junction \# and are evaluated at one of three possible space points: the edge of the mesh cell at the junction, the midpoint of that mesh cell, or the opposite-side edge of that mesh cell. Junction \# = 1 corresponds to junctions JUN1 and JUN4 (the internal junction of a TEE component); junction \# = 2 corresponds to junctions JUN2 or JUN3 (the external junction of the TEEcomponent side channel). The first dimension index indicates the parameter variable that is defined in subroutine J1D for 1D hydraulic components, subroutine BDPLEN for one-cell PLENUM components, and subroutine J3D for 3D VESSEL components. The second dimension index indicates the order in which the junction numbers are processed.

Subroutine CIVSSL controls the initialization of all 3D VESSEL components by calling subroutine IVSSL. Subroutine IVSSL performs analogous initializations for the VESSEL component as does subroutine IPIPE for the PIPE component. Obviously, using many of the same low-level subroutines for initializing both component types is not possible because of the differences in the 1- and 3D databases.

Before the above component initialization by subroutines ICOMP and CIVSSL begins, an optional hydraulic-path steady-state initialization procedure may be performed for a steady-state calculation by subroutine ICOMP calling subroutine IHPSS1 and subroutine CIVSSL calling subroutine IHPSS3. The procedure replaces the phasic temperature and velocity (and possibly pressure) values input for the 1D hydraulic and 3D VESSEL components with fluid mass-conserving and energyconserving values based on input-specified known or estimated thermal-hydraulic flow conditions along 1D-flow hydraulic paths of the system model. The purpose of this procedure is to provide a better initial estimate of the thermal-hydraulic solution so that steady-state solution convergence is satisfied in fewer timesteps and less computational effort. This saves the TRAC-M user the effort of inputting such detail in the solution estimate defined by the component data so that the steady-state solution can converge quicker with a better initial-solution estimate.

3.4. Prepass, Outer-Iteration, and Postpass Calculations

One complete timestep calculation consists of a prepass, outer-iteration, and postpass stage. Each of these stages of the timestep calculation is described below.
3.4.1. Prepass Calculation. To evaluate numerous quantities to be used during the outer-iteration-stage and postpass-stage calculations, the prepass calculation uses the modeled-system solution state defined initially from input and later from the completion of the previous timestep (the beginning of the present timestep). The prepass stage begins by evaluating signal variables and control blocks and determining the set status of all trips of the control procedure. Each component begins the prepass by moving its end-of-timestep values (its new-time values) from the previous timestep into the variable storage for its old-time values for the present timestep. Next, wall and interfacial friction coefficients are evaluated. The predictor stabilizer velocities, as well as the forward elimination of the corrector stabilizer motion equations, are evaluated. The prepass evaluates material properties and heat-transfer coefficients (HTCs) for components that require heattransfer calculations. A second pass through all 1D hydraulic components evaluates
the backward substitution of the corrector stabilizer motion equations for the corrector stabilizer tilde velocities. The prepass for heat-structure components can be more complex. Besides calculating material properties and HTCs for both average and supplemental rods, the prepass evaluates quench-front positions and fine-mesh properties if the reflood model has been activated.

The prepass calculation is controlled by module PREP, whose entry-point subroutine is of the same name. Subroutine TRIPS (not to be confused with subroutine TRIP that interrogates a trip's set status to decide on initiating specific consequences, such as a component action, controlled by the trip) calls for the evaluation of signal variables, control blocks, and trips. Then subroutine PREP performs the IBKS = 1 first pass of the PREP stage for all 1D hydraulic components by calling PREP1D. All heat-structure components are processed by calling HTSTR1. If the SETS3D method has been selected for all VESSEL components (Namelist variable NOSETS $=0$ or NOSETS $=2$ and NSTAB=1), overlay PREP3D is called to evaluate the predictor velocities and the forward elimination of the corrector stabilizer motion equations. The IBKS $=2$ second pass through the PREP stage performs the backward-substitution evaluation for the 1D corrector stabilizer tilde velocities by again calling PREP1D and the 3D corrector stabilizer tilde velocities by again calling PREP3D. If the SETS3D method is not selected (Namelist variable NOSETS $=1$ or NSTAB $=0$), the prepass is completed with a call to PREP3D to define all tilde velocities by their beginning-of-timestep basic velocities for the 3D VESSEL components.

Subroutine TRIPS calls subroutines SVSET, CBSET, and TRPSET. Subroutine SVSET uses beginning-of-timestep values of system-state variables to define the signal variables. Subroutines CBSET and CONBLK, which is called by subroutine CBSET, evaluates control-block function operators. Subroutine TRPSET uses the current signal-variable and control-block values to determine the set status of trips.

The prepass driver subroutine PREP1D calls 1D hydraulic-component prepass routines to perform both passes of the prepass for each 1D hydraulic-component type. The names of the prepass component driver routines end with the numeral 1 , as shown in Table 3. For example, the PIPE component prepass subroutine is called PIPE1. On the IBKS $=1$ first pass through the PREP stage, during which the predictor stabilizer velocities are evaluated and the corrector stabilizer motion equations are

TABLE 3
COMPONENT-DRIVER SUBROUTINES

Component Type	Prepass	Outer	Postpass
BREAK	BREAK1	BREAK2	BREAK3
FILL	FLLL1	FILL2	FILL3
PIPE	PIPE1	PIPE2	PIPE3
PLENUM	PLENUM1	PLENUM2	PLENUM3
PRIZER	PRIZER1	PRIZER2	PRIZER3
PUMP	PUMP1	PUMP2	PUMP3
ROD or SLAB	HTSTR1		HTSTR3
SEPD or TEE	TEE1	TEE2	TEE3
TURB	TURB1	TURB2	TURB3
VALVE	VLVE1	VLVE2	VLVE3
VESSEL	VSSL1	VSSL2	VSSL3

forward eliminated, the 1D component subroutines utilize the common low-level routines SAVBD, PREPER, and SETBD to avoid redundant coding in the component-driver subroutines. On the IBKS $=2$ second pass, during which the stabilizer motion equations are backward substituted and solved for the corrector stabilizer tilde velocities, the common low-level routine BKMOM is called by the component-driver subroutines.

Subroutine SAVBD retrieves BD-array boundary data from adjacent components, stores it in appropriate array locations, and moves data from the last completed timestep into the old-time arrays. Subroutine PREPER evaluates wall friction by calling FWALL, material properties by calling MPROP, HTCs by calling HTPIPE, and interfacial-shear coefficients by calling FEMOM, and begins the forward-elimination solution of the stabilizer motion equations by calling FEMOM. For a specific component, any or all steps may occur during a call to PREPER by its component prepass driver routine. Subroutine SETBD uses the information in the component data arrays to reset the BD-array boundary data for both ends of the component. Subroutine BKMOM solves the stabilizer equations of motion by backward substitution for the stabilizer corrector tilde velocities for 1D hydraulic components.

Subroutine HTSTR1 calls subroutine FLTOM to transfer hydrodynamic data into the necessary heat-structure arrays; subroutine CORE1 to evaluate HTCs, finemesh properties, and quench-front positions; and subroutine FLTOM again to transfer heat-transfer information back into the hydrodynamic database. From subroutine CORE1, subroutine RFDBK is called to evaluate reactivity feedback, and subroutine RKIN is called to evaluate the point-reactor kinetics model.

Subroutine VSSL1 controls the prepass evaluation of each VESSEL component. A new-time to old-time variable update is performed by calling subroutine TIMUPD. Donor-cell weighting factors are initialized, vent-valve calculations are performed, and momentum source terms are defined. Subroutine CIF3 is called to evaluate the interfacial shear coefficients. Subroutine PREFWD is called to evaluate the wall-shear coefficients. Subroutines FEMOMX, FEMOMY, and FEMOMZ are called to evaluate the 3D predictor and corrector stabilizer tilde velocities. Finally, subroutine J3D is called to update the BD-array boundary information.
3.4.2. Outer-Iteration Calculation. The hydrodynamic state of the modeled system is analyzed in TRAC-M by a sequence of Newton iterations that use direct inversion of the linearized equations for all 1D hydraulic-component loops and the VESSELs during each iteration. Throughout the sequence of iterations that constitute an outer calculation (each called an outer iteration within TRAC-M), the properties evaluated during the prepass stage and the previous-timestep postpass stage remain fixed. Such properties include wall (SLAB and ROD) temperatures, HTCs, wall- and interfacial-shear coefficients, stabilizer tilde velocities, and quench-front positions. The remaining fluid properties can vary to obtain a consistent hydrodynamic-model solution.

Each call to module OUTER completes a single outer (Newton) iteration. Subroutine HOUT, which is the entry-point routine of this module, controls the overall structure of an outer iteration, as shown in Fig. 4.

Both the forward-elimination and backward-substitution sweeps through the 1D hydraulic-component loops are performed by subroutine OUT1D and associated outer-iteration routines. The calculations that these routines perform are controlled by the variable IBKS, which is set by subroutine OUTER. Subroutine OUT3D solves the hydrodynamic equations for all VESSEL components (IBKS $=0$) and updates boundary data (IBKS =1).

Fig. 4.
Outer-iteration calculation flow diagram.

All 1D hydraulic components in a particular loop are handled by a single call to subroutine OUT1D. This routine loads the data blocks for a component into memory and then calls the appropriate component outer-iteration subroutine. Component outer-iteration subroutines have names that end with the numeral 2, as shown in Table 3. For example, the PIPE component outer-iteration subroutine is called PIPE2. Subroutine OUT3D functions in a similar manner, except that subroutine VSSL2 is called for each 3D VESSEL component.

The outer-iteration subroutines for 1D hydraulic components call subroutine INNER to perform common functions. Subroutine INNER retrieves boundary information from the BD boundary array, tests other boundary information for consistency, calls subroutine TF1D to perform the appropriate hydrodynamic calculation, and resets the BD boundary array by calling subroutine J1D. Subroutine TF1D calls subroutines TF1DS1 (first outer-iteration only), TF1DS, and TF1DS3 to solve the basic semi-implicit finite-difference equations.

Subroutine VSSL2 solves the basic semi-implicit, finite-difference equations defined by the VESSEL-matrix equation (depending on the value of IBKS) for a single VESSEL component problem, whereas subroutine OUT3D does the same for a multi-VESSEL component problem. Subroutines TF3DS1 and TF3DS are called to linearize the hydrodynamic basic semi-implicit, finite-difference equations. Subroutine STDIR sets up the VESSEL-matrix equation for direct inversion. Subroutine MATSOL is called to solve the linear-system VESSEL-matrix equation using the capacitance-matrix method. Subroutine BACIT stores the new-time pressures that are evaluated.
3.4.3. Postpass Calculation. After the modeled-system hydrodynamic state has been evaluated by a sequence of outer iterations that have converged, TRAC-M performs the postpass stage to solve the stabilizer mass and energy equations and to evaluate both fluid mixture properties and component wall temperatures. Module POST performs this postpass stage. The same module also implements the timestep backup procedure, which is explained in detail in the next section.

Subroutine POST, as the controlling subroutine for this module, first processes all 1D hydraulic components by calling the appropriate 1 D hydraulic-component postpass subroutine, whose name ends with the numeral 3, as shown in Table 3. For example, the PIPE-component postpass subroutine is called PIPE3. Subroutine POST3D is called to process all 3D VESSEL components, and subroutine HTSTR3 is called to process all heat-structure components.

The 1D hydraulic-component postpass subroutines use the low-level routines SAVBD, POSTER, and SETBD to retrieve BD-array boundary conditions; to evaluate the stabilizer mass and energy equations, component wall temperatures, fluid mixture properties, and fluid transport properties; and to reset the BD boundary array, respectively.

The VESSEL postpass routine, VSSL3, is called by POST3D for each VESSEL component. Within subroutine VSSL3, stabilizer mass and energy quantities are evaluated by subroutine BKSTB3 or defined by subroutine MIX3D, depending on the status of the VESSEL SETS3D-method flag NSTAB. Subroutines FF3D, FPROP, and J3D are used to complete the hydrodynamic calculation, to evaluate fluid transport properties, and to update BD-array boundary data, respectively.

Subroutine HTSTR3 controls the postpass by calling subroutine CORE3 for each heat-structure component. In subroutine CORE3, subroutine FROD is called to evaluate the temperature distribution and gap heat-transfer coefficients by calling subroutines RODHT and GAPHT, respectively.

3.5. Timestep Advancement and Backup

Upon the successful completion of a timestep calculation (evaluated by the prepass, outer-iteration, and postipass stages), the modeled-system solution state defines the end-of-timestep new-time conditions. At the start of the next timestep's PREP stage, the previous timestep's new-time condition defines the next timestep's old-time condition. This is handled on a component-by-component basis within the component " 1 " subroutines, i.e., PIPE1. During this step, all dual-time variables are updated by copying the values of the new-time array variables into the old-time array variables. The prepass, outer-iteration, and postpass stages that follow during the next timestep then attempt to evaluate new values for the new-time array variables for the end-of-timestep condition. This process is repeated as problem time advances with each timestep calculation.

Calculation of a new timestep size takes place just before the PREP stage and is controlled by subroutine TIMSTP. Two types of algorithms, inhibitive and promotional, are implemented in subroutine NEWDLT to evaluate the next timestep size. The inhibitive algorithms limit the new timestep size to ensure stability and to reduce finite-difference error. The promotional algorithm increases the timestep size to improve computational efficiency (by requiring fewer timesteps during a time interval). A new maximum timestep size is calculated based on each of the following conditions: the 1- and 3D material Courant limits; the VESSEL and
total mass error limits; the outer-iteration count; the maximum allowable fractional change in gas volume fraction, temperature, and pressure; the diffusion number for heat transfer; and the maximum allowable fractional change in reactor-core power and adjustable-valve flow area. The new timestep size selected is the minimum imposed by the above conditions and the DTMAX maximum timestep size specified by the user in the timestep data. In subroutine NEWDLT, each conditional maximum timestep size is calculated, except for those based on the reactor-core power level and valve flow-area adjustment. The reactor-core power-change maximum timestep size is evaluated by subroutine RKIN, and the valve flow-area adjustment-change maximum timestep size is evaluated by subroutine VLVEX after evaluating subroutine NEWDLT. During the outer-iteration stage, subroutine HOUT applies the lesser of these two maximum timestep sizes to define DELT when it is less than the subroutine-NEWDLT defined timestep size.

In the event that a timestep solution is not completed successfully, TRAC-M will back up and try to reevaluate the modeled-system, new-time solution state. A backup occurs when the outer iteration does not converge (necessitating a reduction in the current timestep size) or when a flag indicating an extraordinary condition is activated. Either one will require the outer-iteration procedure to be reevaluated. It is important to understand that there are two types of backups, one corresponding to each scenario. When the outer iteration fails to converge during the OUTER overlay, the current timestep size is reduced and the calculation backs up to the start of the PREP stage after the control-parameter evaluation. This is necessary because any variable calculated during the prepass that is dependent on the timestep size was computed for the original timestep size and not for the newly-reduced timestep size. In addition, all new-time variables are reset to reflect their beginning-oftimestep values. This enables TRAC-M to begin again in the PREP stage in a manner no different than for any other timestep calculation except for having reduced the timestep size because of the backup. When the timestep requires one or more backups, the timestep size is halved for the first, second, and third backup; quartered for the fourth and fifth backup; and tenth for backups thereafter. This backup process continues until a small enough timestep size is reached to allow outer-iteration convergence to be satisfied or the timestep size needs to be reduced below the DTMIN minimum timestep size from the timestep data wherein TRAC-M stops the calculation.

The second type of backup is initiated by a flag being set signaling an extraordinary condition such as a water pack. This indicates that the outer iteration
needs to be repeated to account for the extraordinary condition. TRAC-M resets any new-time variables that have been potentially evaluated incorrectly by the current attempt through subroutine OUTER with their old-time values, makes appropriate adjustments to prevent the extraordinary condition, and repeats the outer-iteration calculation. For this type of backup, the timestep size does not change, making it unnecessary to repeat the PREP-stage calculation.

The difference between the two types of backups is that for a backup to the start of the PREP stage, the timestep size is adjusted, all new-time variables are reset to their beginning-of-timestep values, and variables evaluated during the PREP stage are reevaluated using the newly adjusted timestep size. For a backup to the start of the outer iteration, no change occurs in the timestep size and only new-time variables calculated during the outer iteration are reset to reflect their beginning-oftimestep values.

3.6. Output Processing

The TRAC-M program normally produces five output files: TRCOUT, TRCMSG, TRCDMP, XTVGR.T, and XTVGR.B. TRAC-M also may produce a TRACformat input-data file TRCINP and a labeled input-data file INLAB. The TRCDMP-, XTVGR.T-, and XTVGR.B-file real-valued variables have SI units. The TRCOUTand TRCMSG-, TRACIN- and TRCINP-, and INLAB-file real-valued variables can have SI (0) or English (1) units based on the 0 (default value) or 1 value of Namelist variables IOOUT, IOINP, and IOLAB, respectively. SI- or English-units symbols can be output to the TRCOUT and TRCMSG files along with their real-valued variable values when Namelist variable IUNOUT = 1 (default value).

The TRCOUT file is in ASCI format and contains a user-oriented presentation of the calculation's input data and output results. During the input process, an echo of the input and restart data is output, and at selected times during the calculation, variable values of the current solution state of the modeled system are output. The TRCMSG file is in ASCII format and contains diagnostic messages concerning the progress of the calculation. The TRCDMP file is a binary file designed to provide solution-state data for problem restarts by TRAC-M. The XTVGR.T file is an ASCI-format file and the XTVGR.B file is a binary file, both of which provide data for XTV graphics. File TRCINP is output only when input-data file TRACIN is in FREE format, and file INLAB is output when Namelist variable INLAB $=3$ is input as discussed in Sec. 3.2.

As the main driver routine of module EDIT, subroutine EDIT calls subroutine WCOMP to direct the output of a small and a large edit to the TRCOUT file at a specific time (timestep). The first edit written to the TRCOUT file occurs during the first timestep after the PREP stage, but all subsequent time edits are written after the POST stage. Subroutine WCOMP outputs general data first, then invokes lower-level routines to output the solution state of each component. The component-edit routines, which have names that begin with the letter W followed by the letters of the component-type name, output the solution-state variable data for that component to the TRCOUT file in an appropriate format for readability. For example, the PIPE-component-edit routine is called WPIPE, whereas the VESSEL-component-edit routine is called WVSSL. The 1D hydraulic-component-edit routines call subroutine ECOMP to output variable data that is common to 1D hydraulic components and then output any additional data special to that particular component.

The TRCDMP file is a structured binary file written with unformatted write statements. It contains sufficient data to restart the TRAC-M calculation at the problem time of a data-dump edit. This file is created by a sequence of calls to module DUMP. As the main driver routine of the DUMP module, subroutine DMPIT outputs the dump-header data and then calls the component data-dump subroutines. The names of the component data-dump subroutines begin with the letter D followed by the letters of the component-type name. For example, the PIPE component data-dump routine is called DPIPE, whereas the VESSEL component data-dump routine is called DVSSL. The 1D hydraulic-component data-dump routines call subroutine DCOMP to output to the TRCDMP file data common to 1D hydraulic components and then output any additional data special to that particular component using individual calls to subroutine BFOUT. The VESSEL-component data-dump routine DVSSL also calls subroutine BFOUT to output general VESSEL arrays and calls subroutine DLEVEL to output level arrays.

A time-edit data block is output at each dump edit time during a calculation. The number of time-edit blocks output to the TRCDMP file is determined by the dump-edit frequency specified by the timestep data. Each component has its own data block as a part of a time-edit data block. In subroutine DCOMP, the variable LCOMP, calculated for each 1D hydraulic component, is the total number of variable values output for the component to a time-edit block. The number of any additional variable values special to a particular component and output by the component data-dump routine is reflected in the variable LEXTRA. It is important to remember
to increment either the variable LCOMP or LEXTRA accordingly when adding new component-variable values to the TRCDMP-file output.

The XTVGR.T and XTVGR.B files provide data for X-TRAC-VIEW (XTV), a phenomena visualization package. To assist in development and debugging, the graphics catalog is carried separately in the ASCח-format XTVGR.T file rather than at the beginning of the binary-format XTVGR.B file. Subroutines XTVINIT and XTVDR are called to create the XTV graphics catalog in file XTVGR.T. The XTV graphics catalog contains information for setting up the component and variable visualizations. This includes component name, type, connectivity and geometry, as well as a list of available variables with their types. File XTVGR.B is created by subroutine XTVDR and is called to generate a timestep-edit data block based on the graphics-edit frequency specified by the timestep data. It contains timestep-edit information as arrays of IEEE double-precision values, even in UNICOS. Each timestep-edit contains the problem time, followed by all the variables described in the graphics catalog, in the order listed. There is no compression or packing of variable values. This gives the XTV file cross platform compatibility.

XTV was designed as a phenomena visualization tool to replace the TRCGRF file and EXCON/TRAP that generated graphics for TRAC-P and earlier versions of TRAC. Presently most of the variables available in TRCGRF are, and eventually all of the variables available in TRCGRF will be, available in XTV. The timestep-data graphics-edit frequency GFINT determines the XTV graphics edit times. The maximum number of graphics edits depends on the modeled-system size and the XTVGR.B file internally defined file size (currently 500 Mb). This internal limit. can be overridden through the use of the optional XTVTIN input file, which contains the size in megabytes as an integer that the XTVGR.B data file is created. If the graphics data output to the XTVGR.B file reaches the XTVGR.B-file size limit, no further graphics edits will be output and an error message will be written to the TRCMSG file for each time edit that is not output. A complete description of the XTV file format is contained in Appendix C of the XTV Users Guide.

Subroutine INPUT opens the TRCINP file and calls subroutine PREINP to determine if the input-data TRACIN file is in FREE format or TRAC format. A FREE-format TRACIN file is read as ASCII data and parsed for numerical values to output the TRAC input data to the TRCINP file in TRAC format. Then either the TRACIN file (for TRACIN in TRAC format) or the TRCINP file in TRAC format (for TRACIN in FREE format) is read by the READI, READR, WARRAY, and WIARN subroutines to process the TRAC-M input data.

When Namelist variable INLAB $=3$, the READI, READR, WARRAY, and WIARN subroutines output to file INLAB an input-data echo of the TRACIN-file data with variable-name label comments in FREE format. Outputting variable-name label comments between asterisks makes it a FREE-format file even though the input-data values are right-justified in 14-column fields. With a variable-name label above its scalar value or to the left of its array-element values, file INLAB provides input data whose parameter variables can be easily identified rather than require the input-data format description to define their parameter variables. This makes the input data infinitely more readable in a standard form so that all TRAC-M users can become familiar with it thereby reducing input-data defining errors. File INLAB is renamed TRACIN for subsequent use as the input-data file to TRAC-M. The fileINLAB option also is convenient for converting SI- or English-units input data in the TRACIN file to English- or SI-units input data. This is done with Namelist variables $\mathrm{INLAB}=3$, IOINP $=0(\mathrm{SI})$ or 1 (English) for the TRACIN file , and IOLAB $=$ 1 (English) or $0(\mathrm{SI})$ for the INLAB file, respectively.

4. INPUT/OUTPUT IN SI OR ENGLISH UNITS

Real-valued variables in TRAC-M have SI (metric) units. Input to and output from TRAC-M can be in SI or English units as a user option. Namelist variables IOINP, IOLAB, and IOOUT define input-data file TRACIN, labeled input-data file INLAB, and output-data files TRCMSG and TRCOUT, respectively, to have realvalued variables with SI or English units when their values are 0 (default) for SI units or 1 for English units. The SI- or English-units symbols of real-valued variables are output with their values to the TRCMSG. and TRCOUT files when Namelist variable IUNOUT is 1 (default). No units symbols are output when IUNOUT is 0 . When programming the input and output routines of TRAC-M, code developers must consider the units of real-valued variables that are input and output and assure that they have SI units for internal use by TRAC-M.

The units of all real-valued variables involved in the input/output (I/O) of TRAC-M are defined by arrays LABELS(I), $\operatorname{ITLS}(\mathrm{I})=\mathrm{J}$, and LABUN (J) stored in COMMON block LABELV of include file LABELV.H. LABELS(I) is the left-justified CHARACTER*8 name of the Ith real-valued variable for $I=1, \ldots, 777$ (TRAC-M Version $1.10+$) or for $\mathrm{I}=1, \ldots, 806$ (Version $1.10+$ when pending KAPL update changes are made). LABUN(J) is the left-justified CHARACTER*8 Jth units-name label beginning with the letters ' LU ' for $\mathrm{J}=1, \ldots, 150$. In Version $1.10+, 50$ units-name labels
are defined (see Table 6-2 in the TRAC-M Users Guide) and 100 are reserved for being defined by user input. LABUN(TTLS(1)) defines the units-name label of the Ith real-valued variable name LABELS(I). For example, the new-time liquidtemperature real-valued variable name $\operatorname{LABELS}(601)=$ 'TLN \quad ' has units-name label LABUN(3) = 'LUTEMP \quad ' based on ITLS(601) $=3$. Appendix F, Secs. F. 6 and F.7, provides a listing of COMMON block LABELV in the include file LABELV.H and a listing of subroutine BLOCK DATA BLKDAT2 in file BLKDAT2.F. The BLKDAT2 data initializes the variables stored in COMMON block LABELV. The variable values in the above example can be seen in this data.

Subroutine BLOCK DATA BLKDAT2 also initializes the values of arrays FACTOR(J), OFFSET(J), LABSV(L,K), LUNCB(L,J), LUPCB(L,J), and RUNCB(L,J) that are stored in COMMON block LABELV. FACTOR(J) and OFFSET(J) are the factor and shift values for converting a SI-units variable value with units-name label LABUN(J) to English units by multiplying the SI-units value by the factor FACTOR(J) and then adding the shift OFFSET(J) to obtain the English-units value. LABSV(L,K) is a left-justified CHARACTER*14 name label with units symbol in parentheses for the Kth signal-variable parameter in SI units ($\mathrm{L}=1$) or English units ($\mathrm{L}=2$). $\operatorname{LUNCB}(\mathrm{L}, \mathrm{J})$), $\operatorname{LUPCB}(\mathrm{L}, \mathrm{J})$, and $\operatorname{RUNCB}(\mathrm{L}, \mathrm{J})$ are left-, (in parentheses) left-, and right-justified CHARACTER*13, ${ }^{*} 13$, and ${ }^{*} 12$ labels, respectively, for the units-name label LABUN(J) units symbol in SI ($\mathrm{L}=1$) or English ($\mathrm{L}=2$) units. LUPCB($\mathrm{L}, \mathrm{J})$ has units symbols in parentheses, whereas LUNCB(L,J) and RUNCB(L,J) do not.

Subroutine UNCNVT with arguments (LABEL, VAR, LV, IV, IU) is called to determine the units and possibly convert the units of a real-valued variable's value/s from input or for output. The real-valued variable is VAR with LV values and stride IV. For a real-valued scalar variable VAR, $L V=1$ and $I V=1$. For a realvalued array variable VAR with values $\operatorname{VAR}(1), \operatorname{VAR}(3), \operatorname{VAR}(5), \ldots, \operatorname{VAR}(L V)$, LV is an odd value and IV $=2$. LABEL is the $\operatorname{CHARACTER}{ }^{*}\left({ }^{*}\right)$ variable name of real-valued variable VAR. In the above example, 'TLN', 'TLN ',' TLN ', or ' TLN' are all valid definitions for LABEL. IU = IUIN - IUOUT defines the type of units conversion: 1 converts an English-units value/s to SI units, 0 does no units conversion, and -1 converts a SI-units value/s to English units. IUIN defines the units of VAR input to UNCNVT ($0=$ SI, $1=$ English) and IUOUT defines the units of VAR output from UNCNVT ($0=$ SI, $1=$ English $)$. For example, if VAR has English units that were input to TRAC-M and UNCNVT is to convert VAR to have SI units, $I U=1-0=1$. If the parameter value/s of VAR are internal to TRAC-M and used in the calculation in SI units, VAR should be a temporary variable so that any
possible units conversion will not effect the internal value/s of the parameter variable. Even converting the value of VAR from SI to English units for output and then back from English to SI units for internal use will change the internal value/s in TRAC-M because of numerical roundoff. This will affect the calculation. The frequency of output edits in English units must not affect the calculative results in this way.

In subroutine UNCNVT, an SI-units value is converted to English units by $\operatorname{VAR}(\mathrm{L})=\operatorname{VAR}(\mathrm{L}) * \operatorname{FACTOR}(\mathrm{~J})+\operatorname{OFFSET}(\mathrm{J})$, whereas an English-units value is converted to SI units by $\operatorname{VAR}(\mathrm{L})=(\operatorname{VAR}(\mathrm{L})-\operatorname{OFFSET}(\mathrm{J}) /$ $/ \mathrm{FACTOR}(\mathrm{J})$ for $\mathrm{L}=1, \mathrm{IL}, \mathrm{IV}$. The units-name index $\mathrm{J}=\operatorname{ITLS}(\mathrm{I})$ is determine in UNCNVT by left-justifying the characters of the LABEL variable name and finding the Ith element of LABELS(I) that matches it. The value of I is saved in variable IOLD that is stored in COMMON block LABELV so that its value can be used outside of subroutine UNCNVT as well.

An example of programming the output of three new arrays: DNEWN, HYNEW, and HTNEW in subroutine ECOMP is presented in the example update of Appendix E. The two DO loops over N are needed because the temporary array $\operatorname{TMP}(10,24)$ for values of the new arrays handles only 10 cell or interface values at a time for units conversion and output. The calls to subroutine UNCNVT define IU = -IOOUT because IUIN $=0$ for the SI-units internal new arrays that are output and IUOUT $=$ IOOUT. SI- or English-units symbols are output in the tabular-data heading labels with LUNCB(IOOUT+1, ITLS(IOLD)).

When programming new real-valued variables in TRAC-M that are involved in I/O, code developers need to update their units information in arrays $\operatorname{LABELS}(\mathrm{I}), \operatorname{ITLS}(\mathrm{I})$, and $\operatorname{LABUN}(\mathrm{J})$, as well as their related arrays. The efficient search algorithm in subroutine UNCNVT for finding a match between LABEL and LABELS(I) requires that the LABELS(I) variable names be ordered alphabetically and be left justified. A lack of success in getting code developers to enter new variable names alphabetically in COMMON blocks (to make variable names easier to find visually) prompted the writing of FORTRAN 77 program LABPRG to do this updating automatically in COMMON block LABELV and subroutine BLOCK DATA BLKDAT2. Getting the Jth units-name value defined in the corresponding location of ITLS(I) would have been even more of a challenge to code developers. Appendix F describes how to prepare the input data of file LABNEW for program LABPRG to add or delete units-name labels in LABUN(J) (which also effects FACTOR(J), $\operatorname{OFFSET}(\mathrm{J}), \operatorname{LUNCB}(\mathrm{L}, \mathrm{J}), \operatorname{LUPCB}(\mathrm{L}, \mathrm{J})$, and $\operatorname{RUNCB}(\mathrm{L}, \mathrm{J}))$; signal-variable name labels in $\operatorname{LABSV}(\mathrm{L}, \mathrm{K})$; and real-valued variable names in $\operatorname{LABELS}(\mathrm{I})$ (which
also effects ITLS(I)). The procedure is straight forward and allows LABNEW input data from one or more situations of programming changes made to TRAC-M to be processed together by program LABPRG. The output result is the include file LABELV.H that defines COMMON block LABELV and file BLKDAT2.F that defines subroutine BLOCK DATA BLKDAT2. After executing program LABPRG, these two output files need to be committed into the CVS source-file repository as described on page E-4 of App. E.

5. MEMORY MANAGEMENT

To understand the data storage in TRAC-M, it is necessary to consider the memory-management requirements for a large code. First, any program that uses a large amount of memory must allocate that memory flexibly and dynamically during execution. Static dimensioning, i.e., dimensioning at compile time to accommodate the largest possible problem, is at best wasteful of memory and at worst infeasible. The alternative strategy of preprocessing the input to determine array sizes before compilation would be extremely cumbersome for a code as complex as TRAC-M. Static-memory allocation schemes of all types also have the disadvantage that there is no possibility of increasing or decreasing memory requirements during a calculation when the evaluation path changes or when temporary arrays are no longer required.

Second, because standard FORTRAN does not support dynamic-memory allocation, it is necessary to accomplish dynamic-memory allocation by using variable offsets into a single container array. Obviously, any implementation based on this concept will have some degree of awkwardness. On some operating systems, the size of the container array can be changed dynamically. On others, it must be fixed in advance. Although the latter implementation is not, technically speaking, dynamic, it is flexible, and fixing the size of the container array makes a trivial difference in the coding. The bulk of the memory-management implementation in TRAC-M arises in the computation and management of the offset or pointer variables.

As an example of using a container array for dynamic-memory management, consider the container array, $A\left(^{*}\right)$, where the actual dimensioned size of the A array is sufficient for the problem at hand. Now assume that we wish to store two arrays, $X(20)$ and $Y(20)$, starting with the 14 th element of the container array. There are a
number of ways of doing this. One option is to define offset pointers as in this example:

IFREE	$=14$
NCELLS	$=20$
LX	$=$ IFREE
LY	$=$ LX + NCELLS
IFREE	$=$ LY + NCELLS

These pointer variables are defined in a manner that establishes mesh-wise storage. In this example, the arrays X and Y occupy locations $A(14)$ through $A(33)$ and $A(34)$ through $A(53)$, respectively. With the use of these pointer variables, $X(N)$ can be referenced as $\mathrm{A}(\mathrm{LX}+\mathrm{N}-1)$ and $\mathrm{Y}(\mathrm{N})$ as $\mathrm{A}(\mathrm{LY}+\mathrm{N}-1)$. The referencing can be made more readable by passing $\mathrm{A}(\mathrm{LX})$ and $\mathrm{A}(\mathrm{LY})$ as actual arguments to a subroutine that uses X and Y as the names for the corresponding local arrays.

Two drawbacks of the pointer methodology are the large amount of coding needed to define the pointer variables and the need to use subroutine arguments for readability. Another drawback arises when using pointer variables in the context of multidimensioned array variables, i.e., the dimensions must be treated as variable. This complicates the coding and makes dynamic debugging more difficult.

Another option for storing in a container array is to use EQUIVALENCE statements. This has the advantage that the variables can appear in COMMON. In our previous example, we could achieve the same data storage and data structure by

```
PARAMETER (LX = 14, LY = 34)
EQUIVALENCE (A(LX), X(1)), (A(LY), Y(1)) .
```

Equivalencing that creates mesh-wise storage, as in this example, cannot be used for dynamic-memory allocation because knowledge of the array sizes, as well as their actual memory locations, is built into the EQUIVALENCE statement. The answer to using equivalencing for dynamic-memory allocation is to equivalence the arrays according to the cell-wise storage scheme, i.e.,
EQUIVALENCE (A(1), X(1)), (A(2), Y(1)) .

The establishment of a cell-wise storage scheme using EQUIVALENCE statements is useful for dynamic-memory allocation because the EQUIVALENCE statements can be treated as determining the relative order of the variables, rather than their actual locations in memory. The location in memory, or offset into the
container array, is then defined dynamically in terms of loop limits. Using loop limits $N B=14$ and $N E=52$ with a stride of $N V=2$ in referencing arrays X and Y in the last example would establish a mesh-wise storage occupying the same memory locations in the A array as in the two previous examples but with X and Y elements interspersed.

One drawback to a cell-wise scheme is the necessity for including the stride in the coding. Another drawback that can arise on certain hardware is inefficiency in referencing vectors with non-unit stride. Finally, this methodology can be cumbersome when combined with the use of temporary arrays that have mesh-wise storage. Nonetheless, our experience with this methodology in TRAC-P has been positive in terms of eliminating coding errors resulting from maintenance of pointers and long subroutine argument lists in earlier versions of TRAC.

TRAC-M eliminates the use of EQUIVALENCE statements for the VESSELcomponent 2- and 3D parameter arrays by storing these arrays in labeled COMMON blocks vssWhat and vssArCOM with PARAMETER-constant dimensions NI, NJ, and NK rather than storing them in the container A array. The use of these EQUIVALENCE statements is not standard FORTRAN 77 coding. They also prevented optimization by some computing-platform compilers. Doing this eliminated the $N V=291$ stride of cell-wise storage that made programming and debugging more complicated. Now the NV=1 stride of mesh-wise storage makes the ($\mathrm{I}, \mathrm{J}, \mathrm{K}$) subscript the subscript of the 3D cell. For multi-VESSEL problems, this is complicated by the I-dimension range having a subrange for each VESSEL, with the sum of each VESSEL's number of I-direction cells needing to be no more than the NI dimension. On the other hand, the NJ and NK dimensions are maximum dimensions for each of the VESSELs.

6. TRAC-M FOR VARIOUS COMPUTER SYSTEMS

The source coding of TRAC-M Version $1.10+$ is the coding of TRAC-P Version 5.4 .29 reprogrammed in standard FORTRAN 77 so that it can be compiled on different computing platforms without change. TRAC-P required UPDATE/ HISTORIAN conditional directives (*DEFINEs) in its program library to configure the TRAC-P source coding generated by HISTORIAN for a specific computing platform. This complicated the programming of TRAC-P. By reprogramming TRAC-M in standard FORTRAN 77, with low level I/O routines programmed in the C language, source-coding changes are no longer needed for different
computing-platform compilers. Now the TRAC-M source coding is stored under the revision control system (RCS) supervised by the concurrent version system (CVS). This provides version control for making programming changes to TRAC-M. See App. E for a description and example of making programming changes to TRAC-M under CVS.

Reprogramming of TRAC-P for TRAC-M involved passing the source coding through the FOR_STRUCT restructuring tool with the following options selected: set to unify indentions (for IF and DO statements), capitalize all FORTRAN keywords (IF, THEN, ELSE, ENDIF, DO, ENDO, CALL, WRITE, READ, FORMAT, etc.), and untangle programmed loops. Statement identifiers in columns $82-94$ of the first line of each statement were added by a Perl script. The continuation of a statement on the next line was reprogrammed with a trailing \& in column 74 [for use in Fortran 90 (F90) free-format mode] and an \& in column 6 of the continued line. Perl scripts were programmed to do additional FORTRAN 77 coding changes automatically. Much of this involved eliminating EQUIVALENCE statements involving the container A array, moving or changing to REAL the CHARACTER and INTEGER data in the container A array, eliminating GOTO statements wherever possible, and reprogramming the control-logic bit numbers to the first 32 bits of the BIT and BITN array variables. The newly defined bit numbers and their definitions are described in App. G.

The details of converting TRAC-P Version 5.4.25 to TRAC-M Version 1.10 are described in the report "Transitioning between TRAC-P Version 5.4.25 and TRAC-M Version 1.10." The TRAC-P update changes from Version 5.4.25 to 5.4.29 and coding corrections found during later $\mathrm{F}-90$ modernization work on TRAC-M were added to TRAC-M Version 1.10 under CVS control. This created TRAC-M Version 1.10+. Future changes to TRAC-M need to follow the FORTRAN 77 (and eventually F90) programming standard that has been implemented.

APPENDIX A

TRAC-M SUBPROGRAMS

A.1. C-Language Routines

Name Function
BTESTC Obtains (accesses) a bit's 0 or 1 values for a cell or interface in the BIT or BITN array.

CEPSILON Returns precision of REAL*8 arithmetic.
CGCLOSE Not used.
CGOPENA Not used.

CGOPENR Not used.
CGOPENW Not used.

CGREAD Not used.
CGWRITE Not used.

CRSTIME Returns the date and time as an ASCII string.
CUSRTIME Returns the cpu time in seconds.
CXTVBW Writes binary data to the XTV datafile.
CXTVCL Closes the XTV datafile.
CXTVIN Sets the maximum XTV datafile size from optional file XTVTIN.

CXTVOA Opens the XTV datafile for appending if less than the maximum size.

CXTVOW Creates a new XTV datafile.
EXIT_PROCESS Error-handling routine for C-language routines.
IBCLRC Clears a bit's value to 0 for a cell or interface in the BIT or BITN array.

IBSETC Sets a bit's value to 1 for a cell or interface in the BIT or BITN array.

LOC4 Calculates the differential offset from the beginning of a common block with 4-byte values; e.g., LOC4(LQP3RF) LOC4(LALP).

LOCF Calculates the differential offset from the beginning of the container A array or a common block with 8-byte values; e.g., LOCF(ALPN) - LOCF(A11111).

OF1123C Clears the values of bits 11, 12, and 13 to 0 for all the cells in the BITN array.

ON1123C Clears the values of all bits except bits 2, 11, 12, 13, 30, and 32 for all cells and interfaces in the BITN array.

RS_TIME Returns the current time as an ASCII string; e.g., Fri Nov 21 17:45:34: MST 1997.

A.2. FORTRAN-Language Routines

Name Function

AICOMP Determines the A-array index for a 1D-component parameter.
ALLBLK \quad Tests for all blanks in specified substring of string.
ASIGN Assigns the component pointers according to the internal order (IORDER) array.

ASTPLN Evaluates mass and energy fluxes at the PLENUM junctions during postpass.

AUXPLN Evaluates mass and energy fluxes at the PLENUM junctions during the outer iteration.

BACIT Initiates backward substitution after direct vessel matrix inversion.

BAKUP Overwrites end-of-timestep variables with start-of-timestep values for one vessel level.

BALANCT	Support subroutine for SGEEV that balances a real matrix and isolates eigenvalues whenever possible.
BALBAKT	Support subroutine for SGEEV that forms the eigenvectors of a real matrix.
BANSOL	Solves linear matrix equation.
BDPLEN	Fills the PLENUM boundary array.
BFALOC	Allocates files and buffers for buffered I/O.
BFCLOS	Empties buffers and closes file.
BFIN	Initiates binary input subroutine.
BFOUT	Initiates binary output subroutine.
BKMOM	Initiates backward substitution for stabilizing momentum equations.
BKSMOM	Performs backward substitution for stabilizing momentum equations.
BKSPLN	Initiates backward substitution for stabilizing mass and energy equations for the plenum component.
BKSSTB	Initiates backward substitution for stabilizing mass and energy equations.
BKSTB3	Initiates backward substitution for stabilizing mass and energy equations for the VESSEL component.
BLKDAT	Initializes common variables in a block data statement.
BLKDAT2	Initializes SI/English-conversion common variables in a block data statement.
BREAK1	Controls BREAK prepass.
BREAK2	Controls BREAK outer iteration.
BREAK3	Controls BREAK postpass.
BREAKX	Evaluates BREAK pressure, temperature, and void fraction.

BREAKX Evaluates BREAK pressure, temperature, and void fraction.

C2R Converts CHARACTER*8 data to REAL $^{*} 8$ data for the container A array.

CBEDIT Edits the first 10 control-block parameter values along with their variable-name labels and a control-block schematic.

CBSET Evaluates control-block function output parameters.
CDTHEX Evaluates the diametral thermal expansion of Zircaloy as a function of temperature.

CELLA3

CELLAV

CHBD
CHBSAV Transfers selected BD-array data into the A array required for the accumulator phase-separation model.

CHBSET

CHECKSIZE
CHEN

CHF

CHF1
CHKBD

CHKSR Checks VESSEL component source locations.
CHOKE Evaluates the critical-flow phasic velocities and their derivatives with respect to the donor-cell total pressure.

Evaluates interfacial shear for VESSEL component.
Sets up arrays for heat-structure component.

CIRAD	Completes initialization of enclosures for the radiation model.
CIRADH	Gets the A-array index of the hydrodynamic-cell data needed by an enclosure of the radiation model.
CIRADR	Gets the A-array index of the heat-structure node-row data needed by an enclosure of the radiation model.
CIVSSL	Transfers vessel data from large-core memory (LCM) to small-core memory (SCM) so that the remaining data can be initialized.
CLEAN	Closes TRAC output files.
CLEAR	Sets the elements of a real array to a constant value.
CLEARI	Sets the elements of an integer array to a constant value.
CLRBRVLT	Initializes all values of the BREAK-component specific- component-table specTableCom common block to 0 or $0.0 e 0$.
CLRFIVLT	Initializes all values of the FRL-component specific- component-table specTableCom common block to 0 or 0.0 e 0.
CLRPIVLT	Initializes all values of the PIPE-component specific-
component-table specTableCom common block to 0 or 0.0 e 0.	

CLRVAVLT Initializes all values of the VALVE-component specific-component-table specTableCom common block to 0 or 0.0 e 0 .

CLRVSVLT Initializes all values of the VESSEL-component specific-component-table specTableCom common block to 0 or 0.0 e 0 .

COMPI Performs various A-array loading tasks common to most 1D components.

CONBLK Computes all 61 types of control-block outputs that do not require tabular storage or PI/PID controllers.

CONCF \quad Returns maximum solubility (kg solute $/ \mathrm{kg}$ liquid, lb_{m} solute $/ \mathrm{lb}_{\mathrm{m}}$ liquid) for species ISPEC at pressure P and liquid temperature TL.

CONSTB • Drives subroutine STBME.
COPYA Copies value of variable SRCVAL into variable SNKVAL.
CORE1 Evaluates rod heat-transfer coefficients and tracks quench fronts.

CORE3 Evaluates rod temperature distributions.
COURNO Defines the maximum material Courant number for the VESSEL component.

CPLL Determines the specific heat of D2O or H2O liquid as a function of enthalpy and pressure by calling CPLLD or CPLLH.

CPLLD Evaluates the specific heat of D2O liquid as a function of enthalpy and pressure.

CPLLH Evaluates the specific heat of H 2 O liquid as a function of enthalpy and pressure.

CPVV1 Determines the specific heat of D2O or H 2 O vapor as a function of temperature and pressure by calling CPVV1D or CPVV1H.

CPVV1D Evaluates the specific heat of D2O vapor as a function of temperature and pressure.

CPVV1H Evaluates the specific heat of H 2 O vapor as a function of temperature and pressure.

CVMGT A logical test function.
CWVSSL Transfers VESSEL data from LCM to SCM so that they can be printed.

CYLHT Evaluates temperature fields in a cylinder.
DATER Date routine.
DAXPY Function that evaluates a constant times a vector plus a vector.

DBRK Generates BREAK data dump.
DCODF Evaluates a numeric code based on data types.
DCOMP Dumps 1D component data.
DDOT Evaluates the dot product of two vectors.
DECAYS Initializes the decay-heat constants to be consistent with the ANS5. 1979 standard.

DELAY Provides a time-delay function for the input variable (XIN). The output (XOUT) is played back with the value that the input had TAU seconds previously. Linear interpolation is used for playback when (TIMET minus TAU) falls between two stored time values. The user specifies the number of table storage pairs (NINT) to be saved. Both the time and the value of the input are stored in the table array as pairs of points.

DELTAR Evaluates transient fuel-cladding gap spacing (only if $\mathrm{NFCI}=$ 1).

DFILL Generates FILL data dump.
DGBFA Factors a double precision band matrix by elimination.
DGBSL Solves double precision band system A* $X=B$ or TRANS(A) * $\mathrm{X}=\mathrm{B}$ using factors computed by subroutine DGBFA.

DHTSTR Determines the size of the data dump and writes the restart input data for a heat-structure component to the dump file.

DLEVEL Generates VESSEL level data dump.
DMPBRVLT Stores the BREAK-component specific-component-table specTableCom common-block data in an array that is written to the TRCDMP file by subroutine BFOUT.

DMPFIVLT Stores the FILL-component specific-component-table specTableCom common-block data in an array that is written to the TRCDMP file by subroutine BFOUT.

DMPFLT Stores the generic-component-table common-block data in an array that is written to the TRCDMP file by subroutine BFOUT.

DMPIT Main module for generating a dump-restart data file.
DMPPIVLT Stores the PIPE-component specific-component-table specTableCom common-block data in an array that is written to the TRCDMP file by subroutine BFOUT.

DMPPLVLT Stores the PLENUM-component specific-component-table specTableCom common-block data in an array that is written to the TRCDMP file by subroutine BFOUT.

DMPPRVLT Stores the PRIZER-component specific-component-table specTableCom common-block data in an array that is written to the TRCDMP file by subroutine BFOUT.

DMPPUVLT Stores the PUMP-component specific-component-table specTableCom common-block data in an array that is written to the TRCDMP file by subroutine BFOUT.

DMPRDVLT Stores the heat-structure ROD- or SLAB-component specific-component-table specTableCom common-block data in an array that is written to the TRCDMP file by subroutine BFOUT.

DMPTBVLT Stores the TURB-component specific-component-table specTableCom common-block data in an array that is written to the TRCDMP file by subroutine BFOUT.

DMPTEVLT	Stores the TEE- or SEPD-component specific-component-table specTableCom common-block data in an array that is written to the TRCDMP file by subroutine BFOUT.
DMPVAVLT	Stores the VALVE-component specific-component-table specTableCom common-block data in an array that is written to the TRCDMP file by subroutine BFOUT.
DMPVLT	Calls the component-specific subroutine DMPxxVLT for outputting specTableCom common-block data to the TRCDMP file.
DMPVSVLT	Stores the VESSEL-component specific-component-table specTableCom common-block data in an array that is written to the TRCDMP file by subroutine BFOUT.
DPIPE	Generates PIPE data dump.
DPLEN	Generates PLENUM data dump.
DPUMP	Generates PUMP data dump.
DRAD	Generates the radiation-model data dump.
DROD1	Writes the restart input data arrays for a subset of the heatstructure component data to the TRCDMP file.
DSCAL	Scales a vector by a constant factor.
DTDIAG	Outputs timestep diagnostic information.
DTEE	Generates TEE data dump.
DTURB	Generates TURB (turbine) data dump.
DVLVE	Generates VALVE data dump.
DVPSCL	Initializes scale factors on derivative of velocities with respect to pressure for a VESSEL level.
DVSSL	Generates VESSEL-component data dump.
ECOMP	Writes hydrodynamic and heat-transfer information for 1D components to output file.
EDIT	Writes a large edit to the TRCOUT file.

ELGR	Converts cell elevations to the slope between cells and converts K -factors to additive friction-loss coefficients.
ENDDMP	Empties dump buffers and closes dump file.
ERROR	Processes different kinds of error conditions.
ETEE	Evaluates TEE parameters on explicit pass.
EVALDF	Evaluates the absolute difference between XOLD and XNEW.
EVFXXX	Evaluates the $X X X$ component-action function.
EVLTAB	Interpolates the function value F from the tabular data based on the value of the table's independent variable: a signal variable (NVAR.GT.0), a control block (NVAR. LT.0), or a trip-signal difference DELSV (NVAR.EQ.0).
EXPAND	Adds rows of conduction nodes within the vessel rods during reflood.
FAXPOS	Evaluates the flow-area fraction, FA, or valve-stem fractional position, XPOS, for the VALVE.
FBRCSS	Identifies break components that are coupled through a fluidflow path to the secondary side of a steam generator.
FCEINF1	Finds the radiation enclosure number, face number, hydrolevel number, and radiation-level number associated with a given M number.
FCEINFO	Finds an array of radiation enclosure numbers, face numbers, hydro-level numbers, and radiation-level numbers associated with a given array of M numbers.
FEMOM	Sets up stabilizing momentum equations.
FEMOMX	Performs forward elimination on radial motion equation.
FEMOMY	Performs forward elimination on azimuthal motion equation.
FEMOMZ	Performs forward elimination on axial motion equation.
FF3D	Makes final pass update for all variables in 3D VESSEL.

FILL1	Controls FILL prepass.
FILL2	Controls FILL outer iteration.
FILL3	Controls FILL postpass.
FILLX	Evaluates postpass FILL velocity.
FIND	Obtains the A-array index for a hydrodynamic-component parameter.
FINDER	Locates array data for a given component.
FINDH	Obtains the A-array index for a heat-structure parameter.
FINDNUM	Obtains the A-array index for fixed-length table data of a component.
FLTOM	Controls transfer of data between hydro and heat-structure databases.
FLUX	Evaluates mass flow at the boundary of a 1D component for use in mass inventory.
FLUXES	Defines explicit portion of mass and energy flux terms.
FNMESH	Initializes the supplemental user-specified rows of conduction nodes within the vessel rods at the start of reflood.
FPROP	Determines the D2O or H2O fluid enthalpy, transport properties, and surface tension by calling FPROPD or FPROPH.
FPROPD	Evaluates the D2O fluid enthalpy, transport properties, and surface tension.
FPROPH	Evaluates the H2O fluid enthalpy, transport properties, and surface tension.
FROD	Evaluates temperature profiles in nuclear or electrically heated fuel rods.
FTHEX	Evaluates the fuel linear thermal-expansion coefficient for uranium dioxide and mixed-oxide fuels.

FWALL Computes a two-phase friction factor.
FWKF Evaluates form-loss K-factors for an abrupt contraction or expansion.

GAPHT Evaluates fuel-cladding gap heat-transfer coefficient.
GETBIT Returns value of bit N of word B .
GETCENC Gets TRAC's internal radiation enclosure number corresponding to an input radiation enclosure number.

GETCRV Gets appropriate pump curves from database.
GETGEN Returns a selected variable value from the generic-component-table genTableCom common block.

GETPUMP Returns a selected variable value from a PUMP-component specific-component-table specTableCom common block.

GETRADM Gets running index for an enclosure radiation level face.
GETRDM1 Gets an array of running indices for an array of enclosure radiation level faces.

GETROD Returns a selected variable value from a heat-structure RODor SLAB-component specific-component-table specTableCom common block.

GETTEE Returns a selected variable value from a TEE- or SEPDcomponent specific-component-table specTableCom common block.

GETTURB Returns a selected variable value from a TURB-component specific-component-table specTableCom common block.

GETTYPE Defines the CHARACTER*8 name of a component type given the REAL*8 internal-code value for the component type.

GETVALVE Returns a selected variable value from a VALVE-component specific-component-table specTableCom common block.

GETVSAR Returns a selected variable value from a VESSEL-component specific-component-table specTableCom common block when
its calling subroutine doesn't know the structure of the VESSEL-component database.

GETVSS	Returns a selected variable value from a VESSEL-component specific-component-table specTableCom common block.
GVSSL1	Evaluates integrated vessel parameters for graphics purposes.
GVSSL2	Evaluates average values for vessel graphics (integrated values calculated in subroutine GVSSL1).
HASH	Determines the first array index for each alphabet letter that is the first letter of the character-string label names.
HEV	Determines the heat of evaporation of D2O or H2O liquid corresponding to a given temperature at low pressure.
HEVD	Evaluates the heat of evaporation of D2O liquid corresponding to a given temperature at low pressure.
HEVH	Evaluates the heat of evaporation of H2O liquid corresponding to a given temperature at low pressure.
HLFILM	Evaluates wall-to-liquid heat-transfer coefficient in transition and film boiling.
HLFLMR	Evaluates wall-to-liquid heat-transfer coefficient in reflood transition and film boiling.
HOUT	Controls the outer-iteration logic for a complete timestep.
HOR2T	Support subroutine for SGEEV that finds the eigenvalues of a real upper Hessenberg matrix by the QR method.
HORT	Support subroutine for SGEEV that finds the eigenvalues and eigenvectors of a real upper Hessenberg matrix by the QR method.
HTCOR	Computes heat-transfer coefficients.
HTIF	Evaluates the interphasic heat-transfer for the zero- and 1D components.
Averages velocities and generates heat-transfer coefficients	
for 1D components.	

HTSTR1 Controls heat-structure prepass.
HTSTR3 Controls heat-structure postpass.
HTSTRP Evaluates the heat-structure instantaneous power and total energy in each ROD or SLAB element of the heat structure.

HTSTRV Initializes to zero some VESSEL-component hydro-cell arrays used to store heat-structure information.

HTVSSL Averages velocities and generates heat-transfer coefficients for the vessel.

HUNTS Searches character string for specified search string.
HVFILM Evaluates the vapor heat-transfer coefficient that is the maximum of the Bromley, natural-convection, and the Dougall-Rohsenow coefficients.

HVNB Evaluates vapor heat-transfer coefficient for nucleate boiling.
HVWEBB Evaluates vapor heat-transfer coefficient for dispersed vapor flow.

I42R Copies the values of an INTEGER*4 array into a REAL*8 array.

IBRK Initializes the BREAK data arrays that are not input.
ICOMP Controls the routines that initialize component data.
IDAMAX Finds the index of the vector element that has the maximum absolute value.

IDEL Searches specified substring of string for any one character in a set of specified characters.

IFILL Initializes the FILL data arrays that are not input from cards.
IFSET Initializes 3D interfacial shear at the start of each VESSEL prepass.

IHPSS1 Evaluates hydraulic-path steady-state initialization for the 1D hydraulic components.

IHPSS3 Evaluates hydraulic-path steady-state initialization for the 3D VESSEL component.

INDEL Searches specified substring of string for first nonoccurrence of any one character in a set of specified characters.

INIT Entry routine for subroutine INIT.
INITBC Initializes VESSEL component phantom cells and sets some boundary conditions.

INNER Performs an inner iteration for a 1D component.
INPUT Entry routine for subroutine INPUT.
IPIPE
IPLEN

IPRIZR
Initializes the PIPE data arrays that are not input.
Loads the PLENUM arrays that are needed, but not input, to start a problem.

Initializes the PRIZER (pressurizer) data arrays that are not input.

IPROP Calls subroutines THERMO, FPROP, and MLXPRP for most 1D components.

IPUMP Initializes the PUMP data arrays that are not input.
IROD Initializes rod component parameters that are not user-input.
IRODL Initializes heat-structure arrays that provide information on the location of hydro data.

ISORT Sorts a list of integers in ascending order.
ITEE
ITURB
Loads the arrays that are not input but that are needed to start a problem.

Initializes the VALVE data arrays that are not input.
IVSSL Initializes the VESSEL data arrays that are not input.
IWALL3 Divides input friction factor by hydraulic diameter.

JUNSOL Determines junction parameters for connecting and sequencing components.

JUSTLR Left or right justifies the letters of a character string.
JVALUE Converts one character of a string to a binary number: 0-9 returned as binary mode; blank, as binary 0 ; all others, as <0.

LABELD Outputs the D2O properties comment.
LABELH Outputs the H 2 O properties comment.
LABELP Outputs the D2O or H 2 O properties comment be calling LABELD or LABELH.

LCHPIP Defines the pointer to the hydro array data for a 1D component.

LCHVSS Defines the pointer to the hydro array data for a VESSEL component.

LCMTRN Transfers data to LCM.
LEVEL Uses a curve fit to obtain the water level in a cylindrical pipe as a function of the void fraction.

LEVELI Transfers data for axial level IZ from inverted form to stacked form.

LEVELR Transfers data for axial level IZ from stacked form to inverted form.

LININT Performs linear interpolation on array tabular data.
LININT0 Performs linear interpolation on array tabular data without a derivative evaluation.

LINT4D Linearly interpolates a function table with zero to four independent variables.

LOADN Reads in an array of input real or integer values in the load format and stores their values in a REAL* 8 array.

LOCTRB Evaluates the required relative variable location in a common block for the TURB.

LTOPP Determines if velocities at opposite faces of a TEE-component JCELL are both directed into the JCELL.

MANAGE Performs all level and rod-data management operations for the VESSEL and heat-structure components.

MATSOL Solves the vessel-matrix equation $A * X=C$ using the capacitance method.

MBN Evaluates values for electrically heated nuclear fuel-rod insulator properties.

MFROD Orders fuel-rod property selection and evaluates an average temperature for property evaluation.

MFUEL Evaluates uranium-dioxide and uranium-plutonium dioxide properties.

MGAP Evaluates values for the thermal conductivity of the gap-gas mixture.

MHTR Evaluates values for electrically heated fuel-rod heater coil properties.

MIX3D Initializes stabilizer quantities at start of problem and equivalences stabilizer quantities to basic values when twostep method is not being used.

MIXPRP . Evaluates mixture properties from those of separate phases.
MOVINFO Reorders radiation enclosure information.
MPROP Orders structure property selection and evaluates an average temperature for property evaluation.

MSTRCT Evaluates properties for certain types of steel.

MWRX Evaluates the Zircaloy steam reaction in the cladding at high temperatures.

MZIRC Evaluates properties for Zircaloy-4.
NAMLST Performs input-data check on all namelist variables.
NEWDLT Evaluates prospective new-time increment.
NXTCMP Finds the beginning of data for the next component.
OFFTKE Evaluates exit void fraction for TEE component offtake model.

ORDER Rearranges the signal-variable, control-block, and trip ID numbers in ascending order based on their absolute value and searches for the do-loop index values for each controlparameter evaluation pass through the signal variables, control blocks, and trips.

ORTHEST Support subroutine for SGEEV that does a orthogonal similarity transformation of a real matrix.

ORTRANT Support subroutine for SGEEV that accumulates the orthogonal similarity transformation used in the reduction of a real matrix.

OUT1D
Controls outer calculation for 1D components.
OUT3D Controls outer calculation for a VESSEL.
OUTER Controls outer calculation for one timestep.
PIPE1 Controls PIPE prepass.
PIPE1X Evaluates liquid volume discharged $\left(\mathrm{q}_{\text {out }}\right)$, collapsed liquid level (z), and volumetric flow rate ($\mathrm{v}_{\text {flow }}$); assumes vertical component with low-numbered cell at top.

PIPE2 Controls PIPE outer iteration.
PIPE3 Controls PIPE postpass.
PIPROD Moves hydro data for a 1D component to and from the heatstructure database.

PLEN1	Performs the prep stage calculation for the PLENUM timestep initialization.
PLEN2	Controls PLENUM outer iteration.
PLEN3	Controls PLENUM postpass.
PNTROD	Initializes HTSTR pointers.
PNTVSS	Initializes VESSEL pointers.
POST	Controls postpass calculation for one timestep.
POST3D	Controls postpass calculation for the VESSEL.
POSTER	Performs postpass calculation for 1D components.
POWINT	Evaluates the integral power (energy) into the pipe wall.
PREFWD	Prepares for evaluation of the 3D wall shear coefficients.
PREINP	Converts free-format TRACIN deck to format used by TRAC input subroutine.
PREP	Controls prepass calculation for one timestep.
PREP1D	Controls the prepass calculation for 1D components.
PREP3D	Controls prepass calculation for 3D components.
PREPER	Performs prepass calculation for 1D components.
PRIZR1	Controls PRIZER (pressurizer) prepass.
PRIZR2	Controls PRIZER (pressurizer) outer iteration.
PRIZR3	Controls PRIZER (pressurizer) postpass.
PRZR1X	Evaluates pressurizer mass change during steady-state calculation.
PSTEPQ	Controls printing, dumping, and graphing of data at the completion of a timestep.
PTRSPL	Initializes PLENUM pointers for use by signal variables and graphics.

PUMP1 Controls PUMP prepass.
PUMP2 Controls PUMP outer iteration.
PUMP3 Controls PUMP postpass.
PUMPD Evaluates head and torque from PUMP curves.
PUMPI Supplies built-in PUMP characteristics.
PUMPSR Evaluates PUMP momentum and energy source.
PUMPX Evaluates PUMP head and torque.
PUTRADM Stores the running index for an enclosure radiation-level face.

PUTRDM1 Stores the M number for a radiation-level face for a given enclosure number.

R2C Converts REAL*8 data in the container A array to CHARACTER*8 data.

R2C32 Converts four REAL*8 array elements defining the component title to one CHARACTER*32 variable.

R2I4 Copies the values of a REAL*8 array into an INTEGER*4 array.

R2II Copies integer values stored in a REAL*8 array into a generic INTEGER array.

RADCHTS Combines the radiative surface heat fluxes for the radiation levels to obtain the heat flux for the heat-structure node rows.

RADCHYD Combines the phasic heat fluxes due to radiation to determine the energy transferred to each hydro cell.

RADEMS Evaluates the emissivity of radiation-level faces.
RADFP Evaluates the gas and liquid radiative properties.
RADMAP Defines the flow-regime map for evaluating gas and liquid radiative properties.

RADMOD1 Controls the radiation-model calculation.
RADPT Defines pointers for radiation model arrays.
RADSOL Solves for radiative surface heat fluxes and phasic energy to the fluid.

RBREAK Reads BREAK data from the input file and creates a pointer table for these data.

RCNTL
Reads in signal-variable, trip, and controller input data.
RCOMP Reads data common to most 1D components from input files and writes these data to output file.

RDBRVLT Reads BREAK-component data from the specific-componenttable specTableCom common block and stores that data in the breakCom common block.

RDCOM3 Controls reading of 3D VESSEL data from input file.
RDCOMP Controls reading of component data from input file.
RDCRDS Reads timestep cards until DTMIN <0 is encountered.
RDCRVS Reads PUMP curves from input file.
RDDIM Reads number of points on PUMP curves from input file.
RDFIVLT Reads FILL-component data from the specific-componenttable specTableCom common block and stores that data in the fillCom common block.

RDFLT Reads component-specific data from the generic-componenttable genTableCom common block and stores that data in common block FLTAB.

RDPIVLT Reads PIPE-component data from the specific-componenttable specTableCom common block and stores that data in the pipeCom common block.

RDPLVLT Reads PLENUM-component data from the specific-component-table specTableCom common block and stores that data in the plenumCom common block

RDPRVLT Reads PRIZER-component data from the specific-componenttable specTableCom common block and stores that data in the prizerCom common block.

RDPTR Reads REAL*8 array values from the container A array and converts them to INTEGER*4 array values.

RDPUVLT Reads PUMP-component data from the specific-componenttable specTableCom common block and stores that data in the pumpCom common block.

RDRDVLT Reads heat-structure ROD- or SLAB-component data from the specific-component-table specTableCom common block and stores that data in the teeCom common block.

RDREST Controls reading of component data from a restart dump file.
RDTBVLT Reads TURB-component data from the specific-componenttable specTableCom common block and stores that data in the turbCom common block.

RDTEVLT Reads TEE- or SEPD-component data from the specific-component-table specTableCom common block and stores that data in the teeCom common block.

RDVAVLT Reads VALVE-component data from the specific-componenttable specTableCom common block and stores that data in the valveCom common block.

RDVLT Calls the component-specific subroutine RDxxVLT for reading specific-component-table specTableCom commonblock data and storing that data in the component-specific xxxxCom common block.

RDVSVLT Reads VESSEL-component data from the specific-componenttable specTableCom common block and stores that data in the vesselCom common block.

RDZMOM Defines momentum cell reciprocal lengths and weighting factors.

READI Reads integer data in I14 format.
READR Reads real data in E14.6 format.

REBRK	Reads BREAK data from a restart dump and creates a pointer table for these data.
RECNTL	Reads the signal-variable, trip, and controller data from the restart file.
RECOMP	Reads data from a restart dump common to most 1D components.
REECHO	Outputs real-valued scalar input data read from the TRCRST file to the TRCOUT file.
REFILL	Reads FILL data from a restart dump and creates a pointer table for these data.
REHTST	Reads heat-structure scalar input data from a restart dump and creates a pointer table for these data.
RENC	Reads radiation-model enclosure input data.
RENC1	Reads radiation-model enclosure input data.
REPIPE	Reads PIPE data from a restart dump and creates a pointer table for these data.
REVEVE	Reads VALVE data from a restart dump and creates a pointer table for these data.
REPER	Reads PLENUM data from a restart dump and creates a
pointer table for these data.	

REVSSL Reads VESSEL data from a restart dump and creates a pointer table for these data.

RFDBK Evaluates the reactor core reactivity feedback caused by changes in the fuel temperature, coolant temperature, and coolant void from the beginning of the previous timestep.

RFILL \quad Reads FILL data from input file and creates a pointer table for these data.

RHOLID Evaluates the D2O liquid density and its derivatives.
RHOLIH Evaluates the H 2 O liquid density and its derivatives.
RHOLIQ Determines the D2O or H2O liquid density and its derivatives by calling RHOLID or RHOLIH.

RHTSTR Reads ROD or SLAB heat-structure data from the input file and creates a pointer table for these data.

RKIN

RLEVEL Writes real VESSEL level array to output file TRCOUT.
RODHT Evaluates the fuel-rod temperature field.
RPIPE

RPLEN

RPRIZR Reads PRIZER (pressurizer) data from input file and creates a pointer table for these data.

RPUMP \quad Reads PUMP data from input file and creates a pointer table for these data.

RRDLCM Reads rod data from LCM.
RROD1 Reads basic ROD input parameters.
RROD2 Reads and checks array data for powered heat structures.
$\begin{array}{ll}\text { RSTBRVLT } & \begin{array}{l}\text { Reads BREAK-component specific-component-table } \\ \text { specTableCom common-block data from the TRCRST file. }\end{array}\end{array}$
$\begin{array}{ll}\text { RSTFIVLT } & \text { Reads FILL-component specific-component-table } \\ \text { specTableCom common-block data from the TRCRST file }\end{array}$
RSTFLT Reads generic-component-table genTableCom common-block data from the TRCRST file.

RSTPIVLT Reads PIPE-component specific-component-table specTableCom common-block data from the TRCRST file.

RSTPLVLT Reads PLENUM-component specific-component-table specTableCom common-block data from the TRCRST file.

RSTPRVLT Reads PRIZER-component specific-component-table specTableCom common-block data from the TRCRST file.

RSTPUVLT Reads PUMP-component specific-component-table specTableCom common-block data from the TRCRST file.

RSTRDVLT Reads heat-structure ROD- or SLAB-component specific-component-table specTableCom common-block data from the TRCRST file.

RSTTBVLT Reads TURB-component specific-component-table specTableCom common-block data from the TRCRST file.

RSTTEVLT Reads TEE- or SEPD-component specific-component-table specTableCom common-block data from the TRCRST file.

RSTVAVLT Reads VALVE-component specific-component-table specTableCom common-block data from the TRCRST file.

RSTVLT Calls component-specific subroutine RSTxxvlt to read specific-component-table specTableCom common-block data from the TRCRST file.

RSTVSVLT Reads VESSEL-component specific-component-table specTableCom common-block data from the TRCRST file.

RTEE
Reads TEE data from input file and creates a pointer table for these data.

RTTR Determines coefficient for momentum convection across the TEE internal junction.

RTURB Reads TURB (turbine) stage data from input file and creates a pointer table for these data.

RVLVE Reads VALVE data from input file and creates a pointer table for these data.

RVSLCM Reads VESSEL data from LCM.

RVSSL Reads VESSEL data from input file and creates a pointer table for these data.

S1DPTR Sets pointers for 1D components.
SASUMT Evaluates the sum of the magnitudes of vector elements.
SATDED Evaluates the derivative of the saturation temperature with respect to pressure for D 2 O vapor.

SATDEH Evaluates the derivative of the saturation temperature with respect to pressure for H 2 O vapor.

SATDER Determines the derivative of the saturation temperature with respect to pressure for D 2 O or H 2 O vapor by calling SATDED or SATDEH.

SATPRD Evaluates the saturation pressure of D2O vapor at a given vapor temperature.

SATPRH Evaluates the saturation pressure of H 2 O vapor at a given vapor temperature.

SATPRS Determines the saturation pressure of D2O or H 2 O vapor at a given temperature by calling SATPRD or SATPRH.

SATTMD Evaluates the saturation temperature of D2O vapor at a given pressure.

SATTMH Evaluates the saturation temperature of H 2 O vapor at a given pressure.

SATTMP Determines the saturation temperature of D2O or H 2 O vapor at a given pressure by calling SATTMD or SATTMH.

SAVBD Moves boundary information into component arrays.
SAXPYT Performs single precision computation of $Y=A * X+Y$.
SCLMOM Sets up geometric scale factors for velocities to improve momentum conservation.

SCLTBL Scales input table according to scale factor passed by input routine.

SCMLCM Checks for overflow. Transfers fixed-length, variable-length, and pointer tables to LCM. Adjusts pointers.

SCOPYM Support subroutine for SGEEV that copies one vector into another vector.

SCOPYT
Support subroutine for SGEEV that copies the negative of one vector into another vector.

SDOTT Computes single precision inner product of single precision vectors.

SEDIT
SEPDI Computes separator side-arm void fraction and mixture velocity.

SEPDX Computes mechanistic separator carryover and carryunder quantities.

SETBD Stores component information in boundary arrays.
SETBDT Sets values for boundary to first theta cell equal to values for last theta cell and sets values for boundary to last theta cell equal to values for first theta cell.

SETEOD
Defines the equation-of-state constants for D2O fluid.
SETEOH Defines the equation-of-state constants for H 2 O fluid.
SETEOS Defines the equation-of-state constants for D2O or H2O fluid by calling SETEOD or SETEOH.

SETLCM Monitors use of LCM dynamic area.

SETNET Provides the information needed to set up the network solution matrices.

SETROD Sets the value of a selected variable from a heat-structure ROD- or SLAB-component specific-component-table specTableCom common block.

SETTYPE Defines the component-type internal-code REAL*8 value given its CHARACTER*8 component-type name.

SETVA Sets value of variable VAR to VAL for one level of VESSEL data.

SFA22V Hardwired version of SGEFAT for 2×2 matrices evaluated as a NMAT-element vector.

SFA33V Hardwired version of SGEFAT for 3×3 matrices evaluated as a NMAT-element vector.

SFA44
Hardwired version of SGEFAT for a 4×4 matrix.
SFA44V Hardwired version of SGEFAT for 4×4 matrices evaluated as a NMAT-element vector.

SFA55 Handwired version of SGEFAT for a 5×5 matrix.
SFA55V Hardwired version of SGEFAT for 5×5 matrices evaluated as a NMAT-element vector.

SGECOT Factors a real matrix by Gaussian elimination and estimates the condition of the matrix.

SGEDIT Computes the determinant of a matrix using the factors computed by SGEFAT.

SGEFAT Factors a real matrix by Gaussian elimination.
SGEFST Solves a $\mathrm{N} \times \mathrm{N}$ system of linear equations by calling SGECOT and SGESLT.

SGESLT \quad Solves the real system $A^{*} X=B$ or TRANS(A) ${ }^{*} X=B$ using the factors computed by SGEFAT.

SHIFTB Translates the table's abscissa-coordinate values so that the function value F in the table corresponds to an abscissacoordinate value of 0.0 .

SHRINK Removes rows of conduction nodes within the heat-structure rods or slabs during reflood.

SIGMA Returns surface tension of water as a function of pressure.
SOUND Performs a homogeneous-equilibrium sound-speed calculation.

SPLIT Reads appropriate data from PUMP curves.
SRTLP

SSCALT \quad Performs single precision vector scale $X=A^{*} X$.
SSEPOR Performs detailed calculation of a steam-water separator.
SSL22V Hardwired version of SGESLT for 2×2 matrices evaluated as a NMAT-element vector.

SSL33V

SSL44 Hardwired version of SGESLT for a 4×4 matrix.
SSL44V Hardwired version of SGESLT for 4×4 matrices evaluated as a NMAT-element vector.

SSL55
SSL55V Hardwired version of SGESLT for 5×5 matrices evaluated as a NMAT-element vector.

STBME Sets up the stabilizing mass and energy equations.
STBME3 Sets up stabilizer mass and energy equations for the VESSEL component.

STBMPL Sets up the stabilizing mass and energy equations for the PLENUM component.

STDIR	Defines the pressure-variation matrix equation for the current outer iteration.
STEADY	Generates a steady-state solution.
SVSET	Calls SVSET1, SVSET3, and SVSETH to determine locationdependent signal-variable parameters.
SVSET1	Evaluates signal-variable parameters with locations defined in 1D hydraulic components.
SVSET3	Evaluates signal-variable parameters with locations defined in a 3D VESSEL component.
SVSETH	Evaluates signal-variable parameters defined in a HTSTR component.
TBC1	Stores the TEE internal-junction momentum term and set flag when a JCELL main-channel interface is a TEE external junction.
TEE1	Controls TEE prepass.
TEE1X	Evaluates source for TEE side-leg hydrodynamics.
TEE2	Controls TEE outer iteration.
TEE3	Controls TEE postpass.
TEEMET	Evaluates the explicit third term of TEE internal-junction momentum convection.
TEEMF1	Evaluates the coefficient of the implicit first term of TEE internal-junction momentum convection.
TEEMF2	Evaluates the coefficient of the implicit second term of TEE internal-junction momentum convection.
TEEMOM	Evaluates the TEE internal-junction three momentumconvection terms by calling TEEMET, TEEMF1, and TEEMF2.
TEEX	Evaluates coefficients for flow-coupling at the TEE internal junction.
TF1D	Controls 1D hydrodynamics routines.

TF1DS Solves the hydrodynamic equations for the 1D two-fluid pipe model.

TF1DS1

TF1DS3

TF3DS

TF3DS1

TF3DS3
TFPLBK

TFPLN

THCL

THCLD Evaluates the thermal conductivity of D2O as a function of pressure and enthalpy.

THCLH Evaluates the thermal conductivity of H 2 O as a function of pressure and enthalpy.

THCV

THERMD Evaluates the thermodynamic properties of D2O.
THERMH Evaluates the thermodynamic properties of H 2 O .
THERMO Determines the thermodynamic properties of D 2 O or H 2 O by calling THERMD or THERMH.

TIMCHK Checks elapsed time to see whether certain functions should be performed.

TIMED

TIMSTP
TIMUPD

TMPPTR

TMSFB

TRAC TRAC-M main program.
TRANS Controls overall calculation for each timestep.
TRBPOW Evaluates the efficiency and power output of a turbine stage.
TRBPRE Evaluates the data pertaining to the entire turbine-generator set (common/sum all stages) during the prep stage.

TRBPST Evaluates the data pertaining to the entire turbine-generator set (common/sum all stages) during the post stage.

TRIP
TRIPS

TRISLV

TRPSET
TURB1

TURB2
TURB3
Determines the time and date for the IBM Risc/6000 and SUN computer platforms.

Sets up timestep and time-edit interval times.
Updates start-of-timestep values with end-of-timestep values for one VESSEL level.

Sets up temporary pointers for subroutines PREIFD and PREFWD.

Evaluates the minimum stable film-boiling temperature ($\mathrm{T}_{\text {min }}$).

Returns status of a trip.
Evaluates the control parameters for the beginning of the timestep system state.

Solves linear system of the form $A * X=B$ where A is tridiagonal.

Sets up trip status flags.
Performs the prep stage calculation for the turbine stage component timestep initialization.

Controls turbine stage outer iteration.
Controls turbine stage postpass.

UNCNVT Converts a parameter's value from SI to English units or from English to SI units.

UNNUMB Assigns the units-label number to a parameter name in array LABELS.

UNSVCB Determines the units label and units-label number of a signal variable or control block.

VALUE Converts an ASCII string to its binary value.
VELBC Sets velocities at internal FILL boundaries for a vessel.

VFWALL3 Evaluates 3D wall shear coefficients.
VISCL Determines the viscosity of D2O or H2O liquid as a function of pressure and enthalpy by calling VISCLD or VISCLH.

VISCLD Evaluates the viscosity of D2O liquid as a function of pressure and enthalpy.

VISCLH Evaluates the viscosity of H 2 O liquid as a function of pressure and enthalpy.

VISCV Determines the viscosity of D2O or H2O vapor as a function of pressure and enthalpy by calling VISCVD or VISCVH.

VISCVD Evaluates the viscosity of D2O vapor as a function of pressure and enthalpy.

VISCVH Evaluates the viscosity of H 2 O vapor as a function of pressure and enthalpy.

VLVE1 Controls VALVE prepass.
VLVE2 Controls VALVE outer iteration.
VLVE3 Controls VALVE postpass.
VLVEX Evaluates the value of the flow-area change action for a VALVE.

VMCELL Converts a VESSEL cell number to a VESSEL-matrix cell number.

VOLFA Evaluates cell volume flow areas.

VOLV Evaluates cell-averaged phase velocities for 1D components.
VRBD Defines VESSEL velocities in the upstream radial direction for the inner ring (not currently used).

VSSL1
Performs prepass calculations for VESSEL dynamics.
VSSL2 Performs inner iterations for VESSEL dynamics.
VSSL3 Performs postpass calculations for VESSEL dynamics.
VSSROD Transfers data between hydro and heat-structure databases.
VSSSSR Performs steady-state change ratio calculations for vessel.
WARRAY Writes a real array to output file TRCOUT.
WBREAK Writes selected BREAK data to output file TRCOUT.
WCOMP Controls the writing of selected component data to output file TRCOUT.

WDRAG Evaluates coefficient of friction for liquid and vapor at the wall.

WFILL Writes selected FILL data to output file TRCOUT.
WHTSTR Writes selected heat-structure data to output file TRCOUT.
WIARN Converts REAL*8-array values to integer-array values and then writes the integer-array values to output file TRCOUT.

WIR Writes one to five real or integer variable values to a character string.

WJCELL Evaluates the JCELL width seen by the adjacent side-channel cell from which the pressure gradient across the internal junction is defined.

WLABI Edits labeled integer-valued input data that is to be read by the LOAD subroutine.

WLABIN Writes labeled integer-array values input with the load format to output file TRCOUT and converts the integer-array values to REAL*8-array values.
\(\left.$$
\begin{array}{ll}\text { WLABR } & \begin{array}{l}\text { Edits labeled real-valued input data that is to be read by the } \\
\text { LOAD subroutine. }\end{array}
$$

WLEVEL \& Writes real VESSEL level array to output file TRCOUT.\end{array}\right]\)| WMXYTB | Converts the units of input-array tabular data with 1 to 4
 independent variable parameters for output to the INLAB or
 TRCOUT files and to SI units for the TRAC calculation. |
| :--- | :--- |
| WPIPE | Writes selected PIPE data to output file TRCOUT. |

WRPUVLT	Writes pumpCom common block data to the PUMP- component specific-component-table specTableCom common block.
WRRDVLT	Writes rodCom common block data to the heat-structure ROD- or SLAB-component specific-component-table specTableCom common block.
WRTBVLT	Writes turbCom common block data to the TURB- component specific-component-table specTableCom common block.
WRTEVLT	Writes teeCom common block data to the TEE- or SEPD- component specific-component-table specTableCom common block.
WRVAVLT	Writes valveCom common block data to the VALVE- component specific-component-table specTableCom common block.
WRVLT	Calls the component-specific subroutine WRxxVLT to write xxxCCom common block data to the specific-component-table
specTableCom common block.	

XTVCB \quad Writes index and data for control-block output-parameter values for XTV graphics.

XTVDR Main XTV driver routine that calls appropriate component specific routine to perform a function.

XTVHT Writes index and data for heat-structure component variables for XTV graphics.

XTVINIT Defines names for all output variables, opens header file, and calls CXTVTIN to set the maximum datafile size for XTV graphics.

XTVPIPE Writes index and data for PIPE variables and calls XTV1D for generic 1D variables for XTV graphics.

XTVPLEN Writes index and data for PLENUM variables for XTV graphics.

XTVPRZR Writes index and data for PRIZER variables for XTV graphics.
XTVPUMP Writes index and data for PUMP variables and calls XTV1D for generic 1D variables for XTV graphics.

XTVSIG Writes index and data for signal-variables parameter values for XTV graphics.

XTVTEE Writes index and data for TEE variables and calls XTV1D for generic 1D variables for XTV graphics.

XTVVALV Writes index and data for VALVE variables and calls XTV1D for generic 1D variables for XTV graphics.

XTVVSL Writes index and data for VESSEL variables for XTV graphics.
ZCORE Evaluates axial locations for CHF and transition boiling within the core and computes associated void fractions.

ZEROV
ZPWHCI
Zeroes velocities at zero flow areas.
Evaluates axial power shape based on user input.
ZPWNRM Normalizes the 1D or 2D axial-power distribution to a spatially averaged value of unity.

Interpolates the r- or x-direction power shapes from ZPWF at the axial locations of the node rows.

APPENDIX B
 TRAC-M SUBROUTINE CALLING SEQUENCE

TRAC						
	Calls	DMPIT	INIT	CUSRTIM	ERROR	INPUT
		SETLCM	BLKDAT	STEADY	BLKDAT2	TRANS
		CLEAN	C2R			
AICOMP						
	Calls	ERROR	RDLCM			
	Called by	FIND				
ALLBLK						
	Calls	INDEL				
	Called by	PREINP				
ASIGN						
	Called by	INPUT				
ASTPLN						
	Called by	PLEN3				
AUXPLN						
	Calls	BTESTC				
	Called by	PLEN2				
BACIT						
	Called by	VSSL2				
BAKUP						
	Called by	VSSL2	VSSL3			
BALANCT						
	Called by	SGEEV				
BALBAKT						
	Called by	SGEEV				
BANSOL						
	Called by	RODHT				
BDPLEN						
	Calls	IBSETC				
	Called by	IPLEN	PLEN2	PLEN3	PLEN1	

APPENDIX B B-1

	Called by	DMPIT	RDREST			
BFCLOS						
	Called by	ENDDMP				
BFIN						
	Calls	ERROR	R2C			
	Called by	RDREST	REROD1	RSTPLVLT	REBRK	RETEE
		RSTPRVLT	RECOMP	RETURB	RSTPUVLT	REFILL
		REVLVE	RSTRDVLT	REHTST	REVSSL	RSTTBVLT
		REPIPE	RSTBRVLT	RSTTEVLT	REPLEN	RSTFIVLT
		RSTVAVLT	REPUMP	RSTFLT	RSTVSVLT	RERAD
		RSTPIVLT				
BFOUT						
	Calls	ERROR				
	Called by	DBRK	DMPPIVLT	DPIPW	DCOMP	DMPPLVLT
		DPLEN	DFILL	DMPPRVLT	DPUMP	DHTSTR
		DMPPUVLT	DRAD	DLEVEL	DMPRDVLT	DROD1
		DMPBRVLT	DMPTBVLT	DTEE	DMPFIVLT	DMPTEVLT
		DTURB	DMPFLT	DMPVAVLT	DVLVE	DMPIT
		DMPVSVLT	DVSSL			
BKMOM						
	Calls	BKSMOM				
	Called by	PIPE1 VLVE1	PUMP1	TURB1	PRIZR1	TEE1
BKSMOM						
	Called by	BKMOM				
BKSPLN						
	Calls	SFA55	CONCF	SSL55		
	called by	PLEN3				
BKSSTB						
	Calls	SSL55	CONCF	SFA55		
	Called by	POSTER				
BKSTB3						
	Calls	IBSETC	SFA55	BTESTC	SSL55	CONCF
	Called by	VSSL3				
BLKDAT Called by TRAC						

BLKDAT2						
	Called by	TRAC				
BREAK1						
	Calls	BREAKX	J1D	SHIFTB	BTESTC	
	Called by	PREP1D				
BREAK2						
	Calls	J1D				
	Called by	OUT1D				
BREAK3						
	Calls	FPROP	THERMO	J1D		
	Called by	POST				
BREAKX						
	Calls	SHIFTB	ERROR	LININT0	THERMO	EVLTAB
		MIXPRP	TRIP	FPROP	SATTMP	
	Called by	BREAK1				
BTESTC						
	Called by	AUXPLN	BKSTB3	BREAK1	CHKBD	CIF3
		ECOMP	FEMOM	FEMOMX	FEMOMY	FEMOMZ
		FILL1	FLUX	HTIF	INITBC	IVSSL
		J3D	PLEN3	POSTER	PREPER	STBME
		STBME3	TEE3	TFIDS	TF1DS1	TF1DS3
		TF3DS	TF3DSI	TF3DS3	TFPLBK	TFPLN
		VELBC	VSSL2	VSSL3	WRCOMP	
C2R						
	Called by	BFCLOS	RCNTL	RPUMP	CBSET	RFILL
		RVLVE	DMPIT	RHTSTR	TRAC	INPUT
CBEDIT						
	Called by	RCNTL	RECNTL			
CBSET						
	Calls	ERROR DELAY	LINT4D	C2R	CONBLK	LININT0
	Called by	TRIPS				
CDTHEX						
	Calls	LININT0				
	Called by	DELTAR				
CELLA3 Called by VSSL2						

CELLAV	Called by	TF1D				
CEPSILON						
	Called by	HQR2T	HQRT	SGEFST		
CGCLOSE						
	No Callers					
CGOPENA						
	No Callers					
CGOPENR						
	No Callers					
CGOPENW						
	No Callers					
CGREAD						
	No Callers					
CGWRITE						
	No Callers					
CHBD						
	Calls	ERROR	GETTYPE			
	Called by	CHKBD				
CHBSAV						
	called by	IPIPE IVLVE	IPUMP	ITURB	IPRIZR	ITEE
CHBSET						
	Called by	$\begin{aligned} & \text { IPIPE } \\ & \text { IVLVE } \end{aligned}$	IPUMP	ITURB	IPRIZR	ITEE
CHECKSIZE						
	Calls	ERROR				
	Called by	ICOMP	POST3D	RDREST	IHPSS3	PREP1D
		REBRK	INPUT	PREP3D	REFILL	LCMTRN
		RADSOL	RFILL	OUT3D	RBREAK	SCMLCM
		OUTER	RCNTL	VSSL2	POST	
CHEN						
	Calls	SATPRS				
	Called by	HTCOR	HTVSSL			
CHF Calls CHF1 SATPRS ERROR						
	Called by	HTCOR	HTVSSL			

APPENDIX B

CLEAN					
Calls	ENDDMP				
Called by	ERROR	STEADY	TRAC		
CLEAR					
Called by	CORE1	OUT1D	RBREAK	HOUT	OUT3D
	RCOMP	HTSTRP	OUTER	REROD1	ICOMP
	PLEN1	REVSSL	IHPSS3	PLEN2	RFILL
	INPUT	PLEN3	RHTSTR	IPLEN	POST
	RPLEN	IPUMP	POST3D	RROD2	IVSSL
	PREP1D	RVSSL	LCMTRN	PREP3D	SCMLCM
	LOADN	PREPER			
CLEARI					
Called by	INPUT	PNTVSS	S1DPTR	LOADN	RCNTL
	SEDIT	OUT3D	RDDIM	SRTLP	PNTROD
CLRBRVLT					
Called by	RBREAK				
CLRFIVLT					
Called by	RFILL				
CLRPIVLT					
Called by	RPIPE				
CLRPLVLT					
Called by	RPLEN				
CLRPRVLT					
Called by	RPRIZR				
CLRPUVLT					
Called by	RPUMP				
CLRRDVLT					
Called by	RHTSTR				
CLRTEVLT					
Called by	RTEE				
CLRVAVLT					
Called by	RVLVE				
CLRVSVLT					
Called by	RVSSL				
CMPLX					
Called by	CONBLK	HQR2T			
COMPI					
called by	IPIPE IVLVE	IPUMP	ITURB	IPRIZR	ITEE

```
CONBLK
    Calls ERROR
    Called by CBSET
CONCF
    Called by BKSPLN BKSTB3 FF3D BKSSTB
CONSTB
    Calls STBME J1D
    Called by PIPE3 PUMP3 TURB3 PRIZR3 TEE3
COPYA
    Called by MIX3D
CORE1
\begin{tabular}{llllll} 
Calls & SHRINK & CLEAR & MANAGE & ERROR & TRIP \\
& EVFXXX & MFROD & UNCNVT & EXPAND & VISCV \\
& FNMESH & ZCORE & GETROD & ZPWHCI & HTCOR \\
& RFDBK & ZPWNRM & HTVSSL & RKIN & ZPWRCI
\end{tabular}
    called by HTSTR1
CORE3
    Calls FROD ERROR EVALDF MANAGE
    Called by HTSTR3
COURNO
    Called by INPUT NEWDLT
CPLL
    Calls CPLLD CPLLH
    Called by FPROPD FPROPH
CPLLD
            called by CPLL
CPLLH
            Called by CPLL
CPVV1
            Calls CPVV1D CPVV1H
            Called by FPROPD HTCOR HVWEBB FPROPH HTVSSL
CPVV1D
            Called by CPVV1
```

```
CPVV1H
    Called by CPVV1
CRSTIME
    Called by DATER TIMED
CUSRTIME
    No Callers
CVMGT
    Called by FEMOMX FEMOMZ TF3DS1 FEMOMY TF3DS
CWVSSL
    Calls RVSLCM WVSSL
    Called by WCOMP
CXTVBW
    Called by XTVBI3E
CXTVCL
    Called by INIT XTVDR
CXTVIN
    Called by XTVINIT
CXTVOA
    Called by XTVDR
CXTVOW
    Called by INIT
CYLHT
    Called by POSTER
DATER
    Calls CRSTIME
    Called by INPUT
DAXPY
    Called by DGBFA DGBSL
DBRK
    Calls BFOUT DMPVLT DMPFLT RDVLT
    Called by DMPIT
DCODF
    Called by LOADN
DCOMP
Calls BFOUT DMPVLT RDVLT DMPFLT RDPTR
```

```
Called by DMPIT DPUMP DTURB DPIPE DTEE DVLVE
DDOT
Called by DGBSL
DELAY
Calls ERROR LININT0
Called by CBSET
DELTAR
Calls CDTHEX FTHEX
Called by GAPHT
DFILL
Calls BFOUT DMPVLT DMPFLT RDVLT
Called by DMPIT
DGBFA
Calls DAXPY IDAMAX DSCAI
Called by MATSOL
DGBSL
Calls DAXPY DDOT
Called by MATSOL
DHTSTR
Calls BFOUT RDFLT DMPFLT DMPVLT RRDLCM DROD1
Called by DMPIT
DLEVEL
Calls BFOUT LEVELI
Called by DVSSL
DMPBRVLT
Calls BFOUT
Called by DMPVLT
DMPFIVLT
Calls BFOUT
Called by DMPVLT
DMPFLT
Calls • BFOUT
```

APPENDIX B
Called by DBRK DFILL DPLEN DCOMP DHTSTR DVSSL

```DMPIT
```

Calls
Called by ERROR TIMCHK TRANS PSTEPQ TRAC
DMPPIVLT
Calls BFOUT
Called by DMPVLT
DMPPLVLI
Calls

```BFOUT
```

Called by DMPVLT
DMPPRVLI
Calls BFOUT
Called by DMPVLT
DMPPUVLT
Calls

```BFOUT
```

Called by DMPVLT
DMPRDVLT
Calls BFOUT
Called by DMPVLT
DMPTBVLT
Calls BFOUT
Called by DMPVLT
DMPTEVLT
Calls BFOUT
Called by DMPVLT
DMPVAVLT
Calls BFOUT
Called by DMPVLT
DMPVLT
Calls DMPBRVLT DMPPRVLT DMPTEVLT DMPFIVLT DMPPUVLT
DMPVAVLT DMPPIVLT DMPRDVLT DMPVSVLT DMPPLVLTDMPTBVLT ERROR
Called by DBRK DFILL DPLEN DCOMP DHTSTR DVSSL
DMPVSVLT
Calls BFOUT
Called by DMPVLT
DPIPE
Calls BFOUT DCOMPCalled by DMPIT
DPLEN
Calls BFOUT DMPVLT RDVLT DMPFLT RDPTR
Called by DMPIT
DPUMP
Calls BFOUT DCOMP
Called by DMPIT
DRAD
Calls BFOUT
Called by DMPIT
DROD1
Calls BFOUT MANAGE
Called by DHTSTR
DSCAL
Called by DGBFA
DTDIAG
Calls FIND
Called by TIMSTP
DTEE
Calls BFOUT DCOMP
Called by DMPIT
DTURB
Calls BFOUT DCOMP
Called by DMPIT
APPENDIX BB-11

Calls	BFOUT	DCOMP
Called by	DMPIT	
Calls	SETVA	
Called by	IVSSL	VSSLI

DVSSL
Calls BFOUT DMPVLT DLEVEL MANAGE RVSLCM
Called by DMPIT

ECOMP
Calls BTESTC UNCNVT

Called by	WBREAK	WPRIZR	WTURB WVLVE	WPIPE	WTEE

EDIT

Calls	SEDIT	UNCNVT	WCOMP		
Called by	ERROR	PSTEPQ	TIMCHK	HOUT	STEADY

ELGR

Calls	UNCNVT	ERROR	WARRAY	GETTYPE	
Called by	IPIPE	IPUMP	ITURB	IPRIZR	ITEE

ENDDMP
Calls BFCLOS ERROR
Called by CLEAN
ERROR

Calls	CLEAN	EDIT	CUSRTIM	GETTYPE	DMPIT
Called by					
	AICOMP	CORE3	GETROD	BFIN	DELAY
	GETTEE	BFOUT	DMPIT	GETTURB	BREAKX
	DMPVLT	GETVALVE CBSET	ELGR	GETVSS	
	CHBD	ENDDMP	HASH	EVALDF	CHECKSIZE
	HOUT	CHF	EVFXXX	HTSTR3	CHKSR
	EVLTAB	HTSTRP	CHOKE	FBRCSS	HVWEBB
	CIHTST	FEMOM	ICOMP	CIRADH	FILLX
	IHPSSI	CIRADR	FIND	IHPSS3	CIVSSL
	GETCRV	INIT	CONBLK	GETGEN	INPUT
	CORE1	GETPUMP	IROD	IRODL	READI
	SETROD	ITEE	READR	SETTYPE	IVLVE
	REBRK	SGEEV	JFIND	RECNTL	SGEFST

		JUNSOL	REFILL	SOUND	LOADN	REHTST
		SRTLP	LOCTRB	RENC	STEADY	LTOPP
		RENC1	SVSET	MANAGE	REPIPE	SVSET1
		MATSOL	REPLEN	SVSET3	MFROD	REPRZR
		SVSETH	MSTRCT	REPUMP	TEE1	NAMLST
		RETEE	TEEMET	NXTCMP	RETURB	TEEMF1
		OFFTKE	REVLVE	TEEMOM	OUT1D	REVSSL
		TF3DS	OUT3D	RFDBK	THERMD	OUTER
		RFILL	THERMH	POST	RHTSTR	TIMCHK
		POST3D	RKIN	TIMSTP	POSTER	RLEVEL
		TRAC	PREFWD	RODHT	TRANS	PREINP
		RPIPE	TRIP	PREP1D	RPLEN	TRIPS
		PREP3D	RPUMP	TRPSET	PTRSPL	RROD1
		UNCNVT	PUMPD	RROD2	UNNUMB	PUMPSR
		RSTVLT	UNSVCB	RBREAK	RTEE	VLVEX
		RCNTL	RTTR	VSSL1	RCOMP	RTURB
		VSSL2	RDCOMP	RVLVE	WIR	RDDIM
		RVSSL	WRVLT	RDREST	SCLMOM	XTVINIT
		RDVLT	SETLCM	ZPWRCI		
ETEE						
	Calls	TEEMET	TEEMF2			
	Called by	ITEE	TEE3			
EVALDF						
	Calls	ERROR				
	Called by	CORE3	PUMP3	VLVE3	PIPE3	TEE3
		VSSL3	PRIZR3	TURB3		
EVFXXX						
	Calls	ERROR	LININT0	TRIP	EVLTAB	
	Called by	CORE1	PUMP3	TEE3	PIPE1	RKIN
		TURB1	PIPE3	TEE1X	VLVE3	
EVLTAB						
	Calls	ERROR				
	Called by	BREAKX VLVEX	FILLX	TRBPRE	EVFXXX	PUMPSR
EXIT_PR	OCESS					
	Called by	CXTVIN	CXTVBW			
EXPAND						
	Called by	CORE1				
FBRCSS						
	Calls	ERROR				
	Called by	INPUT				

```
FCEINF1
    Called by FCEINFO
FCEINFO
    Calls FCEINF1
    Called by RENC
FEMOM
            Calls llevEL BTESTC TEEMET ERROR TEEMF1
            Called by PREPER
FEMOMX
            Calls SATTMP BTESTC
            Called by VSSL1
FEMOMY
            Calls SATTMP BTESTC
            Called by VSSL1
FEMOMZ
\begin{tabular}{lll} 
Calls & SATTMP & BTESTC \\
Called by & VSSL1 &
\end{tabular}
FF3D
Calls GVSSL1 CONCF IBSETC
            Called by VSSL3
FILL1
Calls BTESTC FILLX J1D
            Called by PREP1D
FILL2
            Calls J1D
            Called by OuT1D
FILL3
            Calls J1D
            Called by POST
FILLX
\begin{tabular}{llllll} 
Calls & \begin{tabular}{lll} 
ERROR & LININTO & SHIFTB \\
& & FPROP
\end{tabular} & MIXPRP & TRIP & & THERMO \\
& &
\end{tabular}
            Called by FILL1
```

FIND						
	Calls	AICOMP	ERROR	FINDER		
	Called by	CIRADH	IHPSS1	IHPSS3	DTDIAG	
FINDER						
	Calls	FINDNUM	RDFLT			
	Called by	FIND	FINDH			
FINDH						
	Calls	FINDER	LOC4	GETROD		
	Called by	CIRADR				
FINDNUM						
	Called by	FINDER				
FLTOM						
	Calls	PIPROD	VSSROD			
	Called by	HTSTR1	HTSTR3			
FLUX	Calls	BTESTC				
	Called by	PREPER				
FLUXES						
	Called by	VSSL2				
FNMESH						
	Called by	CORE1				
FPROP						
	Calls	FPROPD	FPROPH			
	Called by	BREAK3	IFILL	PLEN3	BREAKX	IPLEN
		POSTER IVSSL	FILLX	IPROP	VSSL3	IBRK
FPROPD						
	Calls	$\begin{aligned} & \text { CPLL } \\ & \text { VISCV } \end{aligned}$	THCL SIGMA	VISCL	CPVV1	THCV
	called by	FPROP				
FPROPH						
	Calls	$\begin{aligned} & \text { CPLL } \\ & \text { VISCV } \end{aligned}$	THCL SIGMA	VISCL	CPVV1	THCV
	Called by	FPROP				

APPENDIX B B-15

FROD
Calls GAPHT MWRX RODHT
Called by CORE3
FTHEX
Called by DELTAR
FWALL
Calls FWKF
Called by PREPER
FWKF
Called by FWALL IWALL3
GAPHT
Calls DELTAR MGAP
Called by FROD
GETCENC
Called by RHTSTR
GETCRV
Calls ERROR SPLIT
Called by PUMPD
GETGEN
Calls ERROR
Called by ICOMP LCHPIP PIPROD IRODL
GETPUMP
Calls ERROR
Called by SVSET1
GETRADM
Calls GETRDM1
Called by RHTSTR
GETRDM1
Called by GETRADM
GETROD
Calls ERROR
Called by CORE1 FINDH

硣	Calls	ERROR				
	Called by	ICOMP				
GETTURB						
	Calls	ERROR				
	Called by	ICOMP				
GETTYPE						
	Called by	CHBD	POST3D	WHTSTR	DMPIT	PREP1D
		XTV1D	ELGR	PREP3D	XTVHT	ERROR
		RDCOMP	XTVPLEN	IROD	RDREST	XTVVSL
		POST	SCMLCM			
GETVALVE						
	Calls	ERROR				
	Called by	ICOMP	INPUT	SVSET1		
GETVSAR						
	Called by	SVSET3				
GETVSS						
	Calls	ERROR				
	Called by	LCHVSS				
GVSSL1						
	Called by	FF3D				
GVSSL2						
	Calls	SATTMP				
	Called by	VSSL3				
HASH						
	Calls	ERROR				
	Called by	INPUT				
HEV Calls HEVD HEVH						
	Called by	SATDED	SATTMH	THERMD	SATDEH	SETEOD
		THERMH	SATTMD	SETEOH		
HEVD						
	Called by	HEV				
HEVH	Called by	HEV				

HLFILM						
	Called by	HTCOR				
HLFLMR						
	Called by	HTVSSL				
HOUT						
	Calls	ERROR	OUTER	CLEAR	POST	CUSRTIM
		UNCNVT	EDIT			
	Called by	STEADY	TRANS			
HQR2T						
	Calls	CEPSILON				
	Called by	SGEEV				
HQRT						
	Calls	CEPSILON				
	Called by	SGEEV				
HTCOR						
	Calls	HLFILM	CHEN	HVFILM	CHF	HVNB
		CHF1	THCV	CPVV1	TMSFB	VISCV
	Called by	CORE1	HTPIPE			
HTIF						
	Calls	IBSETC	BTESTC	SATPRS		
	Called by	PLEN2	TF1D	VSSL2		
HTPIPE						
	Calls	HTCOR				
	Called by	PREPER				
HTSTR1						
	Calls	MANAGE	RDFLT	CORE1	RRDLCM	FLTOM
		UNCNVT	HTSTRV	RADMODL	WRVLT	
HTSTR3						
	Calls	CORE3	MANAGE	RDFLT	ERROR	RRDLCM
		FLTOM	WRVLT	HTSTRP		
	Called by	POST				
HTSTRP						
	Calls	ERROR	MANAGE	CLEAR		
	Called by	HTSTR3				

IDAMAX

Called by DGBFA
IDEL
Called by HUNTS INPUT PREINP
IFILL

Calls	FPROP	THERMO			
	WRVLT	MIXPRP			WRFLT
	MFIND				

Called by ICOMP
IFSET
Calls SETVA

Called by VSSL1
IHPSS1
Calls ERROR FIND THERMO SATTMP UNCNVT
Called by ICOMP
IHPSS3
Calls MANAGE SATTMP CLEAR MATSOL ERROR THERMO FIND CHECKSIZE

Called by CIVSSL
INDEL
Called by ALLBLK PREINP
INIT
Calls CXTVCL ERROR XTVDR CXTVOW ICOMP XTVINIT

Called by TRAC
INITBC
Calls BTESTC IBSETC SETVA
Called by IVSSL
INNER
Calls J1D TF1D ON1123C

Called by PIPE2 PUMP2 TURB2 PRIZR2 TEE2

INPUT

Calls	LABELP	READR	ASIGN	LOADN	REECHO
	C2R	RENC	SETEOS	CLEAR	CHECKSIZE
	NAMLST	SETLCM	CLEARI	NXTCMP	SETTYPE
	COURNO	ORDER	SRTLP	DATER	PREINP

		ERROR	R2II	TIMED	FBRCSS	RCNTL
		UNCNVT	GETVALVE	RDCOM3	UNNUMB	HASH
		RDCOMP	VMCELL	RDREST	WARRAY	IDEL
		READI	WLABI	ISORT		
	Called by	TRAC				
IPIPE						
	Calls	CHBSAV	CHBSET	IPROP	SETBD	CHKBD
		JFIND	VOLFA	COMPI	JUNSOL	WRFLT
		ELGR	WRVLT			
	Called by	ICOMP				
IPLEN						
	Calls	BDPLEN	CLEAR	THERMO	FPROP	MIXPRP
		WRFLT	WRVLT	JFIND		
	Called by	ICOMP				
IPRIZR						
	Calls	ELGR		IPROP	SETBD JUNSOL	CHBSET
		$\begin{aligned} & \text { JFIND } \\ & \text { COMPI } \end{aligned}$	VOLFA WRVLT	CHKBD	JUNSOL	WRFLT
	Called by	ICOMP				
IPROP						
	Calls	FPROP	MIXPRP	THERMO		
	Called by	IPIPE	IPUMP	ITURB	IPRIZR	ITEE
		IVLVE				
IPUMP						
	Calls	CHBSAV	CHBSET	IPROP	SETBD	CHKBD
		JFIND	VOLFA	CLEAR	JUNSOL	WRFLT
		COMPI	ELGR			
	Called by	ICOMP				
IROD						
	Calls	ERROR	LININT0	GETTYPE	MANAGE	UNCNVT
		ZPWHCI	ZPWRCI			
	Called by	CIHTST				
IRODL						
	Calls	ERROR	LCHVSS	GETGEN	LCHPIP	
	Called by	CIHTST				
ISORT						
	Called by	INPUT				

ITEE						
	Calls	ETEE	SETBD	CHBSAV	CHBSET	IPROP
		CHKBD	JFIND	VOLFA	COMPI	JUNSOL
		WJCELL	ELGR	WRFLT	ERROR	WRVLT
	Called, by	ICOMP				
ITURB						
	Calls	CHBSAV	IPROP	SETBD	CHBSET	JFIND
		TRBPOW	CHKBD	JUNSOL	VOLFA	COMPI
		WRFLT	ELGR	WRVLT		
	Called by	ICOMP				
IVLVE						
	Calls	CHBSAV	CHBSET	IPROP	SETBD	CHKBD
		JFIND	VOLFA	COMPI	JUNSOL	WRFLT
		ELGR	WRVLT	ERROR		
	Called by	ICOMP				
IVSSL						
	Calls	IWALL3	BTESTC	J3D	SCLMOM	CLEAR
		MANAGE	SETBDT	DVPSCL	FPROP	THERMO
		MIX3D	UNCNVT	INITBC	WLEVEL	RDZMOM
	Called by	CIVSSL				
IWALL3						
	Calls	SETVA	FWKF			
	Called by	IVSSL				
J1D						
	Called by	BREAK1	FILL1	IFILL	BREAK2	FILL2
		INNER	BREAK3	FILL3	JBD4	CONSTB
		IBRK	SETBD			
J3D						
	Calls	IBSETC	BTESTC	OF1123C	MANAGE	
	Called by	IVSSL	VSSL1	VSSL3	POST3D	VSSL2
JBD4						
	Calls	J1D	WJCELL			
	Called by	TEE1				
JFIND						
	Calls	ERROR				
	Called by	CIVSSL	IPLEN	ITEE	IBRK	IPRIZR
		ITURB	IFILL	IPUMP	IVLVE	IPIPE

JUNSOL

Calls	ERROR				
Called by	IPIPE	IPUMP	ITURB	IPRIZR	

JUSTLR

Called by \begin{tabular}{lll}
RCNTL

WMXYTB

\quad

RECNTL

READR

\quad

WIARN

WARRAY
\end{tabular}\quad READI \quad REECHO

JVALUE
Called by PREINP VALUE
LABELD
Called by LABELP
LABELH
Called by LABELP
LABELP
Calls LABELD LABELH
Called by INPUT
LCHPIP
Calls GETGEN
Called by IRODL
LCHVSS
Calls GETVSS
Called by IRODL
LCMTRN
Calls SETLCM WRPTR CLEAR WRFLT CHECKSIZE WRVLT

Called by REHTST RHTSTR RVSSL REVSSL
LEVEL
Called by FEMOM OFFTKE
LEVELI
Called by DLEVEL WLEVEL
LEVELR
Calleḍ by REVSSL RLEVEL RVSSL
LININT
Called by PUMPD PUMPX

APPENDIX B

LININT0						
	Called by	BREAKX	FILLX	RROD2	CBSET	IROD
		RTEE	CDTHEX	MZIRC	RTURB	DELAY
		RFILL	RVLVE	EVFXXX	RPIPE	VSSL1
		EVLTAB	RPUMP			
LINT4D						
	Called by	CBSET	RFDBK			
LOADN						
	Calls	CLEAR	DCODF	CLEARI	ERROR	
	Called by	INPUT	RFILL	RROD2	RBREAK	RHTSTR
		RTEE	RCNTL	RPIPE	RTURB	RCOMP
		RPLEN	RVLVE	RDCRVS	RPUMP	RVSSL
LOC4						
	Called by	FINDH	LOCTRB	PIPROD	PNTVSS	REPLEN
		RETURB	REVSSL	RPLEN	RTURB	RVSSL
LOCF						
	Called by	OUT1D	PREP1D			
LOCTRB						
	Calls	ERROR	LOC4			
	Called by	ICOMP				
LTOPP						
	Calls	ERROR				
	Called by	TEEMET	TEEMF1	TEEMF2		
MANAGE						
	Calls	ERROR				
	Called by	CORE1	IHPSS3	SVSETH	CORE3	IROD
		VSSL1	DROD1	IVSSL	VSSL2	DVSSL
		J3D	VSSL3	HTSTR1	POST3D	WHTSTR
		HTSTR3	RFDBK	WVSSL	HTSTRP	
		SVSET3	XTVHT	HTSTRV		
MATSOL						
	Calls	DGBFA	ERROR	SGEFAT	DGBSL	SGESLT
	Called by	IHPSS3	POST3D	VSSL2	OUT3D	PREP3D
MBN						
	Called by	MFROD				

MFROD
Calls ERROR MFUEL MSTRCT MHTR MZIRC MBN

Called by CORE1
MFUEL
Called by MFROD
MGAP
Called by GAPHT
MHTR
Called by MFROD
MIX3D
Calls COPYA
Called by IVSSL VSSL3
MIXPRP
Called by $\underset{\substack{\text { BREAKX } \\ \text { IPROP }}}{ }$ IBRK IPLEN FILLX IFILL
MOVINFO
Called by RENC1
MPROP
Calls MSTRCT
Called by PREPER
MSTRCT
Calls ERROR
Called by MFROD MPROP
MWRX
Called by FROD
MZIRC
Calls LININT0
Called by MFROD
NAMLST
Calls UNCNVT ERROR
Called by INPUT
NEWDLT

Calls	COURNO	SEDIT
Called by	TIMSTP	

NXTCMP		ERROR				
	Calls					
	Called by	INPUT				
OF1123C						
	Called by	J3D	POSTER			
OFFTKE						
	Calls	LEVEL	ERROR			
	Called by	TEE3				
ON1123C						
	Called by	INNER				
ORDER						
	Called by	INPUT				
ORTHEST						
	Called by	SGEEV				
ORTRANT						
	Called by	SGEEV				
OUT1D						
	Calls	BREAK2	PIPE2	RDVLT	CLEAR	PLEN2
		SETLCM	ERROR	PRIZR2	TEE2	FILL2
		PUMP2	TURB2	LOCF	RDFLT	VLVE2
		RDPTR				
	Called by	OUTER				
OUT3D						
	Calls	ERROR	RVSLCM	CLEAR	MATSOL	CHECKSIZE
		VSSL2	CLEARI	RDFLT	WRVLT	
	Called by	OUTER				
OUTER						
	Calls	OUT1D	SGEFAT	CLEAR	OUT3D	CHECKSIZE
		SGESLT	ERROR			
	Called by	HOUT				
PIPE1						
	Calls	$\begin{aligned} & \text { BKMOM } \\ & \text { SETBD } \end{aligned}$	PIPE1X	SAVBD	EVFXXX	PREPER
	Called by	PREP1D				
PIPE1X						
	Called by	PIPE1				

POST3D						
	Calls	RDFLT	CLEAR	J3D	RVSLCM	CHECKSIZE
		ERROR	MANAGE	VSSL3	GETTYPE	MATSOL
		WRVLT				
	Called by	POST				
POSTER						
	Calls	FPROP	OF1123C	BKSSTB	POWINT	BTESTC
		IBSETC	CYLHT	THERMO	ERROR	
	Called by	PIPE3	PUMP3	TURB3	PRIZR3	TEE3
		VLVE3				
POWINT						
	Called by	POSTER				
PREFWD						
	Calls	ERROR	TMPPTR	SETLCM	VFWALL3	
	Called by	VSSL1				
PREINP						
	Calls	ALLBLK	JVALUE	ERROR	IDEL	HUNTS
		INDEL	VALUE			
	Called by	INPUT				
PREP						
	Calls	HTSTR1	PREP3D	TRIPS	PREP1D	
	Called by	STEADY	TRANS			
PREP1D						
	Calls	BREAK1	PIPE1	SGEFAT	PLEN1	CHECKSIZE
		SGESLT	CLEAR	PRIZRI	TEE1	ERROR
		PUMP1	TRBPRE	FILL1	RDFLT	TURB1
		GETTYPE	RDPTR	VLVE1	LOCF	RDVLT
		WRVLT	SETLCM			
	Called by	PREP				
PREP3D						
	Calls	GETTYPE	RVSLCM	CLEAR	MATSOL	CHECKSIZE
		VSSL1	ERROR	RDFLT	WRVLT	
	Called by	PREP				
PREPER						
	Calls	HTPIPE	MPROP	BTESTC	PUMPSR	CLEAR
		IBSETC	FEMOM	FLUX	VOLV	FWALL
	Called by	PIPE1	PUMP1	TURB1	PRIZR1	TEE1
		VLVE1				

PRIZR1	Calls	BKMOM	PRZR1X	SETBD	PREPER	SAVBD
	Called by	PREP1D				
PRIZR2						
	Calls	INNER				
	Called by	OUT1D				
PRIZR3						
	Calls	CONSTB	POSTER	SETBD	EVALDF	SAVBD
	Called by	POST				
PRZR1X Called by PRIZRI						
PSTEPQ CUSRTTM EDTT XTVDR DMPIT SEDTT						
	Calls	CUSRTIM	EDIT	XTVDR	DMPIT	SEDIT
	Called by	STEADY	TRANS			
PTRSPL						
	Calls	ERROR	SETLCM			
	Called by	REPLEN	RPLEN			
PUMP1 Calls BKMOM SAVBD SETBD PREPER						
	Called by	PREP1D				
PUMP2 Calls INNER						
	Called by	OUT1D				
PUMP3						
	Calls	CONSTB SETBD	EVFXXX	SAVBD	EVALDF	POSTER
	Called by	POST				
PUMPD						
	Called by	PUMPX				
PUMPI	Called by	RDCRVS				

APPENDIX B B-29

PUMPSR			ERROR			TRIP				
	Calls	PUMPX		SHIFTB	EVLTAB					
	Called by	PREPER								
PUMPX										
	Calls	LININT	PUMPD	WARRAY						
	Called by	PUMPSR								
PUTRADM										
	Calls	PUTRDM1								
	Called by	RENC								
PUTRDM1										
	Called by	PUTRADM								
R2C										
	Called by	BFIN WCOMP	RECNTL	UNSVCB	R2C32	TRPSET				
R2C32 Calls R2C										
	called by	RDREST XTVVSL	XTV1D WHTSTR	XTVPLEN	WCOMP	XTVHT				
R2I4										
	Called by	RDREST								
R2II										
	Called by	INPUT								
RADCHTS										
	Called by	RADMODL								
RADCHYD										
	Called by	RADMODL								
RADEMS Called by RADMODL										
RADFP										
	Called by	RADMODL								
RADMAP										
	Called by	RADMODL								
RADMODL										
	Calls	RADCHYD RADFP	RADMAP	RADEMS	RADSOL	RADCHTS				
	Called by	HTSTR1								

RDCRVS			PUMPI			
	Calls	LOADN		WARRAY		
	Called by	RPUMP				
RDDIM			ERROR	READI		
	Calls	CLEARI				
	Called by	RPUMP				
RDFIVLT						
	Called by	RDVLT				
RDFLT						
	Called by	CIHTST	OUT1D	SVSETH	DHTSTR	OUT3D
		TRBPRE	DMPIT	POST	TRBPST	FINDER
		POST3D	WCOMP	HTSTR1	PREP1D	WHTSTR
		HTSTR3	PREP3D	XTVDR	HTSTRV	SVSET
		XTVHT	ICOMP			
RDPIVLT	Called by					
		RDVLT				
RDPLVLT						
	Called by	RDVLT				
RDPRVLT						
	Called by	RDVLT				
RDPTR						
	Called by	AICOMP	PREP1D	XTVPIPE	DCOMP	RRDLCM
		XTVPLEN	DPLEN	RVSLCM	XTVPRZR	ICOMP
		SVSET	XTVPUMP	OUTID	TRBPRE	XTVTEE
		PIPROD	TRBPST	XTVVALV	POST	WCOMP
RDPUVLT						
	Called by	RDVLT				
RDRDVLT	Called by					
		RDVLT				
RDREST						
	Calls	BFALOC	R2C32	REPUMP	BFIN	R2I4
		RERAD	REBRK	RETEE	ERROR	CHECKSIZE
		RECNTL	RETURB	GETTYPE	REFILL	REVLVE
		REHTST	REVSSL	REPIPE	RSTFLT	REPLEN
		SETLCM	REPRZR			
	Called by	INPUT				
RDTBVLT						
	Called by	RDVLT				

Called by RDVLT

RDVAVLT
Called by RDVLT
RDVLT

Calls	ERROR RDTEVLT	RDPLVLT RDFIVLT	RDTBVLT RDPUVLT	RDBRVLT RDVAVLT	RDPRVET RDPIVLT
RDRDVLT	RDVSVLT				
	DBRK	PREP1D	XTVPIPE	DCOMP	RRDLCM
	XTVPLEN	DFILL	RVSLCM	XTVPRZR	DPLEN
	SVSET	XTVPUMP	ICOMP	TRBPRE	XTVTEE
	OUT1D	TRBPST	XTVVALV	POST	WCOMP

RDVSVLT
Called by RDVLT
RDZMOM
Calls SETVA
Called by IVSSL
READI
Calls ERROR JUSTLR

Called by	INPUT	RHTSTR	RROD1	RBREAK	RPIPE
	RTEE	RCNTL	RPLEN	RTURB	RDDIM
	RPRIZR	RVLVE	RENC1	RPUMP	RVSSL

READR

Calls	ERROR	WIR	JUSTLR	UNCNVT	
Called by	INPUT	RHTSTR	RTEE		RBREAK

REBRK

Calls	BFIN	WARRAY	REECHO	WRFLT	CHECKSIZE
	ERROR	RSTVLT	WRPTR	S1DPTR	WRVLT

Called by RDREST
RECNTL

Calls	UNNUMB	CBEDIT	UNSVCB	ERROR	WARRAY
	R2C	WMXYTB	JUSTLR	REECHO	

Called by RDREST
RECOMP
Calls BFIN

	Called by	REPIPE REVLVE	REPUMP	RETURB	REPRZR	RETEE
REECHO						
	Calls	JUSTLR	UNCNVT	WIR		
	Called by	INPUT	REPIPE	RETEE	REBRK	REPLEN
		RETURB	RECNTL	REPRZR	REVLVE	REFILL
		REPUMP	REVSSL	REHTST		
REFILL						
	Calls	BFIN	SETLCM	WARRAY	ERROR	CHECKSIZE
		REECHO	WRFLT	RSTVLT	WRPTR	S1DPTR
		WRVLT				
	Called by	RDREST				
REHTST						
	Calls	REROD1	BFIN	RSTVLT	ERROR	PNTROD
		UNNUMB	REECHO	UNSVCB	LCMTRN	
	Called by	RDREST				
RENC						
	Calls	ERROR	PUTRADM	RENC1	FCEINFO	RADPT
		SETLCM				
	Called by	INPUT				
RENC1						
	Calls	ERROR	READI	MOVINFO		
	called by	RENC				
REPIPE						
	Calls	BFIN	REECHO	UNSVCB	ERROR	RSTVLT
		WARRAY	S1DPTR	WMXYTB	SCMLCM	WRCOMP
		RECOMP				
	Called by	RDREST				
REPLEN						
	Calls	BFIN	PTRSPL	SCMLCM	ERROR	REECHO
		WARRAY	RSTVLT	WIARN	LOC4	
	Called by	RDREST				
REPRZR						
	Calls	ERROR	REECHO	SCMLCM	RSTVLT	WRCOMP
		RECOMP	S1DPTR			
	Called by	RDREST				

		WRFLT WRVLT	ERROR	READI	WRPTR	READR
	Called by	RDCOMP				
RHOLID						
	Called by	RHOLIQ				
RHOLIH						
	Called by	RHOLIQ				
RHOLIQ						
	Calls	RHOLID	RHOLIH			
	Called by	THERMD	THERMH			
RHTSTR						
	Calls	C2R	LCMTRN	RROD1	CLEAR	LOADN
		RROD2	CLRRDVLT	UNCNVT	ERROR	WARRAY
		GETCENC	PNTROD	WIARN	GETRADM	READI
		WRVLT	READR			
	Called by	RDCOMP				
RHVGET						
	No Callers			.		
RKIN						
	Calls	ERROR	TRIP	EVFXXX		
	Called by	CORE1				
RLEVEL						
	Calls	ERROR	LEVELR	WARRAY		
	Called by	RVSSL				
RODHT						
	Calls	BANSOL	TRISLV	ERROR		
	Called by	FROD				
RPIPE						
	Calls	LOADN	SCMLCM	CLRPIVLT	RCOMP	UNCNVT
		ERROR	READI	UNSVCB	READR	WARRAY
		S1DPTR	WMXYTB	LININT0	SCLTBL	WRVLT
	Called by	RDCOMP				

RPLEN						
	Calls	CLEAR WARRAY	$\begin{aligned} & \text { LOADN } \\ & \text { ERROR } \end{aligned}$	SCMLCM PTRSPL	CLRPLVLT WIARN	$\begin{aligned} & \text { LOC4 } \\ & \text { READI } \end{aligned}$
	Called by	RDCOMP				
RPRIZR						
	Calls	CLRPRVLT RCOMP	READI	S1DPTR	READR	SCMLCM
	Called by	RDCOMP				
RPUMP						
	Calls	SCLTBL	C2R	RCOMP	SCMLCM	CLRPUVLT
		RDCRVS	THERMO	ERROR	RDDIM	UNCNVT
		READI	UNSVCB	READR	WARRAY	LININT0
		S1DPTR	WMXYTB	LOADN		
	Called by	RDCOMP				
RRDLCM						
	Calls	RDPTR	RDVLT			
	Called by	CIHTST	HTSTR3	WHTSTR	DHTSTR	SVSETH
		XTVHT	HTSTR1			
RROD1						
	Calls	ERROR	READI	UNNUMB	READR	UNSVCB
	Called by	RHTSTR				
RROD2						
	Calls	LININT0	UNNUMB	CLEAR	LOADN	UNSVCB
		DECAYS	WARRAY	ERROR	WLABR	SCLTBL
		WMXYTB	UNCNVT	ZPWNRM		
	Called by	RHTSTR				
RSTBRVLT						
	Calls	BFIN				
	Called by	RSTVLT				
RSTFIVLT						
	Calls	BFIN				
	Called by	RSTVLT				
RSTFLT						
	Calls	BFIN				
	Called by	RDREST				

RS_TIME					
No Callers					
RSTPIVLT					
Calls	BFIN				
Called by	RSTVLT				
RSTPLVLT					
Calls	BFIN				
Called by	RSTVLT				
RSTPRVLT					
Calls	BFIN				
Called by	RSTVLT				
RSTPUVLT					
Calls	BFIN				
Called by	RSTVLT				
RSTRDVLT					
Calls	BFIN				
called by	RSTVLT				
RSTTBVLT					
Calls	BFIN				
Called by	RSTVLT				
RSTTEVLT					
Calls	BFIN				
called by	RSTVLT				
RSTVAVLT					
Calls	BFIN				
Called by	RSTVLT				
RSTVLT					
Calls	ERROR	RSTPLVLT	RSTTBVLT	RSTBRVLT	RSTPRVLT
	RSTTEVLT	RSTFIVLT	RSTPUVLT	RSTVAVLT	RSTPIVLT
	RSTRDVLT	RSTVSVLT			
Called by	REBRK	REPLEN	RETURB	REFILL	REPRZR
	REVLVE	REHTST	REPUMP	REVSSL	REPIPE

RSTVSVL	Calls	BFIN				
	Called by	RSTVLT				
RTEE	Calls					
		LOADN	SCMLCM	CLRTEVLT	RCOMP	UNCNVT
		ERROR	READI	UNSVCB	READR	WARRAY
		S1DPTR	WMXYTB	LININT0	SCLTBL	WRVLT
	Called by	RDCOMP				
RTTR						
	Calls	ERROR				
	Called by	TEEMET	TEEMF1	TEEMF2		
RTURB	Calls					
		LOC4	SCMLCM	RCOMP	ERROR	READI
		UNCNVT	READR	WARRAY	WIARN	LININT0
		S1DPTR	WRVLT	LOADN	SCLTBL	
	Called by	RDCOMP				
RVLVE						
	Calls	LOADN	SCMLCM	C2R	CLRVAVLT	ERROR
		RCOMP	THERMO	FAXPOS	READI	UNCNVT
		READR	UNSVCB	S1DPTR	WARRAY	LININT0
		SCLTBL	WMXYTB			
RVSLCM						
	Calls	RDPTR	RDVLT			
	Called by	CIVSSL	HTSTRV	PREP3D	CWVSSL	OUT3D
		SVSET3	DVSSL	POST3D	XTVVSL	
RVSSL	Calls					
		READR	LCMTRN	CHKSR	LEVELR	RLEVEL
		CLEAR	LOADN	CLRVSVLT	LOC4	UNCNVT
		WARRAY	ERROR	PNTVSS	WIARN	READI
		WRVLT				
	Called by	RDCOM3				
RVVGET						
	No Callers					
S1DPTR						
	Calls	CLEARI				
	Called by	RBREAK	RETEE	RPRIZR	REBRK	RETURB
		RPUMP	REFILL	REVLVE	RTEE	REPIPE
		RFILL	RTURB	REPRZR	RPIPE	RVLVE
		REPUMP				

SASUMT

	called by	SGECOT				
SATDED						
	Calls	HEV				
	Called by	SATDER				
SATDEH						
	Calls	HEV				
	Called by	SATDER				
SATDER						
	Calls	SATDED	SATDEH			
	Called by	TF1DS	TFPLN	THERMH	TF3DS	THERMD
SATPRD						
	Called by	SATPRS				
SATPRH						
	Called by	SATPRS				
SATPRS						
	Calls	SATPRD	SATPRH			
	called by	CHEN	SATTMH	TF3DS3	CHF	SOUND
		TFPLBK	CHOKE	TF1DS	TFPLN	HTIF
		TF1DS3	THERMD	SATTMD	TF3DS	THERMH
SATTMD						
	Calls	SATPRS	HEV			
	Called by	SATTMP				
SATTMH						
	Calls	SATPRS	HEV			
	Called by	SATTMP				
SATTMP						
	Calls	SATTMD	SATTM			
	Called by	BREAKX	IHPSS3	TF3DS1	FEMOMX	RBREAK
		TF3DS3	FEMOMY	RCOMP	TFPLBK	FEMOMZ
		SOUND	THERMD	GVSSL2	TF1DS3	THERMH
		IHPSS1	TF3DS	TRBPOW		
SAVBD						
	Called by	PIPE1	PUMP1	TURB1	PIPE3	PUMP3
		TURB3	PRIZR1	TEE1	VLVE1	PRIZR3
		TEE3	VLVE3			

SAXPYT	Called by	SGECOT				
SCLMOM						
	Calls	ERROR				
	Called by	IVSSL				
SCLTBL Calls WARRAY WMXYTB UNSVCB						
	Called by	RBREAK	RPUMP	RTURB	RFILL	RROD2
		RVLVE	RPIPE	RTEE		
SCMLCM						
	Calls	WRPTR	CLEAR	SETLCM	WRVLT	CHECKSIZE
		GETTYPE	WRFLT			
	Called by	REPIPE	RETURB	RPUMP	REPLEN	REVLVE
		RTEE	REPRZR	RPIPE	RTURB	REPUMP
		RPLEN	RVLVE	RETEE	RPRIZR	
SCOPYM Called by SGEEV						
SCOPYT Called by SGEEV						
SDOTT Called by SGECOT						
SEDIT						
	Calls	CLEARI	UNCNVT	CUSRTIM		
	Called by	EDIT	NEWDLT	PSTEPQ		
SEPDI						
	Called by	TEE2				
SEPDX						
	Calls	SSEPOR				
	Called by	TEEI				
SETBD Calls J1D						
	called by	IPIPE	PIPE1	TEE1	IPRIZR	PIPE3
		TEE3	IPUMP	PRIZR1	TURB1	ITEE
		PRIZR3	TURB3	ITURB	PUMPI	VLVE1
		IVLVE	PUMP3	VLVE3		

```
SETBDT
    Calls CUSRTIM
    Called by IVSSL VSSLI VSSL2
SETEOD
    Calls HEV
    called by SETEOS
SETEOH
    Calls HEV
    Called by SETEOS
SETEOS
    Calls SETEOD SETEOH
    called by INPUT
SETLCM
    Calls ERROR
    Called by ICOMP PTRSPL RERAD INPUT RBREAK
        RFILL LCMTRN RDREST SCMLCM OUT1D
        REBRK TRAC POST REFILL WARRAY
        PREFWD RENC WMXYTB PREP1D
SETNET
            called by ICOMP
SETROD
            Calls ERROR
            Called by CORE1
SETTYPE
    Calls ERROR
    Called by INPUT
SETVA
            Called by DVPSCL INITBC RDZMOM HTSTRV IWALL3
SFA22V
            Called by RADSOL
SFA33V
            Called by RADSOL
SFA44
            Called by TFIDS TFPLN
```

SFA44V
Called by RADSOL
SFA55
Called by $\begin{aligned} & \text { BKSPLN } \\ & \text { TFPLN }\end{aligned} \quad$ BKSTB3 TF3DS BKSSTB TF1DS
SFA55V
Called by RADSOL
SGECOT
Calls SAXPYT SDOTT SSCALT SASUMT SGEFAT
Called by SGEFST
SGEDIT
Called by CHOKE
SGEEV

| Calls | BALANCT HQRT ORTRANT
 ERROR ORTHEST | SCOPYT | HQR2T | SCOPYM |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | HQR2T | | | |

Called by CHOKE
SGEFAT
Called by CHOKE OUTER PREP1D MATSOL POST

SGEFST
Calls CEPSILON SGESLT ERROR SGECOT
called by RADSOL
SGESLT
Called by CHOKE OUTER PREP1D MATSOL POST

SHIFTB
Called by BREAK1 FILLX VLVEX BREAKX PUMPSR
SHRINK
Called by CORE1
SIGMA
Called by FPROPD FPROPH
SOUND
Calls ERROR SATPRS THERMO SATTMP
Called by CHOKE
SPLIT
Called by GETCRV

```
SRTLP
    Calls CREALI ERROR
    Called by INPUT
SSCALT
    Called by SGECOT
SSEPOR
    Called by SEPDX
SSL22V
    Called by RADSOL
SSL33V
    Called by RADSOL
SSL44
    Called by TF1DS TFPLN
SSL44V
    Called by RADSOL
SSL55
    Called by BKSPLN BKSTB3 TF3DS BKSSTB TF1DS
SSL55V
    Called by RADSOL
STBME
    Calls BTESTC
    Called by CONSTB
STBME3
            Calls BTESTC
    Called by VSSL3
STBMPL
            Called by PLEN3
STDIR
            Called by
                VSSL2
STEADY
\begin{tabular}{llllll} 
Calls & RDCRDS & CLEAN & TIMCHK & EDIT & POST \\
& TIMSTP & ERROR & PREP & XTVDR & HOUT
\end{tabular}
    Called by TRAC
```

SVSET

Calls	ERROR	RDPTR	SVSET3	RDVLT	SVSETH
	RDFLT	SVSET1			

Called by TRIPS
SVSET1
Calls GETVALVE ERROR GETPUMP

Called by SVSET
SVSET3

Calls	ERROR	GETVSAR	MANAGE	RVSLCM
Called by	SVSET			
Calls	RDFLT	ERROR	MANAGE	RRDLCM
Called by	SVSET			

TBC1

Calls	TEEMOM
Called by	TEE1

TEE1
Calls PREPER TBC1 $\quad \underset{\text { PKMOM }}{ } \quad$ SAVBD TEE1X

Called by PREP1D
TEE1X
Calls EVFXXX

Called by TEE1 TEE2
TEE2

Calls	INNER	SEPDI	TEE1X
Called by	OUT1D		

TEE3

Calls	BTESTC	EVFXXX	SAVBD	CONSTB	SETBD
	ETEE	OFFTKE	EVALDF	POSTER	

Called by POST
TEEMET

Calls	ERROR	LTOPP	RTTR
Called by	ETEE	FEMOM	TEEMOM

TF3DS3						
	Calls	SATTMP	BTESTC	IBSETC	SATPRS	THERMO
	Called by	VSSL2				
TFPLBK						
	Calls	SATPRS	BTESTC	SATTMP	IBSETC	THERMO
	called by	PLEN2				
TFPLN						
	Calls	SFA44	BTESTC	SFA55	IBCLRC	SATDER
		SSL44	IBSETC	SATPRS	SSL55	
	Called by	PLEN2				
THCL						
	Calls	THCLD	THCLH			
	Called by	FPROPD	FPROPH			
THCLD						
	Called by	THCL				
THCLH						
	Called b	THCL				
THCV						
	Called by	FPROPD	HTCOR	HVWEBB	FPROPH	HTVSSL
THERMD						
	Calls	ERROR SATDER	SATPRS	RHOLIQ	SATTMP	HEV
	Called by	THERMO				
THERMH						
	Calls	ERROR SATDER	SATPRS	SATTMP	HEV	RHOLIQ
	Called by	THERMO				
THERMO						
	Calls	THERMD	THERMH			
	Called by	BREAK3	IPROP	SOUND	BREAKX	IVSSL
		TF1D	CHOKE	PLEN2	TF1DS3	FILLX
		PLEN3	TF3DS	IBRK	POSTER	TF3DS3
		IFILL	RCOMP	TFPLBK	IHPSS1	RPUMP
		VSSL2	IHPSS3	RVLVE	VSSL3	IPLEN

TIMCHK				DMPIT	ERROR	
	Calls	CUSRTIM	EDIT			
	Called by	STEADY	TRANS			
TIMED						
	Calls	CRSTIME				
	Called by	INPUT				
TIMSTP						
	Calls	READR UNCNVT	DTDIAG	TRIP	ERROR	NEWDLT
	Called by	STEADY	TRANS			
TIMUPD						
	Called by	VSSL1				
TMPPTR						
	Called by	PREFWD				
TMSFB						
	Called by	HTCOR				
TRANS						
	Calls	PSTEPQ	DMPIT	TIMCHK	EDIT	POST
		TIMSTP	ERROR	PREP	XTVDR	HOUT
	called by	TRAC				
TRBPOW						
	Calls	SATTMP				
	Called by	ITURB	TURB1			
TRBPRE						
	Calls	RDVLT	EVLTAB	RDFLT	TRIP	RDPTR
	Called by	PREP1D				
TRBPST						
	Calls	RDPTR	RDFLT	RDVLT		
	Called by	POST				
TRIP						
	Calls	ERROR				
	called by	BREAKX	PUMPSR	TRBPRE	CORE1	RKIN
		VLVEX	EVFXXX	TIMSTP	WPUMP	FILLX

TRIPS	Calls	CBSET	SVSET	TRPSET	ERROR	
	Called by	PREP				
TRISLV						
	Called by	RODHT				
TRPSET						
	Calls	R2C	ERROR	UNCNVT	UNNUMB	
	Called by	TRIPS				
TURB1						
	Calls	PREPER TRBPOW	BKMOM	SAVBD	EVFXXX	SETBD
	Called by	PREP1D				
TURB2						
	Calls	INNER				
	Called by	OUT1D				
TURB3						
	Calls	CONSTB	POSTER	SETBD	EVALDF	SAVBD
	Called by	POST				
UNCNVT Calls ERROR						
	Called by	CORE1	REECHO	WBREAK	ECOMP	REROD1
		WCOMP	EDIT	RHTSTR	WFILL	ELGR
		RPIPE	WHTSTR	HOUT	RPUMP	WLEVEL
		HTSTR1	RROD2	WMXYTB	IHPSS1	RTEE
		WPIPE	INPUT	RTURB	WPLEN	IROD
		RVLVE	WPRIZR	IVSSL	RVSSL	WPUMP
		NAMLST	SEDIT	WTEE	RCNTL	TIMSTP
		WTURB	RCOMP	TRPSET	WVLVE	READR
		WARRAY	WVSSL			
UNNUMB Calls mRROR						
	Called by	INPUT TRPSET	REHTST RECNTL	$\begin{aligned} & \text { RROD2 } \\ & \text { RROD1 } \end{aligned}$	RCNTL	REROD1
UNSVCB Calls ERROR R2C						

Called by	RCNTL	RETEE	RTEE	RECNTL	REVLVE
	RVLVE	REHTST	RPIPE	SCLTBL	REPIPE
	RPUMP	WARRAY	REPUMP	RROD1	WTURB

VALUE						
	Calls	JVALUE				
	Called by	PREINP				
VELBC						
	Calls	BTESTC				
	Called by	TF3DS1				
VFWALL3						
	Calls	WDRAG				
	Called by	PREFWD				
VISCL						
	Calls	VISCLD	VISCLH			
	Called by	FPROPD	FPROPH			
VISCLD						
	Called by	VISCL				
VISCLH						
	called by	VISCL				
VISCV Calls VISCVD VISCVH						
	called by	CORE1 HVWEBB	FPROPH	HTVSSL	FPROPD	HTCOR
VISCVD Called by VISCV						
	Called by	VISCV				
VISCVH						
	called by	VISCV				
VLVE1						
	Calls	BKMOM	SAVBD	VLVEX	PREPER	SETBD
	Called by	PREP1D				
VLVE2 Calls INNER						
	called by	OUT1D				

	Calls	CONSTB SETBD	EVFXXX	SAVBD	EVALDF	POSTER
	Called by	POST				
VLVEX	Calls	FAXPOS	ERROR	EVLTAB	SHIFTB	TRIP
	Called by	VLVE1				
VMCELL	Called by	INPUT				
VOLFA	Called by	$\begin{aligned} & \text { IPIPE } \\ & \text { IVLVE } \end{aligned}$	IPUMP	ITURB	IPRIZR	ITEE
VOLV	Called by	PREPER				
VRBD	Called by	VSSL1				
VSSL1	Calls	$\begin{aligned} & \text { CIF3 } \\ & \text { J3D } \\ & \text { MANAGE } \end{aligned}$	$\begin{aligned} & \text { IFSET } \\ & \text { SETVA } \\ & \text { FEMOMZ } \end{aligned}$	DVPSCL FEMOMX TIMUPD	SETBDT LININT0 PREFWD	ERROR FEMOMY VRBD
	Called by	PREP3D				
VSSL2	Calls	BACIT MANAGE TF3DS1 SETBDT	$\begin{aligned} & \text { BAKUP } \\ & \text { TF3DS } \\ & \text { TF3DS3 } \\ & \text { VSSSSR } \end{aligned}$	J3D CELLA3 ERROR HTIF	STDIR MATSOL THERMO	BTESTC CHECKSIZE FLUXES
	Called by	OUT3D				
VSSL3	Calls	FF3D BKSTB3 J3D	MANAGE GVSSL2 THERMO	BAKUP BTESTC	FPROP STBME3	MIX3D EVALDF
	Called by	POST3D				
VSSROD	Calls	SQRT				
	Called by	FLTOM				
VSSSSR	Called by	VSSL2				

WARRAY						
	Calls	JUSTLR	SETLCM	UNSVCB	UNCNVT	WLABR
	called by	ELGR	REPLEN	RPIPE	INPUT	REPUMP
		RPLEN	PUMPX	REROD1	RPUMP	RBREAK
		RETEE	RROD2	RCNTL	RETURB	RTEE
		RCOMP	REVLVE	RTURB	RDCRVS	REVSSL
		RVLVE	REBRK	RFILL	RVSSL	RECNTL
		RHTSTR	SCLTBL	REFILL	RLEVEL	WRCOMP
		REPIPE				
WBREAK						
	Calls	ECOMP	UNCNVT			
	Called by	WCOMP				
WCOMP						
	Calls	CWVSSL	RDPTR	WPLEN	RDVLT	WPRIZR
		UNCNVT	WPUMP	WBREAK	WRFLT	R2C -
		WFILL	WTEE	R2C32	WHTSTR	WTURB
		RDFLT	WPIPE	WVLVE		
	Called by	EDIT				
WDRAG						
	Called by	VFWALL3				
WFILL						
	Calls	ECOMP	UNCNVT			
	called by	WCOMP				
WHTSTR						
	Calls	GETTYPE RDFLT	RRDLCM WRFLT	R2C32	UNCNVT	MANAGE
	Called by	WCOMP				
WIARN						
	Calls	WLABIN	JUSTLR			
	called by	RCOMP	REVSSL	RTURB	REPLEN	RHTSTR
		RVSSL	REROD1	RPLEN	WRCOMP	RETURB
WIR						
	Calls	ERROR				
	Called by	READR	REECHO			
WJCELL						
	called by	ITEE	JBD4			
WLABI Called by INPUT RCNTL						

```
WLABIN
                    Called by WIARN
WLABR
    Called by RROD2 WARRAY WMXYTB
WLEVEL
Calls LEVELI UNCNVT
Called by IVSSL WVSSL
WMXYTB
\begin{tabular}{llllll} 
Calls & JUSTLR & SETLCM & WLABR & UNCNVT & \\
& & & & & \\
Called by & RCNTL & RETEE & RROD2 & RECNTL & REVLVE \\
& RTEE & REPIPE & RPIPE & RVLVE & REPUMP \\
& RPUMP & SCLTBL & REROD1 & &
\end{tabular}
WPIPE
    Calls ECOMP UNCNVT
    Called by WCOMP
WPLEN
        Calls UNCNVTT
    Called by wCOMP
WPRIZR
    Calls ECOMP UNCNVT
    Called by WCOMP
WPUMP
Calls ECOMP TRIP UNCNVT
    Called by WCOMP
WRBRVLT
    Called by WRVLT
WRCOMP
    Calls BTESTC WARRAY WIARN
    Called by REPIPE REPUMP RETURB REPRZR RETEE
WRFIVLT
    Called by WRVLT
WRFLT
\begin{tabular}{llllll} 
Called by & IBRK & ITURB & REBRK & IFILL & IVLVE \\
& REFILL & IPIPE & LCMTRN & RFILL & IPLEN
\end{tabular}
```

POST	SCMLCM	IPRIZR	RBREAK	WCOMP
IPUMP	RDCOMP	WHTSTR	ITEE	

WRPIVLT
Called by WRVLT
WRPLVLT
Called by WRVLT
WRPRVLT
Called by WRVLT
WRPTR
Called by CIVSSL REBRK RFILL LCMTRN REFILL
WRPUVLT
Called by WRVLT
WRRDVLT
Called by WRVLT
WRTBVLT
Called by WRVLT
WRTEVLT
Called by WRVLT
WRVAVLT
Called by WRVLT
WRVLT
Calls ERROR WRPLVLT WRTBVLT WRBRVLT WRPRVLT
WRTEVLT WRFIVLT WRPUVLT WRVAVLT WRPIVLT
WRRDVLT WRVSVLT
Called by CIHTST ITEE REBRK CIVSSL ITURB
REFILL HTSTR1 IVLVE REVSSL HTSTR3
LCMTRN RFILL IBRK OUT1D RHTSTR
ICOMP OUT3D RPIPE IFILL POST
RTEE IPIPE POST3D RTURB IPLEN
PREP1D RVSSL IPRIZR PREP3D SCMLCM
WRVSVLT
Called by WRVLT
WTEE
Calls ECOMP UNCNVT
Called by WCOMP
WTURB
Calls ECOMP UNCNVT UNSVCB
B-54

	Called by	WCOMP				
WVLVE			UNCNVT			
	Calls	ECOMP				
	Called by	WCOMP				
WVSSL			WLEVEL	MANAGE		
	Calls	UNCNVT				
	Called by	CWVSSL				
XTV1D						
	Calls	GETTYPE	R2C32	XTVBUF		
	Called by	XTVPIPE	XTVPUMP	XTVVALV	XTVPRZR	XTVTEE
XTVBI3E						
	Calls	CXTVBW				
	Called by	XTVBUF				
XTVBUF						
	Calls	XTVBI3E				
	Called by	XTV1D	XTVHT	XTVSIG	XTVCB	XTVPLEN
		XTVVSL	XTVDR			
XTVCB						
	Calls	XTVBUF				
	Called by	XTVDR				
XTVDR						
	Calls	CXTVCL .	XTVHT	XTVSIG	CXTVOA	XTVPIPE XTVBUF
		XTVTEE	RDFLT	XTVPLEN	XTVVALV	
		XTVPRZR	XTVVSL	XTVCB	XTVPUMP	
	Called by	INIT	STEADY	TRANS	PSTEPQ	
XTVHT			R2C32	RRDLCM	MANAGE	RDFLT
	Calls	GETTYPE XTVBUF				
	Called by	XTVDR				
XTVINIT			ERROR			
	Calls	CXTVIN				
	Called by	INIT				
XTVPIPE						
	Calls	RDPTR	RDVLT	XTV1D		
APPENDI	IX B					B-55

	Called by	XTVDR				
XTVPLEN						
	Calls	GETTYPE	R2C32	RDVLT	RDPTR	XTVBUF
	Called by	XTVDR				
XTVPRZR						
	Calls	RDPTR	RDVLT	XTV1D		
	Called by	XTVDR				
XTVPUMP						
	Calls	RDPTR	RDVLT	XTV1D		
	Called by	XTVDR				
XTVSIG						
	Calls	XTVBUF				
	Called by	XTVDR				
XtVTEE						
	Calls	RDPTR	RDVLT	XTV1D		
	Called by	XTVDR				
XTVVALV						
	Calls	RDPTR	RDVLT	XTV1D		
	Called by	XTVDR				
XTVVSL	calls	GETTYPE	R2C32	XTVBUF	RVSLCM	
	Called by	XTVDR				
ZCORE						
	Called by	CORE1				
ZEROV						
	Called by	TF3DS1				
ZPWHCI						
	Called by	CORE1	IROD			
ZPWNRM						
	Called by	CORE1	RROD2			
ZPWRCI						
	Calls	ERROR				
	Called by	CORE1	IROD			

APPENDIX C
 DESCRIPTION OF TRAC-M COMPONENT COMMON-BLOCK VARIABLES

C.1. POINTER TABLES

The pointer tables for 1D components (described below) use four general sets of pointers from header files DUALPT.H, HYDROPT.H, INTPT.H, and HEATPT.H.
C.1.1. DUALPT.H. These pointer variables are declared to be INTEGER and refer to variables whose values are stored for both old and new-time values.

Name	Array	Dimension	Description
LALP	ALP	NCELLS	Old gas volume fraction.
LALPD	ALPD	0	Variable not currently implemented.
LALPDN	ALPDN	0	Variable not currently implemented.
LALPN	ALPN	NCELLS	New gas volume fraction.
LALV	ALV	NCELLS	Old value of the flashing interfacial heat-transfer coefficient (HTC) times interfacial area.
LALVE	ALVE	NCELLS	Old value of the liquid-side interfacial HTC times interfacial area.
LALVEN	ALVEN	NCELLS	New value of the liquid-side interfacial HTC times interfacial area.
LALVN	ALVN	NCELLS	New value of the flashing interfacial HTC times interfacial area.
LARA	ARA	NCELLS	Old stabilizer value for $\alpha \rho_{a}$.

LARAN	ARAN	NCELLS	New stabilizer value for $\alpha \rho_{a}$.
LAREL	AREL	NCELLS	Old stabilizer value for $(1-\alpha) \rho_{\ell} \mathrm{e}_{\ell}$.
LARELN	ARELN	NCELLS	New stabilizer value for $(1-\alpha) \rho_{\ell} \mathrm{e}_{\ell}$.
LAREV	AREV	NCELLS	Old stabilizer value for $\alpha \rho_{v} \mathrm{e}_{v}$.
LAREVN	AREVN	NCELLS	New stabilizer value for $\alpha \rho_{v} \mathrm{e}_{v}$.
LARL	ARL	NCELLS	Old stabilizer value for (1- α) ρ_{ℓ}.
LARLN	ARLN	NCELLS	New stabilizer value for $(1-\alpha) \rho_{\ell}$.
LARV	ARV	NCELLS	Old stabilizer value for $\alpha \rho_{v}$.
LARVN	ARVN	NCELLS	New stabilizer value for $\alpha \rho_{v}$.
LBIT	BIT	NCELLS+1	Bit flags from the previous timestep.
LBITN	BITN	NCELLS+1	Bit flags for the current timestep.
LCHTI	CHTI	NCELLS	Old value of the vapor-side interfacial HTC times the interfacial area.
LCHTIA	CHTIA	NCELLS	Old value of the noncondensablegas interfacial HTC times the interfacial area.
LCHTAN	CHTAN	NCELLS	New value of the non-condensable-gas interfacial HTC times the interfacial area.
LCHTIN	CHTIN	NCELLS	New value of the vapor-side interfacial HTC times the interfacial area.
LCIF	CIF	NCELLS+1	Old interfacial-drag coefficients.

LCIFN	CIFN	NCELLS+1	New interfacial-drag coefficients.
LCONC	CONC	NCELLS *ISOLUT	Old solute mass to liquid mass ratio. $\mathrm{ISOLUT}=0$ or 1 .
LCONCN	CONCN	NCELLS *ISOLUT	New solute mass to liquid mass ratio. $\operatorname{ISOLUT}=0$ or 1 .
LD(3)	D	NCELLS	Variable not currently implemented.
LDN(3)	DN	NCELLS	Variable not currently implemented.
LEA	EA	NCELLS	Old noncondensable-gas internal energy.
LEAN	EAN	NCELLS	New noncondensable-gas internal energy.
LEL	EL	NCELLS	Old liquid internal energy.
LELN	ELN	NCELLS	New liquid internal energy.
LEV	EV	NCELLS	Old gas internal energy.
LEVN	EVN	NCELLS	New gas internal energy.
LGAM	GAM	NCELLS	Old vapor generation rate per unit volume.
LGAMN	GAMN	NCELLS	New vapor generation rate per unit volume.
LHIG	HIG	NCELLS	New HTC between inside wall and gas.
LHIGO	HIGO	NCELLS	Old HTC between inside wall and gas.
LHIL	HIL	NCELLS	New HTC between inside wall and liquid.
LHILO	HILO	NCELLS	Old HTC between inside wall and liquid.

LHIV	HIV	NCELLS	New HTC between inside wall and gas.
LHIVO	HIVO	NCELLS	Old HTC between inside wall and gas.
LP	P	NCELLS	Old total pressure.
LPA	PA	NCELLS	Old noncondensable-gas partial pressure.
LPAN	PAN	NCELLS	New noncondensable-gas partial pressure.
LPN	PN	NCELLS	New total pressure.
LQPPC	QPPC	NCELLS	New critical heat flux (CHF).
LQPPCO	QPPCO	NCELLS	Old CHF.
LROA	ROA	NCELLS	Old noncondensable-gas density.
LROAN	ROAN	NCELLS	New noncondensable-gas density.
LROL	ROL	NCELLS	Old liquid density.
LROLN	ROLN	NCELLS	New liquid density.
LROV	ROV	NCELLS	Old gas density.
LROVN	ROVN	NCELLS	New gas density.
LS	S	NCELLS *ISOLUT	Old solute mass plated on stricture surface. ISOLUT $=0$ or 1 .
LSN	SN	NCELLS *ISOLUT	New solute mass plated on structure surface. ISOLUT $=0$ or 1 .
LTCE	TCE	1	Old total convective energy.
LTCEN	TCEN	1	New total convective energy.
LTD	TD	0	Variable not currently implemented.

LTDN	TDN	0	Variable not currently implemented.
LTL	TL	NCELLS	Old liquid temperature.
LTLN	TLN	NCELLS	New liquid temperature.
LTV	TV	NCELLS	Old gas temperature.
LTVN	TVN	NCELLS	New gas temperature.
LTW	TW	NCELLS *NODES	Old wall temperature.
LTWA	TWA	1	Old absolute total conduction.
LTWAN	TWAN	1	New absolute total conduction.
LTWE	TWE	1	Old effective total conduction.
LTWEN	TWEN	1	New effective total conduction.
LTWN	TWN	NCELLS *NODES	New wall temperature.
LVL	VL	NCELLS +1	Old liquid velocity.
LVLN	VLN	NCELLS+1	New liquid velocity.
LVLT	VLT	NCELLS +1	New stabilizer liquid velocity $\left(\tilde{V}_{e}^{n+1}\right)$
LVLTO	VLTO	NCELLS+1	Old stabilizer liquid velocity (\tilde{V}_{ℓ}^{n}).
LVM	VM	NCELLS+1	Old mixture velocity.
LVMN	VMN	NCELLS+1	New mixture velocity.
LVV	V V	NCELLS+1	Old gas velocity.
LVVN	VVN	NCELLS +1	New gas velocity.
LVVT	VVT	NCELLS+1	New stabilizer gas velocity (\tilde{V}_{g}^{n+1}).

APPENDIXC
LVVTO VVTO \quad NCELLS $+1 \quad$ Old stabilizer gas velocity $\left(\tilde{V}_{g}^{n}\right)$.
C.1.2. HYDROPT.H. These pointer variables are declared to be INTEGER and refer to variables associated with the hydrodynamic calculations.

Name	Array	Dimension	Description
LALPMN	ALPMN	NCELLS	Minimum value of the gas volume fraction among a cell and all its neighbors.
LALPMX	ALPMX	NCELLS	Maximum value of the gas volume fraction among a cell and all its neighbors.
LALPO	ALPO	NCELLS	Gas volume fraction at the start of the previous step $\left(\alpha^{n-1}\right)$.
LAM	AM	NCELLS	Noncondensable-gas mass.
LARC	ARC	NCELLS LISOLUT	Density of solute in cell, c(1- $\alpha) \rho_{\ell}$. ISOLUT $=0$ or 1.
LCL	CFZ	0	Variable not currently implemented.
LCPL	CPL	NCELLS	Liquid thermal conductivity.
LCPV	CPV	NCELLS specific heat at constant	

LDELDT	DELDT	NCELLS+1	Derivative of the liquid internal energy with respect to liquid temperature.
LDEVAP	DEVAP	NCELLS+1	Derivative of the noncondensable-gas internal energy with respect to noncondensable-gas pressure.
LDEVAT	DEVAT	NCELLS+1	Derivative of the noncondensable-gas internal energy with respect to gas temperature.
LDEVDP	DEVDP	NCELLS+1	Derivative of the gas internal energy with respect to pressure.
LDEVDT	DEVDT	NCELLS +1	Derivative of the gas internal energy with respect to gas temperature.
LDFLDP	DFLDP	NCELLS +1	Derivative of liquid velocity with respect to pressure.
LDFVDP	DFVDP	NCELLS +1	Derivative of gas velocity with respect to pressure.
LDHLSP	DHLSP	NCELLS +1	Derivative of liquid enthalpy with respect to pressure.
LDHVSP	DHVSP	NCELLS+1	Derivative of vapor enthalpy with respect to vapor pressure.
LDRIV	DR	19*(NCELLS+1)	Storage array for thermodynamic derivatives and enthalpies.
LDROLP	DROLP	NCELLS +1	Derivative of the liquid density with respect to pressure.
LDROLT	DROLT	NCELLS+1	Derivative of the liquid density with respect to liquid temperature.
LDROVP	DROVP	NCELLS +1	Derivative of the gas density with respect to pressure.

LDROVT	DROVT	NCELLS+1	Derivative of the gas density with respect to gas temperature.
LDRVAP	DRVAP	NCELLS+1	Derivative of the noncondensable-gas density with respect to noncondensable-gas pressure.
LDRVAT	DRVAT	NCELLS+1	Derivative of the non-condensable-gas density with respect to gas temperature.
LDTSDP	DTSDP	NCELLS +1	Derivative of the TSAT saturation temperature with respect to pressure.
LDTSSP	DTSSP	NCELLS+1	Derivative of the TSSN saturation temperature with respect to vapor pressure.
LDX	DX	NCELLS	Cell length.
LELEV	ELEV	NCELLS*IELV	Cell-centered elevations (used only if IELV = 1 in NAMELIST input).
LFA	FA	NCELLS +1	Cell-edge (interface) flow area.
LFAVOL	FAVOL	NCELLS	Cell flow area used in chokedflow model.
LFINAN	FINAN	NCELLS	Inverted annular regime factor.
LFRIC	FRIC	$\begin{aligned} & \text { (NCELLS+1) } \\ & \text { *NFRC1 } \end{aligned}$	Additive friction factor.
LFSMLT	FSMLT	NCELLS	Interphasic-area multiplier during condensation.
LGRAV	GRAV	NCELLS+1	Gravitation term (cosine θ).
LGRVOL	GRAVOL	NCELLS	Cell-averaged gravitation term.
LH(1)	WFHF	NCELLS+1	Weighting factor for stratifiedflow regime.

LH(2)	SI*DX	NCELLS+1	Stratified interfacial area.
LH(3)	DHLDZ	NCELLS+1	Gravitational head force caused by gas volume fraction gradient.
LHD	HD	$\begin{aligned} & (\text { NCELLS+1) } \\ & * \text { *(NDIA1-1) } \end{aligned}$	Hydraulic diameter.
LHDHT	HDHT	$\begin{aligned} & \text { (NCELLS+1) } \\ & *(\text { NDIA1-1) } \end{aligned}$	Heat-transfer hydraulic diameter.
LHFG	HFG	NCELLS	Latent heat of vaporization.
LHGAM	HGAM	NCELLS	Energy contribution to phase change from subcooled boiling.
LHLA	HLA	NCELLS	Sum of all products of liquid HTC with heat-transfer area.
LHLATW	HLATW	NCELLS	Similar to HLA except that the product includes wall temperature.
LHLST	HLST	NCELLS +1	Liquid enthalpy at the TSSN saturation temperature and total pressure.
LHVA	HVA	NCELLS	Sum of all products of gas HTC with heat-transfer area.
LHVATW	HVATW	NCELLS	Similar to HVA except that the product includes wall temperature.
LHVST	HVST	NCELLS+1	Vapor enthalpy at the TSSN saturation temperature and vapor pressure.
LNF1SM	NF1SM	3*NFACES	Special purpose DOE-model parameter.
LNF2SM	NF2SM	$3 *$ NFACES	Special purpose DOE-model parameter.
LNF3SM	NF3SM	$3 *$ NFACES	Special purpose DOE-model parameter.

LNFCLSM	NFCLSM	NFACES	Special purpose DOE-model parameter.
LNFCVSM	NFCVSM	NFACES	Special purpose DOE-model parameter.
LNFL4SM	NFL4SM	3*NFACES	Special purpose DOE-model parameter.
LNFLSM	NFLSM	3*NFACES	Special purpose DOE-model parameter.
LNFV4SM	NFV4SM	3*NFACES	Special purpose DOE-model parameter.
LNFVSM	NFVSM	3*NFACES	Special purpose DOE-model parameter.
LQP3F	QP3F	NCELLS	QPPP spatial-distribution factor applied to the wall heat source.
LQPPP	QPPP	NODES* NCELLS	QPPP spatial-distribution factor applied to the wall heat source.
LQRL	QRL	NCELLS	Radiation heat flux to the liquid.
LQRV	QRV	NCELLS	Radiation heat flux to the gas.
LR0SM	R0SM	3*NFACES	Special purpose DOE-model parameter.
LRARL	RARL	0	Variable not currently implemented.
LRARV	RARV	0	Variable not currently implemented.
LREGNM	REGNM	NCELLS+1	Flow-regime number.
LRHS	RHS	NCELLS	Implicit vs explicit weighting factor, g^{\prime}.
LRMEM	RMEM	0	Variable not currently implemented.

LRMVM	RMVM	NCELLS +1	Mixture density times mixture velocity.		
LROM	ROM	NCELLS	Mixture density.		
LRSM	RSM	3^{*} NFACES	Special purpose DOE-model parameter.		
LRVMF	RVMF	NCELLS+1	Gas mass flow.		
LSIG	SIG	NCELLS	Surface tension.		
LTRID	TRID	6^{*} (NCELLS+1)	Storage for stabilizer linear system.		
LTSAT	TSAT	NCELLS	Saturation temperature at total pressure.		
LTSSN	TSSN	NCELLS	Saturation femperature at steam (vapor) pressure.		
LUVSM	UVSM	3^{*} NFACES	Special purpose DOE-model parameter.		
LVISL	VISL	VCEL	NCELLS		Niquid viscosity.
:---					

LVR	VR	NCELLS+1	Relative (gas - liquid) velocity.
LVRV	VRV	NCELLS	Cell-averaged relative velocity.
LVVSM	VVSM	3*NFACES	Special purpose DOE-model parameter.
LVVVOL	VVVOL	NCELLS	Choked-flow-model cell gas velocity.
LVVX	VVX	0	Variable not currently implemented.
LWA	W A	NCELLS	Wall area.
LWAT	W AT	NCELLS	Total heat-transfer area.
LWFL	WFL	NCELLS+1	Wall friction factor for the liquid.
LWFMFL	WFMFL	NCELLS+1	Wall-friction multiplier factor for the liquid.
LWFMFV	WFMFV	NCELLS+1	Wall-friction multiplier factor for the gas.
LWFV	WFV	NCELLS +1	Wall friction factor for the gas.
LXSM	XSM	NCELLS	Special purpose DOE-model parameter.
LYSM	YSM	NCELLS	Special purpose DOE-model parameter.
LZSM	ZSM	NCELLS	Special purpose DOE-model parameter.

C.1.3. INTPT.H. These pointer variables are declared to be INTEGER.

Name	Array	Dimension	Description
LIDR	IDR	NCELLS	Heat-transfer regime.
LLCCFL	LCCFL	NCELLS+1	Counter-Current Flow Limitation (CCFL) flag.

LMATID MATID NODES-1 Structural material identification.
LNFF NFF NCELLS+1 Friction-correlation option.
C.1.4. HEATPT.H. These pointer variables are declared to be INTEGER and refer to variables associated with the embedded wall heat-transfer calculations. .

Name	Array	Dimension	Description
LCPW	CPW	(NODES-1) *NCELLS	Specific heat of wall.
LCW	CW	(NODES-1) *NCELLS	Wall thermal conductivity.
LDR	DR	NODES-1	Radial mesh size.
LEMIS	EMIS	NCELLS	Wall-surface emissivity.
LHOL	HOL	NCELLS	HTC between wall and outside liquid.
LHOV	HOV	NCELLS	HTC between wall and outside gas.
LRN	RN	NODES	Radii at nodes.
LRN2	RN2	NODES-1	Radii at node centers.
LROW	ROW	(NODES-1)	Wall density.
LTCHF	TCHF	NCELLS	CHF temperature.
LTOL	TOL	NCELLS	Liquid temperature outside wall.
LTOV	TOV	NCELLS	Gas temperature outside wall.

C.2. BREAK COMPONENT

Common Block breakCom.		
REAL*8 VARIABLES WITH INTEGER PARAMETER CONSTANTS		
Variable	Parameter Constant	Description
AA1111	AA1111IND=1	Dummy variable that provides a known start to the COMMON block.
ALPOFF	ALPOFFIND=2	Gas volume fraction when the trip is OFF after it was ON.
BSA	BSAIND=3	Time-integrated noncondensable-gas mass from the BREAK.
BSMASS	BSMASSIND $=4$	Time-integrated mass flow from the BREAK.
BXA	BXAIND=5	Noncondensable-gas mass flow from the BREAK.
BXMASS	BXMASSIND=6	Current mass flow from the BREAK.
CONOFF	CONOFFIND=7	Ratio of solute mass to liquid mass when the trip is OFF after it was ON.
DELTL	DELTLIND=8	Liquid temperature offset from the saturation temperature.
DELTV	DELTVIND=9	Gas temperature offset from the saturation temperature.
PAOFF	PAOFFIND $=10$	Noncondensable-gas partial pressure when the trip is OFF after it was ON.
POFF	POFFIND $=11$	Total pressure when the trip is OFF after it was ON.
POFFS	POFFSIND $=12$	Saved value of total pressure when the trip is OFF after it was ON that has not been adjusted by a CSS type 5 controller.

RBMX	RBMXIND=13	Maximum rate of change of total pressure at the BREAK.
TIN	TININD=14	Fluid temperature at the BREAK.
TLOFF	TLOFFIND $=15$	Liquid temperature when the trip is OFF after it was ON.
TVOFF	TVOFFIND $=16$	Gas temperature when the trip is OFF after it was ON.
TYPE1	TYPE1IND=18	Type of adjacent component at JUN1.
Z11111	Z11111IND=17	Dummy variable that provides a known end to the COMMON block's real-valued parameters.
INTEGER	VARIABLES WITH	JTEGER PARAMETER CONSTANTS
Variable	Parameter Constant	Description
IA1111	IA1111IND $=-1$	Dummy variable that provides a known start to the COMMON block.
IBASV	IBASVIND=-2	Signal-variable or control-block ID number defining the gas volume fraction in the BREAK cell for the IBTY $=6$ option.
IBCNSV	IBCNSVIND $=-3$	Signal-variable or control-block ID number defining the ratio of the solute mass to the liquid mass in the BREAK cell for the IBTY $=6$ option.
IBF	IBFIND $=-4$	Last interpolated interval in the rate-factor table.
IBP	IBPIND $=-5$	Last interpolated interval in the BREAK composition parameter tables.
IBPASV	IBPASVIND=-6	Signal-variable or control-block ID number defining the noncondensable-gas partial pressure in the BREAK cell for the $I B T Y=6$ option.

IBPSV	IBPSVIND $=-7$	Signal-variable or control-block ID number defining the total pressure in the BREAK cell for the IBTY $=6$ option.
IBSV	IBSVIND $=-8$	Signal-variable or control-block ID number defining the BREAK-table abscissacoordinate variable.
IBTLSV	IBTLSVIND=-9	Signal-variable or control-block ID number defining the liquid temperature in the BREAK cell for the IBTY $=6$ option.
IBTR	IBTRIND $=-10$	Trip ID number that controls evaluation of the BREAK tables.
IBTVSV	IBTVSVIND $=-11$	Signal-variable or control-block ID number defining the gas temperature in the BREAK cell for the IBTY $=6$ option
IBTY	IBTYIND $=-12$	BREAK-table input option.
ICJ	$\mathrm{ICJIND}=-13$	Iteration index of adjacent component.
INEXTI	INEXTIIND=-14	Variable no longer used.
IOFF	IOFFIND=-15	Fluid-state option when the trip is OFF after it was ON.
IONOFF	IONOFFIND $=-16$	Number of timesteps the trip is ON.
ISAT	ISATIND $=-17$	BREAK-table use option.
JS1	JS1IND $=-18$	Junction sequence number.
JUN1	JUN1IND $=-19$	Junction number for connection to the BREAK.
NBRF	NBRFIND $=-20$	Number of data pairs in the rate-factor table.
NBSV	NBSVIND $=-21$	Signal-variable or control-block ID number defining the rate-factor table's abscissacoordinate variable.
NBTB	NBTBIND $=-22$	Number of data pairs in the BREAK table.

ZI1111 ZI1111IND $=-23$	Dummy variable that provides a known end to the COMMON block.

C.2.2. BREAKPT.H— BREAK Pointer Table. These pointer variables are declared to be INTEGER. For BREAKs, NCELLS $=1$.

Name	Array	Dimension	Description
LALPTB	ALPTB	NBTB*2	Gas volume fraction table.
LCONTB	CONTB	NBTB*2	Ratio of solute mass to liquid mass table.
LPATB	PTAB	NBTB*2	Noncondensable-gas partial pressure table.
LPTB	PTB	NBTB*2	Total pressure table.
LRFTB	RFTB	NBRF*2	Rate-factor table.
LTLTB	TLTB	NBTB*2	Liquid temperature table.
LTVTB	TVTB	NBTB*2	Gas temperature table.

C.3. FILL COMPONENT

C.3.1. FILLVLT.H—FILL Specific Component Table with Common Block fillCom.

REAL*8 VARIABLES WITH INTEGER PARAMETER CONSTANTS

VariableParameter Constant	Description
AA1111 AA1111IND=1	Dummy variable that provides a known start to the COMMON block.
ALPOFF ALPOFFIND=2	Gas volume fraction when the trip is OFF after it was ON.
CONOFF CONOFFIND=3 \quadRatio of solute mass to liquid mass when the trip is OFF after it was ON.	

FLOWIN	FLOWININD=4	Initial fluid mass flow to or from adjacent component.
FLWOFF	FLWOFFIND=5	Fluid mass flow when the trip is OFF after it was ON.
FSMASS	FSMASSIND=6	Time-integrated fluid mass flow out of the FILL.
FXMASS	FXMASSIND=7	Current fluid mass-flow rate out of the FILL.
PAOFF	PAOFFIND $=8$	Noncondensable-gas partial pressure when the trip is OFF after it was ON.
POFF	POFFIND $=9$	Total pressure when the trip is OFF after it was ON.
RFMX	RFMXIND $=10$	Maximum rate of change of FILL velocity or mass flow.
TLOFF	TLOFFIND $=11$	Liquid temperature when the trip is OFF after it was ON.
TVOFF	TVOFFIND $=12$	Gas temperature when the trip is OFF after it was ON.
TWTOLD	TWTOLD=13	Fraction of a previous FILL fluid dynamicstate parameter that is averaged with the FILL table's defined parameter to define the FILL parameter value for this timestep (0.0 \leq TWTOLD ≤ 1.0).
TYPE1	TYPE1IND=17	Type of adjacent component at JUN2.
VLOFF	VLOFFIND $=14$	Liquid velocity when the trip is OFF after it was ON.
VVOFF	VVOFFIND=15	Gas velocity when the trip is OFF after it was ON.
Z11111	Z11111IND=16	Dummy variable that provides a known end to the COMMON block.

Variable	Parameter Constant	Description
IA1111	IA1111IND $=-1$	Dummy variable that provides a known start to the COMMON block.
ICJ	ICJIND $=-2$	Iteration index of adjacent component.
IFASV	IFASVIND $=-14$	Signal-variable or control-block ID number defining the gas volume fraction in the FILL cell for the IFTY $=10$ option.
IFCNSV	IFCNSVIND $=-17$	Signal-variable or control-block ID number defining the ratio of solute mass to liquid mass in the FILL cell for the $\operatorname{IFTY}=10$ option.
IFF	IFFIND $=-3$	Last interpolated interval in the rate-factor table.
IFMLSV	IFMLSV $=-10$	Signal-variable or control-block ID number defining liquid mass flow in the FILL cell for the IFTY $=10$ option.
IFMVSV	IFMVSV $=-11$	Signal-variable or control-block ID number defining gas mass flow in the FILL cell for the IFTY $=10$ option.
IFP	IFPIND $=-4$	Last interpolated interval in the FILL table.
IFPASV	IFPASVIND=-16	ID number of the signal variable or control block defining the noncondensable-gas partial pressure in the FILL cell for the IFTY $=10$ option.
IFPSV	IFPSVIND $=-15$	ID number of the signal variable or control block defining the total pressure in the FILL cell for the IFTY $=10$ option.
IFSV	IFSVIND $=-5$	The signal-variable ID number, which defines the FILL table's independent variable.

IFTLSV	IFTLSVIND=-12	ID number of the signal variable or control block defining the liquid temperature in the FILL cell for the IFTY $=10$ option.
IFTR	IFTRIND $=-6$	FILL trip ID number.
IFTVSV	IFTVSVIND $=-13$	ID number of the signal variable or control block defining the vapor temperature in the FILL cell for the IFTY $=10$ option.
IFTY	IFTYIND $=-7$	FILL-type option.
INEXTI	INEXTIIND $=-8$	Variable no longer used.
IOFF	IOFFIND $=-9$	FILL fluid-state option when the trip is OFF after it was ON.
IONOFF	IONOFFIND=-18	The number of timesteps the trip has been ON.
JS1	JS1IND $=-19$	Junction sequence number at JUN1.
JUN1	JUN1IND $=-20$	Junction number where the FILL is located.
NFRF	NFRFIND=-21	Number of rate-factor table data pairs whose rate factor is applied to the FILL table's independent variable.
NFSV	NFSVIND $=-22$	Signal-variable or control-block ID number defining the rate-factor table's abscissacoordinate variable.
NFTB	NFTBIND $=-23$	Number of data pairs in the FILL table.
211111	ZI1111IND $=-24$	Dummy variable that provides a known end to the COMMON block.

C.3.2. FILLPT.H-FILL Pointer Table. These pointer variables are declared to be INTEGER. For FILLS, NCELLS $=1$.

Name	Array	Dimension	Description
LALPTB	ALPTB	\mid NFTB $\left.\right\|^{* 2}$	Gas volume fraction table.
LCONTB	CONTB	\mid NFTB $\left.\right\|^{* 2}$	Ratio of solute mass to liquid mass table.

LPATB	PATB	\mid NFTB ${ }^{*} 2$	Noncondensable-gas partial pressure table.
LPTB	PTB	\mid NFTB ${ }^{*} 2$	Total pressure table.
LRFTB	RFTB	\mid NFTB ${ }^{*} 2$	FILL rate-factor table.
LTLTB	TLTB	\mid NFTB \| ${ }^{2}$	Liquid temperature table.
LTVTB	TVTB	\mid NFTB \| 2	Gas temperature table.
LVMTB	VMTB	$\|\mathrm{NFTB}\| * 2$	Liquid velocity table.
LVVTB	VVTB	\mid NFTB ${ }^{*} 2$	Gas velocity table.
C.4. HEAT-STRUCTURE COMPONENT			
C.4.1. RODVLT.H-Heat-Structure ROD or SLAB Specific Component			
Table with Common Block rodCom.			
REAL*8 VARIABLES WITH INTEGER PARAMETER CONSTANTS			
Variable Parameter $\begin{gathered}\text { Constant }\end{gathered}$			
AA1111	AA1111	1 Dummy variable that provides a known start to the COMMON block.	
AMH2	AHM2I	Hydrogen mass generated from metalwater reaction.	
BCR0	BCROIN	Zero-order coefficient of the first-order polynomial that defines the effective coreaveraged concentration of control-rod pin boron.	
BCR1	BCR1IN	First-order coefficient of the first-order polynomial that defines the effective coreaveraged concentration of control-rod pin boron.	
BEFF	BEFFIN	Tota	layed-neutron fraction.

BPP0	BPPOIND=6	Zero-order coefficient of the first-order polynomial that defines the effective coreaveraged concentration of burnable-poison pin boron.
BPP1	BPP1IND=7	First-order coefficient of the first-order polynomial that defines the effective coreaveraged concentration of burnable-poison pin boron.
DRFB	DRFBIND $=8$	Reactivity-feedback change in $K_{\text {eff }}$ over the last timestep.
DRI	DRIIND $=9$	Estimated change in power or reactivity over the previous timestep.
DRIO	DRIOIND=10	Old value of DRI; the old value of the power or reactivity-estimated correction.
DTNHT(1) DTNHT(2)	$\begin{aligned} & \text { DTNHTIND=11 } \\ & \text { at } 12 \end{aligned}$	Delta temperature minimums used in the reflood calculation.
DTPK	DTPKIND=13	Kaganove-method integration timestep for solving the point-reactor kinetics equations.
DTXHT(1) DTXHT(2)	$\begin{aligned} & \text { DTXHTIND=14 } \\ & \text { at } 15 \end{aligned}$	Delta temperature maximums used in the reflood calculation.
DZNHT	DZNHTIND=16	Delta $\mathrm{Z}_{\text {min }}$.
ENEFF	ENEFFIND=17	Total decay-heat fraction.
EXTSOU	EXTSOUIND=18	Thermal power produced by external source neutrons in the reactor core.
FSI	FSIIND=19	Inner-surface area (or HTC) adjustment factor from a CSS type 5 controller.
FSO	FSOIND $=20$	Outer-surface area (or HTC) adjustment factor from a CSS type 5 controller.
FTCI	FTCIIND $=21$	Inner-surface node thermal-conductivity adjustment factor from a CSS type 5 controller.

FTCM	FTCMIND=22	Internal-nodes thermal-conductivity adjustment factor from a CSS type 5 controller.
FTCO	FTCOIND=23	Outer-surface node thermal-conductivity adjustment factor from a CSS type 5 controller.
FUCRAC	FUCRACIND $=24$	Fraction of uncracked fuel.
HDRI	HDRIIND $=25$	Thermal diameter (m) for the inner surface of the heat-structure ROD or SLAB element (used only when NAMELIST variable ITHD = 1).
HDRO	HDROIND $=26$	Thermal diameter (m) for the outer surface of the heat-structure ROD or SLAB element (used only when NAMELIST variable ITHD = 1).
HGAPO	HGAPOIND=27	Rod gap-conductance coefficient (for MATRD = 3).
HLI	HLIIND=28	Constant liquid heat-transfer coefficient at the inner surface (used when the innersurface boundary condition flag $\operatorname{IDBCI}=1$, indicating constant HTCs and external temperatures).
HLO	HLOIND=29	Constant liquid heat-transfer coefficient at the outer surface (used when the outersurface boundary condition flag $\operatorname{IDBCO}=1$, indicating constant HTCs and external temperatures).
HVI	HVIIND $=30$	Constant gas heat-transfer coefficient at the inner surface (used when the inner-surface boundary condition flag $\operatorname{IDBCI}=1$, indicating constant HTCs and external temperatures).
HVO	HVOIND=31	Constant gas heat-transfer coefficient at the outer surface (used when the outer-surface boundary condition flag $\operatorname{IDBCO}=1$, indicating constant HTCs and external temperatures).

PDRAT	PDRATIND=32	Rod pitch-to-diameter ratio.
PLDR	PLDRIND $=33$	Pellet dish radius. $0.0=$ no pellet dish calculation; $1.0=$ pellet dish calculation.
POWEXP	POWEXPIND=34	Exponent value to which the power distribution is raised to define the weighting function for averaging the reactivity-feedback parameters over the reactor-core volume.
QRDTOT	QRDTOTIND=35	Total rod heat flux.
REAC	REACIND $=36$	Reactivity feedback at the beginning of the previous timestep.
REACN	REACNIND=37	Reactivity-feedback estimate at the end of the present timestep.
REACT	REACTIND $=38$	Total reactivity at the beginning of the present timestep.
RMCK	RMCKIND=39	Reactor multiplication constant at the beginning of the present timestep.
RMCKN	RMCKNIND $=40$	Reactor multiplication constant estimate at the end of the present timestep.
RPOWER	RPOWERIND=41	Average reactor-core power over the timestep.
RPOWPF	RPOWPFIND=42	Prompt-fission power.
RPOWR	RPOWRIND=43	Beginning-of-timestep reactor-core power.
RPOWRI	RPOWRIIND $=44$	Initial reactor-core power.
RPOWRN	RPOWRNIND $=45$	End-of-timestep reactor-core power.
RPOWRO	RPOWROIND=46	End-of-timestep reactor-core power of the previous timestep.
RPOWTO	RPOWTOIND=47	Beginning-of-timestep reactor-core power of the previous timestep.

RPWOFF	RPWOFFIND=48	Programmed reactivity or reactor-core power when the controlling trip is OFF after it was ON.
RPWSCL	RPWSCLIND=49	Reactivity-power-table scale factor for programmed reactivity or reactor-core power.
RRPWMX	RRPWMXIND=50	Maximum rate of change of programmed reactivity or reactor-core power.
RZPWMX	RZPWMXIND=51	Maximum rate of change of the axial power shape.
$\begin{aligned} & \mathrm{SA}(1) \\ & \mathrm{SA}(2) \end{aligned}$	$\begin{aligned} & \text { SAIND=52 } \\ & \text { at } 53 \end{aligned}$	Values of the inner- and outer-surface areas (or HTCs) adjusted by a CSS type 5 controller.
SAF	SAFIND=54	Adjustment factor evaluated by a CSS type 5 controller.
SDT	SDTIND=55	Time interval/s since the last reactivity change printout.
SHELV	SHELVIND=56	Axial elevation of the first (bottom) node row.
SHTD	SHTDIND=57	Numerical sign of the heat-transfer direction.
STIMET	STIMETIND=58	Problem time at which the last reactivity change was summed to variable storage for later printout.
TK(1) TK(2) TK(3)	$\begin{aligned} & \text { TKIND=59 } \\ & \text { at } 60 \\ & \text { at } 61 \end{aligned}$	Values of the inner-node, internal-nodes, and outer-node thermal conductivity adjusted by a CSS type 5 controller.
TLI	TLIIND=62	Constant liquid temperature at the inner surface (used when the inner-surface boundary condition flag $\mathrm{IDBCI}=1$, indicating constant HTCs and external temperatures).

TLO	TLOIND=63	Constant liquid temperature at the outer surface (used when the outer-surface boundary condition flag $\operatorname{IDBCO}=1$, indicating constant HTCs and external temperatures).
TNEUT	TNEUTIND=64	Neutron generation time.
TPOWI	TPOWIIND=65	Total power across the inner surface of the HTSTR.
TPOWO	TPOWOIND=66	Total power across the outer surface of the HTSTR.
TRAMAX	TRAMAXIND $=67$	Average-rod peak-cladding temperature.
TRHMAX	TRHMAXIND $=68$	Maximum supplemental rod temperature.
TVI	TVIIND=69	Constant gas temperature at the inner surface (used when the inner-surface boundary condition flag $\operatorname{IDBCI}=1$, indicating constant HTCs and external temperatures).
TVO	TVOIND $=70$	Constant gas temperature at the outer surface (used when the outer-surface boundary condition flag $\operatorname{IDBCO}=1$, indicating constant HTCs and external temperatures).
WATLEV	WATLEVIND=71	Variable not used.
WIDTH	WIDTHIND=72	Width of the SLAB surface (used to compute surface area).
ZPWIN	ZPWININD=73	Axial-power-shape table's abscissacoordinate variable value corresponding to the initial axial-power shape.
ZPWOFF	ZPWOFFIND=74	Axial-power-shape table's abscissacoordinate variable value that corresponds to the axial-power shape that is used when the controlling trip is OFF after it was ON.
ZLPBOT	ZLPBOTIND=78	Axial location (m) of the bottom of the lower hot patch.

ZLPTOP	ZLPTOPIND=77	Axial location (m) of the top of the lower hot patch.
ZUPBOT	ZUPBOTIND=76	Axial location (m) of the bottom of the upper hot patch.
ZUPTOP	ZUPTOPIND=75	Axial location (m) of the top of the upper hot patch.
Z11111	Z11111IND=79	Dummy variable that provides a known end to the COMMON block of real-valued variables.
INTEGER	VARIABLES WITH INTEGER PARAMETER CONSTANTS	
Variable	Parameter Constant	Description
IA1111	IA1111IND $=-1$	Dummy variable that provides a known start to the COMMON block.
IAF	IAFIND=-2	NAPCSS value of a CSS controller type 5.
IAXCND	IAXCNDIND $=-3$	Axial conduction indicator. $0=$ no axial heat-transfer conduction calculated; $1=$ axial heat-transfer conduction calculated in the heat-structure ROD or SLAB element.
$\begin{aligned} & \operatorname{IBU}(1) \\ & \operatorname{IBU}(2) \\ & \operatorname{IBU}(3) \\ & \operatorname{IBU}(4) \end{aligned}$	$\begin{aligned} & \text { IBUIND }=-4 \\ & \text { at }-5 \\ & \text { at }-6 \\ & \text { at }-7 \end{aligned}$	Boron-unit flag for the Jth reactivity coefficient.
IDBCI	IDBCIIND $=-8$	Boundary condition option for the inner surface of the heat-structure ROD or SLAB element. $0=$ adiabatic boundary condition; $1=$ constant HTCs and external temperatures; 2 = coupled to specified cells in one or more hydro components.

IDBCO	IDBCOIND=-9	Boundary condition option for the outer surface of the heat-structure ROD or SLAB
element.		

IRCJFM(1) IRCJFMIND $=-19$
IRCJFM(2) at -20
IRCJFM(3) at -21
IRCJFM(4) at -22
$\operatorname{IRCJTB}(1,1)$ IRCJTBIND $=-23$
$\operatorname{IRCJTB}(2,1)$ at -24
$\operatorname{IRCJTB}(3,1)$ at -25
$\operatorname{IRCJTB}(4,4)$ at -38
IRF \quad IRFIND $=-39$

IRFTR IRFTRIND $=-40$

IRFTR2 IRFTR2IND=-41

IRP

IRPWSV IRPWSVIND=-43
Signal-variable or control-block ID number defining the reactivity-power table's abscissa-coordinate variable.

IRPWTR IRPWTRIND $=-44$ Trip ID number that controls evaluation of the reactivity-power table.

IRPWTY IRPWTYIND=-45
Neutronic point-reactor kinetics or reactorcore power option.
1 = point-reactor kinetics with constant prog. reactivity;
$2=$ point-reactor kinetics with table defined prog. reactivity;
3 = point-reactor kinetics with tripinitiated constant prog. reactivity;
$4=$ point-reactor kinetics with initial constant programmed reactivity and trip-initiated table defined prog. reactivity;
5 = constant reactor-core power;
6 = table defined reactor-core power;

		7 = initial constant reactor-core power with trip-initiated table defined reactor-core power. Add 10 to the above values to evaluate reactivity feedback.
ISNOTB	ISNOTBIND=-46	A flag variable that is defined if the solute is boron for the reactivity-feedback calculation. $0=$ solute is boron; $1=$ solute is not boron.
ITTCS	ITTCSIND $=-47$	Saved value of ITTC, the specification of an external thermocouple on the ROD- or SLAB-element surface.
IZF	IZFIND $=-48$	Last interpolated interval number in the rate-factor table for the axial power-shape table.
IZP	IZPIND $=-49$	Last interpolated interval number in the axial power-shape table.
IZPWSV	IZPWSVIND=-50	Signal-variable or control-block ID number defining the axial power-shape table's abscissa-coordinate variable.
IZPWTR	IZPWTRIND $=-51$	Trip ID number that controls evaluation of the axial power-shape table.
LENRD	LENRDIND $=-52$	Length of rod data.
LFVNR	LFVNRIND $=-53$	Relative position of new fundamental variables of rod data.
LFVNR1	LFVNR1IND $=-54$	Relative position of new heat-transfer data.
LFVR	LFVRIND $=-55$	Relative position of old fundamental variables of rod data.
LFVR1	LFVR1IND $=-56$	Relative position of old heat-transfer data.
LIQLEV	LIQLEVIND $=-57$	Specification of liquid level. $0=$ no liquid level calculated on ROD or SLAB surface;

1 = liquid level tracked on ROD or SLAB surface (this smooths the heat-transfer solution).

LNDRD LNDRDIND $=-58$

LNFVR LNFVRIND $=-59$ Length of fundamental variables of rod data.

Length of heat-transfer data.
Number of pointers of rod data.
Pointer for beginning of rod data.
Multiple 1D hydraulic-component coupling option.

Type of HTSTR for the purpose of a neutronics calculation.
$0=$ Not part of a neutronics calculation.
1 = First HTSTR coupled to a neutronics calculation.
2 = Between the first and last HTSTR coupled to a neutronics calculation.
3 = Last HTSTR coupled to a neutronics calculation that evaluates the pointreactor kinetics calculation for all the coupled HTSTRs.

Number of average ROD or SLAB elements that affect fluid dynamics.

NCRZ NCRZIND=-66 Number of (course) axial intervals between temperature node rows.

NDG NDGIND=-67 Input-specified number of delayed-neutron groups.

Number of delayed-neutron groups.

NDH	NDHIND $=-69$	Input specified number of decay-heat groups.
NDHX	NDHXIND $=-70$	Number of decay-heat groups.
NFBPWT	NFBPWTIND $=-71$	Flag that defines the spatial distribution used to weight the averaging of the reactivity-feedback parameters over the reactor-core volume.
NFCI	NFCIIND $=-72$	FCI flag. $0=$ no calculation; 1 = calculation.
NFCIL	NFCILIND $=-73$	Limit on FCI calculations per timestep.
NFUEL	NFUELIND=-74	Number of nodes in fuel pellet.
NHIST	NHISTIND=-75	Number of data pairs in the power-history table.
NINT	NINTIND $=-76$	Maximum possible number of interfaces between dissimilar materials in ROD or SLAB elements.
NMWRX	NMWRXIND $=-77$	Metal-water reaction flag. $0=$ no calculation; $1=$ calculation.
NONOFF	NONOFFIND $=-78$	Number of timesteps that the tripcontrolling evaluation of the axial powershape table has been ON.
NOPOWR	NOPOWRIND $=-79$	Specification of whether a power source is present in the heat-structure ROD or SLAB element. $0=$ power source present in the ROD or SLAB; 1 = no power source present in the ROD or SLAB.
NRAMAX	NRAMAXIND $=-80$	Location of average-rod peak-cladding temperature used in the reflood calculation.

NRFD	NRFDIND $=-81$	```Reflood flag. 0 = takes no action; 1 = turns on axial fine-mesh flag if it is off.```
NRHMAX	NRHMAXIND $=-82$	Location of the supplemental-rod peakcladding temperature.
NRIDR	NRIDRIND $=-83$	Specification of the hydro-cell location that is coupled to the inner and/or outer surfaces of the heat-structure ROD or SLAB element. $0=$ the IDROD array is input for only the supplemental RODs or SLABs; $1=$ the IDROD array is input for all RODs or SLABs; $2=$ the IDROD array is input for all RODs or SLABs for both surfaces of the HTSTR.
NRODS	NRODSIND $=-84$	Number of computational (average plus supplemental) rods including "hot" rods. See NCRX.
NRPWI	NRPWIIND $=-85$	Radial- or thickness-direction power-shape integration option. $\begin{aligned} -1= & \text { histogram with step changes at the } r \\ & \text { or } x \text { locations; } \\ 0= & \text { histogram with step changes midway } \\ & \text { between the } r \text { or } x \text { locations; } \\ 1= & \text { trapezoidal integration. } \end{aligned}$
NRPWR	NRPWRIND $=-86$	Number of radial or thickness locations that define the 2D axial-r or axial-x power shape.
NRPWRF	NRPWRFIND=-87	Number of rate-factor table data pairs whose rate factor is applied to the power or reactivity table's independent variable.
NRPWSV	NRPWSVIND=-88	Signal-variable or control-block ID number defining the reactivity-power rate-factor table's abscissa-coordinate variable.
NRPWTB	NRPWTBIND=-89	Number of data pairs in the reactivitypower table.

NRTS	NRTSIND $=-90$	Number of timesteps over which programmed reactivity and reactivityfeedback changes are summed for printout.
NSET	NSETIND=-91	Absolute value of the reflood axial finemesh trip set-status number during the previous timestep.
NSET2	NSET2IND=-92	Absolute value of the core-reflood trip setstatus number.
NZMAX	NZMAXIND $=-93$	Maximum number of rows of heat-transfer nodes used in reflood calculation.
NZPWRF	NZPWRFIND=-94	Number of data pairs in the axial powershape rate-factor table.
NZPWSV	NZPWSVIND=-95	Signal-variable or control-block ID number defining the axial power-shape rate-factor table's abscissa-coordinate variable.
NZPWTB	NZPWTBIND=-96	Number of axial power shapes in the axial power-shape table.
NZPWI	NZPWIIND=-97	Axial power shape integration option for the heat-transfer calculation. ```-1 = histogram with step changes at the axial locations; 0 = histogram with step changes midway between the axial locations; 1 = trapezoidal integration.```
NZPWZ	NZPWZIND=-98	Number of axial locations defining the axial-power shape.
NZZNHC	NZZNHCIND=-99	Number of hydro-cell axial-direction channels that this powered HTSTR is coupled to.
Z11111	ZI1111IND $=-100$	Dummy variable that provides a known end to the COMMON block.

C.4.2. RODPT.H-Heat-Structure Pointer Table. These pointer variables are declared to be INTEGER.

GENERAL ROD-DATA POINTERS:

Name	Array	Dimension	Description
LBETA	BETA	NDGX	Delayed-neutron group fraction.
LCDG	CDG	NDGX	Old concentration of delayedneutron group.
LCDGN	CDGN	NDGX	New concentration of delayedneutron group.
LCDH	CDH	NDHX	Old concentration of decay-heat group.
LCDHN	CDHN	NDHX	New concentration of decay-heat group.
LCLEN	CLEN	NCRX	Old total cladding length.
LCLENN	CLENN	NCRX	New total cladding length.
LCPOWR	CPOWR	NCRX	Relative power per average rod.
LEDH	EDH	NDHX	Energy-yield fraction of decayheat group.
LFPUO2	FPUO2	NCRX	Fraction of plutonium oxide in mixed-oxide fuel fraction.
LFTD	FTD	NCRX	Fuel density (fraction of theoretical).
LGMIX	GMIX	NCRX*7	Mole fraction of gap-gas constituent.
LGMLES	GMLES	NCRX	Moles of gap gas.
LGRAVR	GRAVR	NCRZ	Cosine of the angle between a vector pointing upward and a

			vector from the lower-to-higher numbered axial cells.
LHCELI	NHCELI	NCRZ+2	Cell number coupled to the heatstructure nodes at the inner surface.
LHCELO	NHCELO	NCRZ +2	Cell number coupled to the heatstructure nodes at the outer surface.
LHCOMI	NHCOMI	NCRZ+2	Component number of the hydro cell coupled to the heat-structure inner surface.
LHCOMO	NHCOMO	NCRZ +2	Component number of the hydro cell coupled to the heat-structure outer surface.
LHIGH	HIGH	0	Variable not used.
LHS	HS	NCRX* (NFBPWT/4)	Pointer variable for the horizontal-plane shape weight function used.
LHTMLI	HTMLI	NCRZ	Liquid-phase wall heat-transfer multiplier factor for the inner surface.
LHTMLO	HTMLO	NCRZ	Liquid-phase wall heat-transfer multiplier factor for the outer surface.
LHTMVI	HTMVI	NCRZ	Gas-phase wall heat-transfer multiplier factor for the inner surface.
LHTMVO	HTMVO	NCRZ	Gas-phase wall heat-transfer multiplier factor for the outer surface.
LIDROD	IDROD	NRODS	Cell-coupling identifier for rods.
LLAMDA	LAMDA	NDGX	Decay constant of delayedneutron groups.

LLAMDH	LAMDH	NDHX	Decay constant of decay-heat groups.
LLCHCI	LCHCI	2*(NCRZ+2)	The hydro-cell parameters for heat-transfer coupling to the heatstructure inner surface.
LLCHCO	LCHCO	2*(NCRZ+2)	The hydro-cell parameters for heat-transfer coupling to the heatstructure outer surface.
LMATRD	MATRD	NINT	ROD or SLAB material identification numbers.
LNFAX	NFAX	NCRZ	Rod fine-mesh noding factor.
LNRDX	NRDX	NCRX	Number of actual rods or slabs modeled by the calculational ROD or SLAB element.
LNTSXX	NTSXX	MAX (1, NRIDR)	Number of mesh cells in the plane transverse to the axial direction.
LPGAPT	PGAPT	NCRX	Gap-gas total pressure.
LPLVOL	PLVOL	NCRX	Rod plenum volume.
LPOWLI	POWLI	NCRZ	Total power across the heatstructure inner surface to the liquid.
LPOWLO	POWLO	NCRZ	Total power across the heatstructure outer surface to the liquid.
LPOWVI	POWVI	NCRZ	Total power across the heatstructure inner surface to the gas.
LPOWVO	POWVO	NCRZ	Total power across the heatstructure outer surface to the gas.
LPSLEN	PSLEN	NCRX	Pellet stack length.
LRADRD	RADRD	NODES	Rod node radii (cold).

LRCAL	RCAL	$\begin{aligned} & \operatorname{IRRCJTB}(\mathrm{i}, 3)+ \\ & \pi_{i} \operatorname{IRCJTB}(\mathrm{i}, 3)+ \end{aligned}$	Gas volume fraction reactivitycoefficient table. The symbol π_{i} indicates the product of the following variable taken over the i subscript.
LRCBM	RCBM	$\Sigma \operatorname{IRCJTB}(\mathrm{i}, 4)+$ $\pi_{i} \operatorname{RCJTB}(i, 4)+$	Boron reactivity-coefficient table. The symbol π_{i} indicates the product of the following variable taken over the i subscript.
LRCN	RCN	0 or 4	Reactivity-coefficient values at the beginning of the previous timestep.
LRCTC	RCTC	$\begin{aligned} & \operatorname{\Sigma IRCJTB}(\mathrm{i}, 2)+ \\ & \pi_{i} \operatorname{IRCJTB}(\mathrm{i}, 2)+ \end{aligned}$	Coolant temperature reactivitycoefficient table. The symbol π_{i} indicates the product of the following variable taken over the i subscript.
LRCTF	RCTF	$\begin{aligned} & \operatorname{sIRCJTB}(\mathrm{i}, 1)+ \\ & \pi_{i} \operatorname{IRCJTB}(\mathrm{i}, 1)+ \end{aligned}$	Fuel temperature reactivitycoefficient table. The symbol π_{i} indicates the product of the following variable taken over the i subscript.
LRDPWR	RDPWR	NODES	ROD or SLAB relative radial or thickness power density.
LRDZ	RDZ	NCRZ +1	Axial node positions.
LRPKF	RPKF	NRODS	Supplemental rod power-peaking factor.
LRPWRF	RPWRF	\mid NRPWRF ${ }^{*} 2$	Rate-factor table for the power or reactivity table.
LRPWRT	RPWRT	NRPWR	ROD-radial or SLAB-thickness locations where the power shape's relative power densities are defined.
LRPWTB	RPWTB	\| NRPWTB1*2	Power or reactivity table.

LRS	RS	NODES*MOD (NFBPWT,2)	Relative ROD-radial or SLABthickness power-density distribution used to average reactivity feedback parameters over the reactor-core volume.
LSRP	SRP	0 or 15	Summed programmed and feedback reactivity changes.
LTC	TC	10	Thermocouple-model input parameters.
LXN	XN	0 or 4	New reactivity-feedback parameter values.
LXO	XO	0 or 4	Old reactivity-feedback parameter values.
LZPW	ZPW	NCRZ +1	Last interpolated axial power
LZPWF	ZPWF	NZPWZ *NODES *IPWRAD	2-D axial-r or axial-x power-shape after numerical integration over the node and hydro-cell lengths.
LZPWFB	ZPWFB	NCRZ+1	Subroutine ZPWHCI evaluated axial-power shape at NCRZ+1 nodes based on the input axialpower shape defined at NZPWZ node locations.
LZPWRF	ZPWRF	\mid NZPWRF\|*2	Axial-power-shape rate-factor table.
LZPWTB	ZPWTB	$\begin{aligned} & \text { \|NZPWTB\|* } \\ & \text { NZPWZ+1 } \end{aligned}$	Relative power density axial-power-shape table.
LZPWZT	ZPWZT	NZPWZ	Axial locations where the axial-power-shape relative power densities are defined.
LZS	ZS	NCRZP1*(MOD (NFBPWT,4)/2)	Relative axial-power-shape power-density distribution used to volume average the reactivityfeedback parameters over the reactor-core volume.

Dummy pointer that provides a known end to the common block.
C.4.3. RODPT1.H—Heat-Structure Pointer Table. These pointer variables are declared to be INTEGER.

ROD DATA POINTERS:

Name	Array	Dimension	Description
LALPR	ALPR	NCRZ +2	Gas volume fraction.
LALVR	ALVR	NCRZ +2	Liquid HTC times the interfacial area.
LBITR	BITR	0	Variable not used.
LBITRN	BITRN	0	Variable not used.
LBURN	BURN	NCRZ+1	Fuel burnup.
LCEPWN	CEPWN	1	New total convective power.
LCEPWO	CEPWO	1	Old total convective power.
LCHTIR	CHTIR	NCRZ+2	Gas HTC times interfacial area.
LCLR	CLR	NCRZ+2	Liquid thermal conductivity.
LCND	CND	NODES* (NCRZ+1)	ROD or SLAB thermal conductivity.
LCNDR	CNDR	NINT* (NCRZ+1)	ROD or SLAB thermal conductivity to the right of the interface.
LCONCR	CONCR	NCRZ+2	Mass ratio of dissolved solute in the liquid (kg solute $/ \mathrm{kg}$ liquid).
LCPDR	CPDR	NINT* (NCRZ+1)	ROD or SLAB specific heat to the right of the interface.
LCPLR	CPLR	NCRZ+2	Liquid specific heat.

LCPND	CPND	NODES* (NCRZ+1)	ROD or SLAB specific heat.
LCPVR	CPVR	NCRZ +2	Gas specific heat.
LCVR	CVR	NCRZ+2	Gas thermal conductivity.
LDRLDT	DRLDT	NCRZ+2	Derivative of the liquid density with respect to the liquid temperature.
LDRVDT	DRVDT	NCRZ +2	Derivative of the gas density with respect to the gas temperature.
LDRZ	DRZ	NCRZ+1	Old zirconium-dioxide reaction depth.
LDRZN	DRZN	NCRZ+1	New zirconium-dioxide reaction depth.
LEAR	EAR	NCRZ +2	Specific internal energy of the noncondensable-gas component.
LELR	ELR	NCRZ+2	Liquid internal energy.
LEMIS	EMIS	NODES* (NCRZ+1)	ROD or SLAB surface emissivity.
LEVR	EVR	NCRZ+2	Gas internal energy.
LFINAR	FINAR	NCRZ+2	Variable not used.
LHDR	HDR	NCRZ +2	Rod-bundle hydraulic diameter.
LHFGR	HFGR	NCRZ+2	Latent heat of vaporization of the fluid.
LHGAMR	HGAMR	NCRZ	Energy contribution to subcooled boiling.
LHGAP	HGAP	NCRZ+1	Gap-gas conductance.
LHLAR	HLAR	NCRZ	Sum of the products of the liquid HTC and the heat-transfer area.

LHLATR	HLATR	NCRZ	Sum of the products of the liquid HTC, the heat-transfer area, and the wall temperature.
LHLSR	HLSR	NCRZ+2	Specific enthalpy of the liquid phase at saturation (correspond- ing to saturation temperature at the partial pressure of steam).
LHRFG	HRFG	NCRZ+1	New subcooled-boiling HTC.
LHRFGO	HRFGO	NCRZ+1	Old subcooled-boiling HTC.
LHRFL	HRFL	NZMAX	New fine-mesh liquid HTC.
LHRFLO	HRFLO	NZMAX	Old fine-mesh liquid HTC.
LHRFV	HRFV	NZMAX	New fine-mesh gas HTC.
LHRFVO	HRFVO	NZMAX	Old fine-mesh gas HTC.
LHRLGO	HRLGO	NZMAX	New fine-mesh subcooled-boiling
LHTC.			

LHVAR	HVAR	NCRZ	Sum of the products of the gas HTC and the heat-transfer area.
LHVATR	HVATR	NCRZ	Sum of the products of the gas HTC, the heat-transfer area, and the wall temperature.
LHVSR	HVSR	NCRZ+2	Specific enthalpy of the steam (not gas) at saturation (at the partial pressure of steam and
saturation temperature).			

LRADRN	RADRN	NODES* $(\mathrm{NCRZ}+1)$	New radial-node positions.
LRDHLO	RDHLO	NCRZ	Variable not currently implemented.
LRDHLR	RDHLR	NCRZ	Liquid HTC.
LRDHVO	RDHVO	NCRZ	Variable not currently implemented.
LRDHVR	RDHVR	NCRZ	Gas HTC.
LRFT	RFT	NODES *NZMAX	Old fine-mesh ROD or SLAB temperatures.
LRFTN	RFTN	NODES *NZMAX	New fine-mesh ROD or SLAB temperatures.
LRLQLV			Variable not used.
LRND	RND	NODES* (NCRZ+1)	ROD or SLAB density.
LRNDR	RNDR	$\begin{aligned} & \text { NINT* }^{*} \\ & \left(\text { NCRZ }^{2}\right)-1 \end{aligned}$	ROD or SLAB density to right of the material interface.
LROAR	ROAR	NCRZ+2	Noncondensable-gas density.
LROLR	ROLR	NCRZ+2	Liquid density.
LROMR	ROMR	NCRZ+2	Mixture density.
LROVR	ROVR	NCRZ+2	Gas density.
LRPOWF	RPOWF	NODES	ROD or SLAB power density.
LSIGR	SIGR	NCRZ +2	Surface tension.
LSR	SR	NCRZ+2	Density of plated-out solute.
LSTNU	STNU	NZMAX	Stanton number.
LTCEFN	TCEFN	1	New total convective power.
LTCEFO	TCEFO	1	Old total convective power.

LTCHFF	TCHFF	NZMAX	Fine-mesh wall temperature at the CHF point.
LTCHFR	TCHFR	NCRZ	Wall temperature at the CHF point.
LTLD	TLD	NZMAX	Liquid temperature at bubble departure.
LTLR	TLR	NCRZ+2	Old liquid temperature.
LTLRN	TLRN	NCRZ+2	New liquid temperature.
LTSATR	TSATR	NCRZ+2	Saturation temperature.
LTSSNR	TSSNR	NCRZ+2	Saturation temperature corresponding to the partial LTVR
	TVR	NCRZ+2	Old gas temperature.
LTVNR	TVNR	NCRZ+2	New gas temperature.
LVVCR	VVCR	NCRZ+2	Nas cross-flow velocity.
LTWAEN	TWAEN	1	New absolute total conduction.

LVVZR	VVZR	NCRZ+2	Axial gas velocity.
LWATR	WATR	NCRZ	ROD or SLAB total heat-transfer area.
LZHT	ZHT	NZMAX	Axial location of the heat-transfer node.

C.5. PIPE COMPONENT

C.5.1. PIPEVLT.H-PIPE Specific Component Table with Common Block pipeCom.

REAL*8 VARIABLES WITH INTEGER PARAMETER CONSTANTS

Variable	Parameter Constant	Description
AA1111	AA1111IND=1	Dummy variable that provides a known start to the COMMON block.
BSMASS	BSMASSIND=2	Time-integrated fluid mass flow from the PIPE.
CPOW	CPOWIND=3	Special PIPE power input.
ENINP	ENINPIND=4	Total (time-integrated) energy directly input to the PIPE.
EPSW	EPSWIND=5	Wall surface roughness.
FL(1) FL(2)	FLIND=6 at 7	Liquid mass-flow corrections for mass- conservation checks.
FV(1) FV(2) FVIND=8 at 9	Gas mass-flow corrections for mass- conservation checks.	
HOUTL	HOUTLIND=10	HTC between outer boundary of the PIPE wall and liquid.
HOUTV	HOUTVIND=11	HTC between outer boundary of the PIPE wall and gas.
PLENT	PLENTIND=12	Total length of the PIPE.

POWIN	PWININD $=13$	Initial power deposited in the liquid.
POWOFF	PWOFFIND=14	Power deposited in the liquid when the trip is OFF after it was ON.
QINT	QINTIND=15	Initial liquid volume in the PIPE.
QOUT	QOUTIND=16	Volume of liquid that has been discharged from the PIPE modeled as an accumulator.
QP3IN	QP3ININD $=17$	Initial QPPP factor.
QP3OFF	QP3OFFIND $=18$	QPPP factor when its trip is OFF after it was ON.
RADIN	RADININD=19	Inner radius of the PIPE wall.
RPOWMX	RPOWMXIND=20	Maximum rate of change of power deposited in the coolant.
RQP3MX	RQP3MXIND=21	Maximum rate of change of the QPPP factor.
TH	THIND $=22$	Thickness of the PIPE wall.
TOUTL	TOUTLIND $=23$	Liquid temperature outside the PIPE.
TOUTV	TOUTVIND=24	Gas temperature outside the PIPE.
TYPE1	TYPE1IND $=28$	Type of adjacent component at JUN1.
TYPE2	TYPE2IND=29	Type of adjacent component at JUN2.
VFLOW	VFLOWIND $=25$	Volume flow rate at fluid discharged from the PIPE modeled as an accumulator.
Z	ZIND=26	Water height above discharge.
Z11111	Z11111IND=27	Dummy variable that provides a known end to the COMMON block real-value variables.

INTEGER VARIABLES WITH INTEGER PARAMETER CONSTANTS

Variable	Parameter Constant	Description
IA1111	IA1111IND=-1	Dummy variable that provides a known start to the COMMON block.
IACC	IACCIND $=-2$	PIPE modeled as an accumulator option.
ICHF	ICHFIND $=-3$	CHF calculation option.
ICJ1	$\mathrm{ICJ} 1 \mathrm{IND}=-4$	Variable not used.
ICJ2	ICJ2IND $=-5$	Variable not used.
ICONC	$\mathrm{ICONCIND}=-6$	Presence of solute in the liquid option.
IONOFF	IONOFFIND $=-7$	Number of timesteps the power-deposited-in-the-coolant trip has been ON.
IPF	IPFIND $=-8$	Last interpolated interval in the power-deposited-in-the-coolant's rate-factor table.
IPOW	IPOWIND=-9	Presence of power deposited in the coolant option.
IPOWSV	IPOWSVIND=-10	Signal-variable or control-block ID number defining the power-deposited-in-the-coolant table's abscissa-coordinate variable.
IPOWTR	IPOWTRIND=-11	Trip ID number that controls the evaluation of the power-deposited-in-thecoolant table.
IPP	IPPIND=-12	Last interpolated interval in the power-deposited-in-the-coolant table.
IQF	$\mathrm{IQFIND}=-13$	Last interpolated interval in the QPPPfactor table's rate-factor table.
IQP	IQPIND $=-14$	Last interpolated interval in the QPPPfactor table.

IQP3SV	IQP3SVIND=-15	Signal-variable or control-block ID number defining the QPPP-factor table's abscissacoordinate variable.
IQP3TR	IQP3TRIND $=-16$	Trip ID number that controls evaluation of the QPPP-factor table.
ISOLLB	ISOLLBIND $=-17$	Indicator for velocity update at JUN1.
ISOLRB	ISOLRBIND $=-18$	Indicator for velocity update at JUN2.
JS1	JS1IND=-19	Junction sequence number at cell 1 of the PIPE.
JS2	JS2IND $=-20$	Junction sequence number at cell NCELLS of the PIPE.
JUN1	JUN1IND=-21	Junction number at cell 1.
JUN2	JUN2IND $=-22$	Junction number at cell NCELLS.
NCELLS	NCELLSIND $=-23$	Number of fluid cells in the PIPE.
NONOFF	NONOFFIND=-24	Number of timesteps the QPPP-factor table's controlling trip has been ON .
NPOWRF	NPOWRFIND=-25	Number of data pairs in the power-deposited-in-the-coolant table's rate-factor table.
NPOWSV	NPOWSVIND=-26	Signal-variable or control-block ID number defining the power-deposited-in-thecoolant rate-factor table's abscissacoordinate variable.
NPOWTB	NPOWTBIND=-27	Number of data pairs in the power-deposited-in-the-coolant table.
NQP3RF	NQP3RFIND=-28	Number of data pairs in the QPPP-factor table's rate-factor table.
NQP3SV	NQP3SVIND $=-29$	Signal-variable or control-block ID number defining the QPPP-factor table's rate-factor table's abscissa-coordinate variable.

NQP3TB NQP3TBIND $=-30 \quad$ Number of data pairs in the QPPP-factor table.

ZI1111 ZI1111IND $=-31$ Dummy variable that provides a known end to the COMMON block.
C.5.2. PIPEPT.H— PIPE Pointer Table. These pointer variables are declared to be INTEGER.

Name	Array	Dimension	Description
LPOWRF	POWRF	NPOWRF*2	Rate-factor table for the power- deposited-in-the-coolant table.
LPOWTB	POWTB	NPOWTB*2	Power-deposited-in-the-coolant table.
LQP3RF	QP3RF	NQP3RF*2	Rate-factor table for the QPPP- factor table.
LQP3TB	QP3TB	NQP3TB*2	QPPP-factor table.

C.6. PLENUM COMPONENT

C.6.1. PLENVLT.H—PLENUM Specific Component Table with

 Common Block plenCom.
REAL*8 VARIABLES WITH INTEGER PARAMETER CONSTANTS

Variable	Parameter Constant	Description
AA1111	AA1111IND=1	Dummy variable that provides a start to the COMMON block.
BL	BLIND=2	Temporary storage for liquid mas conservation checks.
BSMASS	BSMASSIND=3	Time-integrated fluid mass flow plenum.
BV	BVIND=4	Temporary storage for gas mass- conservation checks.
EPSW	EPWSIND=5	Wall surface roughness.

FAS1	FAS1IND=6	Summed flow area of all junctions on side 1 of the plenum cell.
FAS2	FAS2IND=7	Summed flow area of all junctions on side 2 of the plenum cell.
FLXA	FLXAIND $=8$	Total noncondensable-gas mass flow into the plenum cell during a timestep.
FLXAL	FLXALIND=9	Total liquid volumetric flow into the plenum cell during a timestep.
FLXAV	FLXAVIND=10	Total gas volumetric flow into the plenum cell during a timestep.
FLXC	FLXCIND $=11$	Total solute mass flow into the plenum cell during a timestep.
FLXEL	FLXELIND $=12$	Total liquid internal-energy flow into the plenum cell during a timestep.
FLXEV	FLXEVIND=13	Total gas internal-energy flow into the plenum cell during a timestep.
FLXL	FLXLIND $=14$	Total liquid mass flow into the plenum cell during a timestep.
FLXV	FLXVIND=15	Total gas mass flow into the plenum cell during a timestep.
RXCL	RXCLIND=16	Temporary storage for the right-hand side of the liquid stabilizer mass and energy equations.
RXCV	RXCVIND=17	Temporary storage for the right-hand side of the gas stabilizer mass and energy equations.
XL	XLIND $=18$	Gross total liquid volumetric flow from the plenum cell during a timestep.
XV	XVIND=19	Gross total gas volumetric flow from the plenum cell during a timestep.

INTEGER VARIABLES WITH INTEGER PARAMETER CONSTANTS

LAVW	AVW	NPLJN	Temporary storage for the righthand side of the gas stabilizer mass and energy equations.
LDALP	DALP	NPLJN	Donor-cell gas volume fraction α.
LDBND	DBND	5*NPLJN	Donor-cell quantities $\alpha \rho_{v}$, $(1-\alpha) \rho_{\ell}, \alpha \rho_{\mathrm{a}}, \alpha \rho_{\mathrm{v}} \mathrm{e}_{\mathrm{v}}$, and $(1-\alpha) \rho_{\ell} e_{\ell}$
LDNFL	DONFL	NPLJN	Donor-cell flag for liquid. $0.0=$ defines flow to the plenum cell; $1.0=$ defines flow from the plenum cell.
LDNFV	DONFV	NPLJN	Donor-cell flag for gas. $0.0=$ defines flow to the plenum cell; $1.0=$ defines flow from the plenum cell.
LDXVOL	DXVOL	1	Junction-averaged cell-centered cell length.
LFASMLT	FASMLT	1	Cell-centered interfacial area for stratified flow.
LFAVUL	FAVUL	1	Junction-averaged cell-centered flow area.
LGRAVOL	GRAVOL	1	Difference of junction-averaged positive- and negative-valued GRAVs.
LIOJ	IOJ	NPLJN	Network-junction numbers.
LJSN	JSN	NPLJN	PLENUM junction-sequence numbers.
LJUNJ	JUNJ	NPLJN	PLENUM junction numbers.
LPAK	PAK	NPLJN	BIT array for the plenum junctions (used only for storing the water packing and stretching bits).

LSGN	SGN NPLJN	Junction flow-reversal indicators.
LVLVUL VLVUL		

$\begin{aligned} & \text { FL(1) } \\ & \text { FL(2) } \end{aligned}$	$\begin{aligned} & \text { FLIND=7 } \\ & \text { at } 8 \end{aligned}$	Liquid mass-flow corrections for massconservation checks.
FLOW	FLOWIND=9	Volume flow rate at discharge.
$\begin{aligned} & F V(1) \\ & F V(2) \end{aligned}$	$\begin{aligned} & \text { FVIND=10 } \\ & \text { at } 11 \end{aligned}$	Gas mass-flow corrections for massconservation checks.
HOUTL	HOUTLIND=12	HTC between outer boundary of pressurizer wall and liquid.
HOUTV	HOUTVIND=13	HTC between outer boundary of pressurizer wall and gas.
PSET	PSETIND=14	Pressurizer pressure set point for heaterspray control.
QHEAT	QHEATIND=15	Total heater power.
QIN	QININD $=16$	Heater power being input to the liquid.
QINT	QINTIND=17	Initial liquid volume in pressurizer.
QOUT	QOUTIND $=18$	Volume of liquid that has been discharged from the pressurizer.
QP3IN	QP3ININD=19	Initial QPPP factor.
RADIN	RADININD $=20$	Inner radius of pressurizer wall.
TH	THIND $=21$	Thickness of pressurizer wall.
TOUTL	TOUTLIND=22	Liquid temperature outside the pressurizer.
TOUTV	TOUTVIND $=23$	Gas temperature outside the pressurizer.
TYPE1	TYPE1IND=27	Type of adjacent component at JUN1.
TYPE2	TYPE2IND $=28$	Type of adjacent component at JUN2.
Z	ZIND=24	Liquid height above discharge.
ZHTR	ZHTRIND $=25$	Liquid height for heater cutoff.

Dummy variable that provides a known end to the COMMON block for real-value variables.

INTEGER VARIABLES WITH INTEGER PARAMETER CONSTANTS

Variable	Parameter Constant	Description
IA1111	IA1111IND $=-1$	Dummy variable that provides a known start to the COMMON block.
ICHF	ICHFIND $=-2$	CHF calculation option.
ICJ	$\mathrm{ICJIND}=-3$	Variable not used.
ICONC	$\mathrm{ICONCIND}=-4$	Presence of solute in the liquid option.
ICT1	ICT1IND $=-5$	The sequence number (position in the IORDER array) of the component next to the junction of the pressurizer (this variable is computed but not used).
IUV1	IUV1IND $=-6$	Indicator for velocity update at JUN1.
IUV2	IUV2IND $=-7$	Indicator for velocity update at JUN2.
JS1	JS1IND $=-8$	Junction sequence number at cell 1 of the pressurizer.
JS2	JS2IND=-9	Junction sequence number at cell NCELLS of the pressurizer.
JUN1	JUN1IND $=-10$	Junction number at cell 1.
JUN2	JUN2IND $=-11$	Junction number at cell NCELLS.
NCELLS	NCELLSIND=-12	Number of fluid cells.
Z11111	ZII111IND=-13	Dummy variable that provides a known end to the COMMON block.

C.8. PUMP COMPONENT

FLOW	FLOWIND $=15$	PUMP volumetric fluid-flow rate.
$\begin{aligned} & F V(1) \\ & F V(2) \end{aligned}$	$\begin{aligned} & \text { FVIND=16 } \\ & \text { at } 17 \end{aligned}$	Gas mass-flow corrections for massconservation checks.
HEAD	HEADIND $=18$	Pump head.
HOUTL	HOUTLIND=19	HTC between outer boundary of the PUMP wall and liquid.
HOUTV	HOUTVIND=20	HTC between outer boundary of the PUMP wall and gas.
MFLOW	MFLOWIND=21	PUMP fluid mass-flow rate.
OMEGA	OMEGAIND=22	Pump-impeller rotational speed at old time.
OMEGAN	OMEGANIND=23	Pump-impeller rotational speed at new time.
OMGOFF	OMGOFFIND $=24$	Pump-impeller rotational speed when its controlling trip is OFF after it was ON.
OMTEST	OMTESTIND=25	The pump-impeller rotational speed below which EFFMI1 (the alternate effective moment of inertia) is used.
QP3IN	QP3ININD=26	Initial QPPP factor.
QP30FF	QP3OFFIND $=27$	QPPP factor when its controlling trip is OFF after it was ON.
RADIN	RADININD $=28$	Inner radius of wall.
RFLOW	RFLOWIND=29	Rated fluid flow.
RHEAD	RHEADIND=30	Rated head.
RHO	RHOIND $=31$	Fluid mixture density.
ROMEGA	ROMEGAIND=32	Rated pump-impeller rotational speed.
ROMGMX	ROMGMXIND=33	Maximum rate of change of the pumpimpeller rotational speed.

RQP3MX	RQP3MXIND=34	Maximum rate of change of the QPPP factor.
RRHO	RRHOIND $=35$	Rated fluid density.
RTORK	RTORKIND=36	Rated torque.
SMOM	SMOMIND=37	Momentum source.
TFR0	TFROIND $=38$	Frictional torque constant coefficient.
TFR1	TFR1IND=39	Frictional torque linear coefficient.
TFR2	TFR2IND $=40$	Frictional torque quadratic coefficient.
TFR3	TFR3IND $=41$	Frictional torque third-order coefficient.
TFRB	TFRBIND=42	Pump-impeller rotational speed that defines the low-speed regime.
TFRLO	TFRLOIND=43	Low-speed frictional torque constant coefficient.
TFRL1	TFRLIIND $=44$	Low-speed frictional torque linear coefficient.
TFRL2	TFRL2IND=45	Low-speed frictional torque quadratic coefficient.
TFRL3	TFRL3IND=46	Low-speed frictional torque third-order coefficient.
TH	THIND $=47$	Wall thickness.
TORQUE	TORQUEIND=48	Pump torque.
TOUTL	TOUTLIND=49	Liquid temperature outside the PUMP wall.
TOUTV	TOUTVIND=50	Gas temperature outside the PUMP wall.
TYPE1	TYPE1IND=52	Type of adjacent component at JUN1.
TYPE2	TYPE2IND=53	Type of adjacent component at JUN2.

Z11111	Z11111IND=51	Dummy variable that provides a known end to the COMMON block real-value variables.
INTEGER VARIABLES WITH INTEGER PARAMETER CONSTANTS		
Variable	Parameter Constant	Description
IA1111	IA1111IND $=-1$	Dummy variable that provides a known start to the COMMON block.
ICHF	$\mathrm{ICHFIND}=-2$	CHF calculation option.
ICJ1	ICJ1IND $=-3$	Variable not used.
ICJ2	ICJ2IND $=-4$	Variable not used.
ICONC	ICONCIND $=-5$	Presence of solute in the coolant option.
INDXHM	INDXHMIND=-6	Index on head degradation multiplier curve.
INDXTM	INDXTMIND=-7	Index on torque degradation multiplier curve.
IONOFF	IONOFFIND $=-8$	Number of timesteps the pump-speed controlling trip has been ON.
IPF	IPFIND=-9	Last interpolated interval in the pumpspeed table's rate-factor table.
IPM	IPMIND $=-10$	Two-phase indicator. $0=$ use single-phase curves; $1=$ use two-phase curves.
IPMPS	IPMPSIND $=-11$	Flag that indicates whether or not the pump-impeller rotational speed previously has dropped below OMTEST. $0=$ pump speed always has been greater than OMTEST; 1 = pump speed has dropped below OMTEST at some time.

IPMPS2	IPMPS2IND=-12	Flag that indicates the evaluation of variable pump inertia in subroutine RPUMP.
IPMPSV	IPMPSVIND=-13	Signal-variable or control-block ID number defining the pump-speed table's independent variable.
IPMPTR	IPMPTRIND=-14	PUMP trip ID number.

NCELLS	NCELLSIND $=-28$	Number of fluid cells.
$\begin{aligned} & \text { NDATA(1) } \\ & \text { NDATA(2) } \end{aligned}$	$\begin{aligned} & \text { NDATAIND }=-29 \\ & \text { at }-30 \end{aligned}$	Number of sets of points in head and torque curves.
NDATA(16) at -44		
NDMAX	NDMAXIND $=-45$	Size of scratch storage array.
NHDM	NHDMIND $=-46$	Number of data pairs in the headdegradation multiplier curve.
NONOFF	NONOFFIND $=-47$	Number of timesteps the QPPP-factor table's controlling trip has been ON.
NPMPRF	NPMPRFIND $=-48$	The number of rate-factor table data pairs whose rate factor is applied to the pumpspeed table's independent variable.
NPMPSD	NPMPSDIND $=-49$	Signal-variable or control-block ID number defining the pump-impeller rotational speed when the pump-speed controlling trip is initially OFF.
NPMPSV	NPMPSVIND=-50	Signal-variable or control-block ID number defining the pump-speed rate-factor table's abscissa-coordinate variable.
NPMPTB	NPMPTBIND $=-51$	Number of data pairs in the pump-speed table.
NQP3RF	NQP3RFIND $=-52$	Number of data pairs in the QPPP-factor table's rate-factor table.
NQP3SV	NQP3SVIND $=-53$	Signal-variable or control-block ID number defining the QPPP-factor rate-factor table's abscissa-coordinate variable.
NQP3TB	NQP3TBIND $=-54$	Number of data pairs in the QPPP-factor table.
NTDM	NTDMIND $=-55$	Number of data pairs in the torquedegradation multiplier curve.
OPTION	OPTIONIND $=-56$	Pump-curve option.

ZI1111 ZI1111IND $=-57 \quad$| Dummy variable that provides a known |
| :--- |
| end to the COMMON block. |

C.8.2. PUMPPT.H—PUMP Pointer Table. These pointer variables are declared to be INTEGER.

HEAD- AND TORQUE-TABLE POINTERS:

Name	Array	Dimension	Description
LHSP1	HSP1	2*NDATA(1)	Single-phase head curve 1.
LHSP2	HSP2	2*NDATA(2)	Single-phase head curve 2.
LHSP3	HSP3	2*NDATA(3)	Single-phase head curve 3 .
LHSP4	HSP4	$2 * N D A T A(4)$	Single-phase head curve 4.
LHTP1	HTP1	2*NDATA(5)	Two-phase head curve 1.
LHTP2	HTP2	2^{*} NDATA(6)	Two-phase head curve 2.
LHTP3	HTP3	2*NDATA(7)	Two-phase head curve 3.
LHTP4	HTP4	$2 *$ NDATA(8)	Two-phase head curve 4.
LTSP1	TSP1	$2 *$ NDATA(9)	Single-phase torque curve 1.
LTSP2	TSP2	2*NDATA(10)	Single-phase torque curve 2.
LTSP3	TSP3	2*NDATA(11)	Single-phase torque curve 3 .
LTSP4	TSP4	2*NDATA(12)	Single-phase torque curve 4 .
LTTP1	TTP1	2*NDATA(13)	Two-phase torque curve 1.
LTTP2	TTP2	2*NDATA(14)	Two-phase torque curve 2.
LTTP3	TTP3	2*NDATA(15)	Two-phase torque curve 3 .
LTTP4	TTP4	2*NDATA(16)	Two-phase torque curve 4.

Name	Array	Dimension	Description
LBD4	BD4	LENBD	Dummy variable.
LHDM	HDM	2^{*} NHDM	Head-degradation multiplier curve.
LIDXCS	IDXCS	16	Curve-set index array.
LNDATA	NDATA	16	Number of data pairs in the head and torque curves.
LPMPRF	PMPRF	NPMPRF*2	Rate-factor table for the pump- speed table.
LPMPTB	PMPTB	NPMPTB*2	Pump-impeller rotational-speed table.
LQP3RF	QP3RF	NQP3RF*2	Rate-factor table for the QPPP- factor table.
LQP3TB	QP3TB	NQP3TB*2	QPPP-factor table.
LTDM	TDM	$2 *$ NTDM	Torque-degradation multiplier curve.

C.9. SEPD AND TEE COMPONENTS

C.9.1. TEEVLT.H—SEPD or TEE Specific Component Table with

Common Block teeCom.

REAL*8 VARIABLES WITH INTEGER PARAMETER CONSTANTS

VariableParameter Constant	Description	
AA1111 AA1111IND=1	Dummy variable that provides a known start to the COMMON block.	
AI	AIIND=2	Standpipe flow area.
ALPD	ALPDIND=6	JCELL gas volume fraction for the separator component.

ALPOT	ALPOTIND=3	Old offtake gas volume fraction.
ALPOTN	ALPOTNIND=4	New offtake gas volume fraction.
ALPOTO	ALPOTOIND=5	Old-old offtake gas volume fraction.
ALPS	ALPSIND=7	Side-arm separator gas volume fraction for the SEPD component.
AN	ANIND $=8$	Separator nozzle exit area.
BSMASS	BSMASSIND=9	Time-integrated fluid mass flow from the SEPD or TEE.
CA	CAIND=10	Fraction of the liquid velocity at the left face of JCELL that contributes to the momentum transfer into the SEPD or TEE side tube.
CA1	CA1IND $=11$	Fraction of the liquid velocity at the right face of JCELL that contributes to the momentum transfer into the SEPD or TEE side tube.
CAIV	CA1VIND $=12$	Fraction of the gas velocity at the right face of JCELL that contributes to the momentum transfer into the SEPD or TEE side tube.
CAV	CAVIND $=13$	Fraction of the gas velocity at the left face of JCELL that contributes to the momentum transfer into the SEPD or TEE side tube.
COST	COSTIND=14	Cosine of the angle between the lownumbered cells of the SEPD or TEE main tube and side tube.
DELDIM	DELDIMIND $=15$	Constant in the dryer model (variable not used).
DPSEP	DPSEPIND $=16$	Pressure drop across the separator.
DPSS	DPSSIND=17	Desired pressure drop across the separator.
ENIN1	ENIN1IND $=19$	Total (time-integrated) energy directly input to the SEPD or TEE main tube.

QPIN1	QPIN1IND=39	Initial QPPP factor for the SEPD or TEE main tube.
QPIN2	QPIN2IND=40	Initial QPPP factor for the SEPD or TEE side tube.
QPOFF1	QPOFF1IND=41	QPPP factor for the SEPD or TEE main tube when its controlling trip is OFF after it was ON.
QPOFF2	QPOFF2IND=42	QPPP factor for the SEPD or TEE side tube when its controlling trip is OFF after it was ON.
RADIN1	RADIN1IND=43	Inner radius of the SEPD or TEE main tube.
RADIN2	RADIN2IND $=44$	Inner radius of the SEPD or TEE side tube.
RH	RHIND $=45$	Radius of the separator hub at inlet.
RPWMX1	RPWMX1IND=46	Maximum rate of change of power deposited in the coolant for the SEPD or TEE main tube.
RPWMX2	RPWMX2IND=47	Maximum rate of change of power deposited in the coolant for the SEPD or TEE side tube.
RQPMX1	RQPMX1IND=48	Maximum rate of change of the QPPP factor for the SEPD or TEE main tube.
RQPMX2	RQPMX2IND=49	Maximum rate of change of the QPPP factor for the SEPD or TEE side tube.
RR1	RR1IND=50	Radius of larger pickoff ring at first stage of two-stage separator.
RT1L	RT1LIND=51	Coefficient of the SEPD or TEE side-tube coupled momentum-convection term at the left interface of JCELL for liquid.
RT1V	RTIVIND=52	Coefficient of the SEPD or TEE side-tube coupled momentum-convection term at the left interface of JCELL for gas.

RT2L	RT2LIND=53	Coefficient of the SEPD or TEE side-tube coupled momentum-convection term at the right interface of JCELL for liquid.
RT2V	RT2VIND=54	Coefficient of the SEPD or TEE side-tube coupled momentum-convection term at the right interface of JCELL for gas.
TH1	TH1IND=55	Wall thickness of the SEPD or TEE main tube.
TH2	TH2IND=56	Wall thickness of the SEPD or TEE side tube.
THETA	TLETAIND=57	Angle between swirling vane and horizontal plane.
TLEN1	TLEN2IND=59	Length of the SEPD or TEE main tube.
TOURTh of the SEPD or TEE side tube.		

VDRYU	VDRYUIND=65	Upper limit for dryer velocity (currently not available).
WLI0	WLIOIND $=66$	Liquid flow rate into the separator from the previous timestep.
XCO	XCOIND=67	Carryover ratio of liquid mass flow to total mass flow.
XCU	XCUIND=68	Carryunder ratio of gas mass flow to total mass flow.
Z11111	Z11111IND=69	Dummy variable that provides a known end to the COMMON block for real-value variables.
INTEGER	VARIABLES WITH	NTEGER PARAMETER CONSTANTS
Variable	Parameter Constant	Description
IA1111	IA1111IND $=-1$	Dummy variable that provides a known start to the COMMON block.
ICBS1	$\mathrm{ICBS} 1 \mathrm{IND}=-2$	Control-block ID number that defines the separator carryover (the liquid mass flow divided by the total mass flow at the JCELL +1 interface).
ICBS2	ICBS2IND $=-3$	Control-block ID number that defines the separator carryunder (the gas mass flow divided by the total mass flow at the JCELL +1 interface).
ICHF	$\mathrm{ICHFIND}=-4$	CHF calculation option.
ICJ1	$\mathrm{ICJ1IND}=-5$	Iteration index of adjacent component to SEPD or TEE at JUN1.
ICJ2	$\mathrm{ICJ} 2 \mathrm{IND}=-6$	Iteration index of adjacent component to SEPD or TEE at JUN2.
ICJ3	$\mathrm{ICJ3} 3 \mathrm{IND}=-7$	Iteration index of adjacent component to SEPD or TEE at JUN3.

ICONC1	$\mathrm{ICONC1IND}=-8$	Indicator for presence of solute in the liquid of the SEPD or TEE main tube.
ICONC2	ICONC2IND=-9	Indicator for presence of solute in the liquid of the SEPD or TEE side tube.
IDRY	IDRYIND $=-10$	Dryer option flag (currently not available).
IENTRN	IENTRNIND=-11	Offtake model option. $0=$ model off; $1=$ model on (side-tube internal-junction mass flow determined using offtake model).
IONOF1	IONOF1IND=-12	Number of timesteps the power-deposited-in-the-coolant table for the SEPD or TEE main tube's controlling trip has been ON.
IONOF2	IONOF2IND $=-13$	Number of timesteps the power-deposited-in-the-coolant table for the SEPD or TEE side tube's controlling trip has been ON.
IPF1	WPF1IND $=-14$	Last interpolated interval number of the rate-factor table for the power-deposited-in-the-coolant table of the SEPD or TEE main tube.
IPF2	IPF2IND $=-15$	Last interpolated interval number of the rate-factor table for the power-deposited-in-the-coolant table of the SEPD or TEE side tube.
IPOW1	IPOW1IND $=-16$	Presence of power-deposited-in-the-coolant option for the SEPD or TEE main tube.
IPOW2	IPOW2IND $=-17$	Presence of power-deposited-in-the-coolant option for the SEPD or TEE side tube.
IPP1	IPP1IND $=-18$	Last interpolated interval number of the power-deposited-in-the-coolant table for the SEPD or TEE main tube.
IPP2	IPP2IND $=-19$	Last interpolated interval number of the power-deposited-in-the-coolant table for the SEPD or TEE side tube.

IPWSV1	IPWSV1IND $=-20$	Signal-variable or control-block ID number defining the power-deposited-in-thecoolant table's abscissa-coordinate variable for the SEPD or TEE main tube.
IPWSV2	IPWSV2IND $=-21$	Signal-variable or control-block ID number defining the power-deposited-in-thecoolant table's abscissa-coordinate variable for the SEPD or TEE side tube.
IPWTR1	IPWTR1IND=-22	Trip ID number that controls the evaluation of the power-deposited-in-thecoolant table for the SEPD or TEE main tube.
IPWTR2	IPWTR2IND=-23	Trip ID number that controls the evaluation of the power-deposited-in-thecoolant table for the SEPD or TEE side tube.
IQF1	IQF1IND $=-24$	Last interpolated interval number of the rate-factor table for the QPPP-factor table of the SEPD or TEE main tube.
IQF2	$\mathrm{IQF2} 2 \mathrm{IND}=-25$	Last interpolated interval number of the rate-factor table for the QPPP-factor of the SEPD or TEE side tube.
IQP1	IQP1IND=-26	Last interpolated interval number of the QPPP-factor table for the SEPD or TEE main tube.
IQP2	$\mathrm{IQP} 2 \mathrm{IND}=-27$	Last interpolated interval number of the QPPP-actor table for the SEPD or TEE side tube.
IQPSV1	IQPSV1IND $=-28$	Signal-variable or control-block ID number defining the QPPP-factor table's abscissacoordinate variable for the SEPD or TEE main tube.
IQPSV2	IQPSV2IND=-29	Signal-variable or control-block ID number defining the QPPP-factor table's abscissacoordinate variable for the SEPD or TEE side tube.

IQPTR1	IQPTR1IND $=-30$	Trip ID number that controls the evaluation of the QPPP-factor table for the SEPD or TEE main tube.
IQPTR2	IQPTR2IND $=-31$	Trip ID number that controls the evaluation of the QPPP-factor table for the SEPD or TEE side tube.
ISEP	ISEPIND $=-32$	Separator flag.
ISOLI	ISOL1IND=-33	Indicator for velocity update at junction JUN1.
ISOL2	ISOL2IND=-34	Indicator for velocity update at junction JUN2.
ISOL3	ISOL3IND $=-35$	Indicator for velocity update at junction JUN3.
ISOLN	ISOLNIND $=-36$	Advanced separator flag.
ISTAGE	ISTAGE $=-37$	Separator-type option.
JCELL	JCELLIND $=-38$	Cell number of the internal-junction cell within the SEPD or TEE main tube.
JS1	JS1IND $=-39$	Junction sequence number at cell 1 of the SEPD or TEE main tube.
JS2	JS2IND $=-40$	Junction sequence number at cell NCELLI of the SEPD or TEE main tube.
JS3	JS3IND $=-41$	Junction sequence number at cell NCELL2 of the SEPD or TEE side tube.
JUN1	JUN1IND=-42	Junction number at cell 1 of the SEPD or TEE main tube.
JUN2	JUN2IND=-43	Junction number at cell NCELL1 of the SEPD or TEE main tube.
JUN3	JUN3IND=-44	Junction number at cell NCELL2 of the SEPD or TEE side tube.
NCELL1	NCELLIIND $=-45$	Number of fluid cells in the SEPD or TEE main tube.

NCELL2 NCELL2IND=-46 Number of fluid cells in the SEPD or TEE side tube.

NCELLS NCELLSIND $=-47$ Total number of main- and side-tube cells plus the internal pseudo cell of the SEPD or TEE (NCELLS = NCELL1 + NCELL2 + 1) .

NDRYR NDRYRIND=-49 Dryer option flag (dryer not available).
NONOF1 NONOF1IND=-50 Number of timesteps the QPPP-factor table controlling trip for the SEPD or TEE main tube has been ON .

NONOF2 NONOF2IND=-51 Number of timesteps the QPPP-factor table controlling trip for the SEPD or TEE side tube has been ON .

NPWRF1 NPWRF1IND $=-52$ Number of data pairs in the rate-factor table for the power-deposited-in-the-coolant table of the SEPD or TEE main tube.

NPWRF2 NPWRF2IND $=-53$ Number of data pairs in the rate-factor table for the power-deposited-in-the-coolant table of the SEPD or TEE side tube.

NPWSV1 NPWSV1IND=-54 Signal-variable or control-block ID number defining the rate-factor table's abscissacoordinate variable for the power-deposited-in-the-coolant table of the SEPD or TEE main tube.

NPWSV2 NPWSV2IND $=-55$
Signal-variable or control-block ID number defining the rate-factor table's abscissacoordinate variable for the power-deposited-in-the-coolant table of the SEPD or TEE side tube.

NPWTB1 NPWTB1IND $=-56$ Number of data pairs in the power-deposited-in-the-coolant table for the SEPD or TEE main tube.

NPWTB2	NPWTB2IND $=-57$	Number of data pairs in the power-deposited-in-the-coolant table for the SEPD or TEE side tube.
NQPRF1	NQPRF1IND $=-58$	Number of data pairs in the rate-factor table for the QPPP-factor table of the SEPD or TEE main tube.
NQPRF2	NQPRF2IND $=-59$	Number of data pairs in the rate-factor table for the QPPP-factor table of the SEPD or TEE side tube.
NQPSV1	NQPSV1IND $=-60$	Signal-variable or control-block ID number defining the rate-factor table's abscissacoordinate variable for the QPPP-factor table of the SEPD or TEE main tube.
NQPSV2	NQPSV2IND $=-61$	Signal-variable or control-block ID number defining the rate-factor table's abscissacoordinate variable for the QPPP-factor table of the SEPD or TEE side tube.
NQPTB1	NQPTB1IND $=-62$	Number of data pairs in the QPPP-factor table for the SEPD or TEE main tube.
NQPTB2	NQPTB2IND=-63	Number of data pairs in the QPPP-factor table for the SEPD or TEE side tube.
NSEPS	NSEPSIND $=-64$	Number of physical separators modeled.
ZI1111	ZI1111IND $=-65$	Dummy variable that provides a known end to the COMMON block.
C.9.2. TEEPT.H—SEPD or TEE Pointer Table. These pointer variables are declared to be INTEGER. For a SEPD or TEE, NCELLS $=$ NCELL1 + NCELL2 +1		
Name	Array Dimen	sion Description
LAA	AA ISTAG	E Void profile coefficient inside water layer radius.
LADS	ADS ISTAG	E Flow area of discharge path.
LBB	BB ISTAG	E Void profile coefficient within water layer.

LBD4	BD4	LENBD	BD4 array.		
LCKS	CKS	ISTAGE	Loss coefficient for discharge passage.		
LDDS	DDS	ISTAGE	Hydraulic diameter of discharge passage.		
LEFFLD	EFFLD	ISTAGE	Effective L/D coefficient at pickoff ring.		
LHBS	HBS	ISTAGE	Length of the separator band.		
LHSK	HSK	ISTAGE	Axial distance between discharge and swirling vane.		
LPOWRF	POWRF	(\|NPWRF1	 $+($ NPWRF2l)*2	Rate-factor table for the power-deposited-in-the-coolant table.	
LPOWTB	POWTB	(\|NPWTB1	 + \| NPWTB2)*2	Power-deposited-in-the-coolant table.
LRWS	RWS	ISTAGE	Inner radius of separator wall.		
LRRS	RRS	ISTAGE	Inner radius of the pickoff ring.		
LQP3RF	QP3RF	(\|NQPRF1	 $+\mid$ NQPRF2\| ${ }^{*} 2$	Rate-factor table for the QPPPfactor table.	
LQP3TB	QP3TB	$\begin{aligned} & (\text { \| NQPTB1\| } \\ & +\mid \text { NQPTB2 } 1) * 2 \end{aligned}$	QPPP-factor table.		

C.10. TURBINE COMPONENT

C.10.1. TURBNVLT.H-TURB Specific Component Table with Common Block turbCom.

REAL*8 VARIABLES WITH INTEGER PARAMETER CONSTANTS

Variable	Parameter Constant	Description
AA1111	AA1111IND $=1$	Dummy variable that provides a known start to the COMMON block.

ALPHA1	ALPHA1IND=2	Upstream gas volume fraction.
ALPHA2	ALPHA2IND=3	Downstream gas volume fraction.
AR	ARIND $=4$	Area ratio (bucket exit area/nozzle exit area).
BSMASS	BSMASSIND $=5$	Time-integrated fluid mass flow from the TURB.
COEF1	COEF1IND $=6$	Nozzle coefficient.
COEF2	COEF2IND=7	Bucket coefficient.
COF3SQ	COF3SQIND=8	Fraction of reaction energy actually delivered in the stage.
CP	CPIND $=9$	Specific heat at constant pressure.
CPOW	CPOWIND $=10$	Special turbine input.
DIA	DIAIND=11	Bucket centerline diameter.
DSMOM	DSMOMIND=12	Derivative of SMOM with respect to velocity.
EFFDSN	EFFDSNIND=13	Stage efficiency at design conditions.
EFFSTG	EFFSTGIND $=14$	Stage efficiency.
ENINP	ENINPIND $=15$	Total (time-integrated) energy directly input to the TURB.
EPSW	EPSWIND=16	Wall surface roughness.
$\begin{aligned} & \mathrm{FL}(1) \\ & \mathrm{FL}(2) \end{aligned}$	$\begin{aligned} & \text { FLIND=17 } \\ & \text { at } 18 \end{aligned}$	Liquid mass-flow corrections for massconservation checks.
FLODIR	FLODIRIND $=19$	Flow direction flag. -1 = indicates normal flow direction is from JUN2 to JUN1; $1=$ indicates normal flow direction is from JUN1 to JUN2.
FLOW	FLOWIND $=20$	Fluid mass-flow rate.

$\begin{aligned} & \mathrm{FV}(1) \\ & \mathrm{FV}(2) \end{aligned}$	$\begin{aligned} & \text { FVIND=21 } \\ & \text { at } 22 \end{aligned}$	Gas mass-flow corrections for massconservation checks.
GAMMA	GAMMAIND $=23$	Isentropic exponent of expansion.
PHIREM	PHIREMIND $=24$	Remaining losses (rotation or diaphragmpacking).
PLENT	PLENTIND=25	Total length of the turbine stage.
POWIN	POWININD=26	Initial power deposited in the coolant.
POWDSN	POWDSNIND=28	Stage power output at design conditions.
POWOFF	POWOFFIND=27	Power deposited in the coolant when the controlling trip is OFF after it was ON.
POWSTG	POWSTGIND $=29$	Stage power output.
PRES1	PRES1IND $=30$	Upstream pressure.
PRES2	PRES2IND=31	Downstream pressure.
QUALTY	QUALTYIND=32	Thermodynamic quality of steam.
REACTN	REACTNIND=33	Degree of reaction at^{-}design conditions.
RHOL1	RHOLIIND=34	Upstream liquid density.
RHOL2	RHOL2IND=35	Downstream liquid density.
RHOM1	RHOM1IND $=36$	Upstream mixture density.
RHOM2	RHOM2IND=37	Downstream mixture density.
RHOV1	RHOV1IND=38	Upstream gas density.
RHOV2	RHOV2IND=39	Downstream gas density.
RPOWMX	RPOWMXIND=40	Maximum rate of change of the power deposited in the coolant.
SMOM	SMOMIND=41	Source term in the momentum equation (head gain).
SUPRHT	SUPRHTIND=42	Upstream degree of superheat of steam.

TEMPL1	TEMPL1IND=43	Upstream liquid temperature.
TEMPL2	TEMPL2IND=44	Downstream liquid temperature.
TEMPV1	TEMPV1IND=45	Upstream gas temperature.
TEMPV2	TEMPV2IND=46	Downstream gas temperature.
TYPE1	TYPE1IND=55	Type of adjacent component at junction JUN1.
TYPE2	TYPE2IND $=56$	Type of adjacent component at junction JUN2.
VELLI	VELLIIND=47	Upstream liquid velocity.
VELL2	VELL2IND $=48$	Downstream liquid velocity.
VELM1	VELM1IND $=49$	Upstream mixture velocity.
VELM2	VELM2IND=50	Downstream mixture velocity.
VELV1	VELV1IND=51	Upstream gas velocity.
VELV2	VELV2IND=52	Downstream gas velocity.
VSTAG	VSTAGIND $=53$	Stagnation velocity.
Z11111	Z11111IND=54	Dummy variable that provides a known end to the COMMON block for real-value variables.
INTEGER	VARIABLES WITH	NTEGER PARAMETER CONSTANTS
Variable	Parameter Constant	Description
IA1111	IA1111IND $=-1$	Dummy variable that provides a known start to the COMMON block.
ICJ1	ICJ1IND=-2	Iteration index of adjacent component at junction JUN1.
ICJ2	$\mathrm{ICJ} 2 \mathrm{IND}=-3$	Iteration index of adjacent component at junction JUN2.

ICONC	$\mathrm{ICONCIND}=-4$	Presence of solute dissolved in the liquid coolant option.
IONOFF	IONOFFIND $=-5$	Number of timesteps the power-deposited-in-the-coolant trip has been ON.
IPF	IPFIND $=-6$	Last interpolated interval number in the rate-factor table for the power-deposited-in-the-coolant table.
IPOW	IPOWIND=-7	Presence of power-deposited-in-the-coolant option.
IPOWSV	IPOWSVIND $=-8$	Signal-variable or control-block ID number defining the power-deposited-in-the-coolant table's abscissa-coordinate variable.
IPOWTR	IPOWTRIND $=-9$	Trip ID number that controls the power-deposited-in-the-coolant table evaluation.
PP	IPPIND $=-10$	Last interpolated interval number in the power-deposited-in-the-coolant table.
ISOLLB	ISOLLBIND $=-11$	Indicator for velocity update at junction JUN1.
ISOLRB	ISOLRBIND $=-12$	Indicator for velocity update at junction JUN2.
ISTG	ISTGIND $=-13$	Stage number.
JS1	JS1IND=-14	Junction sequence number at cell 1 of the TURB.
JS2	JS2IND $=-15$	Junction sequence number at cell NCELLS of the TURB.
JUN1	JUN1IND $=-16$	Junction number at cell 1 of the TURB.
JUN2	JUN2IND=-17	Junction number at cell NCELLS of the TURB.
LENTRB	LENTRBIND $=-18$	Length of the TURB block in array data (information pertaining to the entire

[^0]turbine-generator assembly, that is, the sum over all stages).

NCELLS	NCELLSIND $=-19$	Total number of fluid cells in the TURB.
NEFCON	NEFCONIND $=-20$	```Turbine efficiency. 0 = stage efficiency to be computed at off- design conditions; 1 = constant efficiency.```
NPOWRF	NPOWRFIND=-21	Number of data pairs in the power-deposited-in-the-coolant table's rate-factor table.
NPOWSV	NPOWSVIND=-22	Signal-variable or control-block ID number defining the power-deposited-in-thecoolant table's rate-factor table's abscissacoordinate variable.
NPOWTB	NPOWTBIND=-23	Number of data pairs in the power-deposited-in-the-coolant table.
NROWS	NROWSIND $=-24$	Number of rows of moving blades.
ZI1111	ZI1111IND $=-25$	Dummy variable that provides a known end to the COMMON block.

C.10.2. TURBPT.H-TURB Pointer Table. These pointer variables are declared to be INTEGER.

Name	Array	Dimension	Description
LANGL	ANGL	NROWS2	Blade angles.
LPOWRF	POWRF	\mid NPOWRF $\left.\right\|^{* 2}$	Power-deposited-in-the-coolant table's rate-factor table.
LPOWTB	POWTB	\mid NPOWTB $\left.\right\|^{* 2}$	Power-deposited-in-the-coolant table.
LTURB	TURB	1	Absolute LCM address for the TURB data common among all stages.

C.11. VALVE COMPONENT

C.11.1. VALVEVLT.H—VALVE Specific Component Table with

 Common Block valveCom.REAL*8 VARIABLES WITH INTEGER PARAMETER CONSTANTS

Parameter
Variable Constant Description

AA1111	AA1111IND=1	Dummy variable that provides a known start to the COMMON block.
AVLVE	AVLVEIND=2	VALVE-interface open flow area.
BSMASS	BSMASSIND $=3$	Time-integrated fluid mass flow from the VALVE.
EPSW	EPSWIND=4	Wall surface roughness.
FAVLVE	FAVLVEIND $=5$	Fraction of the fully open flow area AVLVE to which the adjustable-valve interface is set.
$\begin{aligned} & \text { FL(1) } \\ & \text { FL(2) } \end{aligned}$	$\begin{aligned} & \text { FLIND=6 } \\ & \text { at } 7 \end{aligned}$	Liquid mass-flow corrections for massconservation checks.
FMAXOV	FMAXOVIND=8	Maximum flow area fraction or relative valve-stem position during VALVEinterface adjustment by the over-riding trip.
FMINOV	FMINOVIND $=9$	Minimum flow area fraction or relative valve-stem position during VALVEinterface adjustment by the over-riding trip.
FRICO	FRIC0IND=10	Fully open VALVE-interface form-loss FRIC for forward flow.
FRIC0R	FRICORIND=11	Fully open VALVE-interface form-loss FRIC for reverse flow.
$\begin{aligned} & F V(1) \\ & F V(2) \end{aligned}$	$\begin{aligned} & \text { FVIND=12 } \\ & \text { at } 13 \end{aligned}$	Gas mass-flow corrections for massconservation checks.

HDRDX	HDRDXIND=14	Fully open VALVE-interface hydraulic diameter over DX.
HOUTL	HOUTLIND=15	HTC between outer boundary of the VALVE wall and liquid.
HOUTV	HOUTVIND=16	HTC between outer boundary of the VALVE wall and gas.
HVLVE	HVLVEIND=17	VALVE-interface open hydraulic diameter.
QP3IN	QP3ININD=18	Initial QPPP factor.
QP3OFF	QP3OFFIND=19	QPPP factor when the controlling trip is
RAFIN after it was ON.		

Z11111 Z11111IND=28 | Dummy variable that provides a kno |
| :--- |
| end to the COMMON block for real- |
| variables. |

INTEGER VARIABLES WITH INTEGER PARAMETER CONSTANTS

Variable	Parameter Constant	Description
IA1111	IA1111IND $=-1$	Dummy variable that provides a known start to the COMMON block.
ICHF	ICHFIND $=-2$	CHF calculation option.
ICJ1	ICJ1IND $=-3$	Iteration index of adjacent component at junction JUN1.
ICJ2	$\mathrm{ICJ} 2 \mathrm{IND}=-4$	Iteration index of adjacent component at junction JUN2.
ICONC	$\mathrm{ICONCIND}=-5$	Presence of solute in the liquid option.
IONOFF	IONOFFIND=-6	Number of timesteps the VALVE table's controlling trip has been ON.
IQF	IQFIND $=-7$	Last interpolated interval number in the rate-factor table for the QPPP-factor table.
IQP	$\mathrm{IQPIND}=-8$	Last interpolated interval number in the QPPP-factor table.
IQP3SV	IQP3SVIND=-9	Signal-variable or control-block ID number defining the QPPP-factor table's abscissacoordinate variable.
IQP3TR	IQP3TRIND=-10	Trip ID number that controls evaluation of the QPPP-factor table.
ISOLLB	ISOLLBIND $=-11$	Indicator for velocity update at junction JUN1.
ISOLRB	ISOLRBIND=-12	Indicator for velocity update at junction JUN2.
IVF	IVFIND $=-13$	Last interpolated interval number in the rate-factor table for the VALVE table.

IVP1	IVP1IND $=-14$	Last interpolated interval number in the first VALVE table.
IVP2	IVP2IND $=-15$	Last interpolated interval number in the second VALVE table.
IVPS	IVPSIND $=-16$	Adjustable VALVE-interface number.
IVSV	IVSVIND $=-17$	Signal-variable or control-block ID number that defines the VALVE table's independent variable.
IVTR	IVTRIND $=-18$	Trip ID number that controls evaluation of the VALVE table(s).
IVTROV	IVTROVIND=-19	Trip ID number that overrides trip IVTR control of VALVE-interface adjustment.
IVTY	IVTYIND $=-20$	Valve-type option.
IVTYOV	IVTYOVIND=-21	Type of VALVE-interface adjustment by the overriding trip IVTROV.
JS1	JS1IND=-22	Junction sequence number at cell 1 of the VALVE.
JS2	JS2IND $=-23$	Junction sequence number at cell NCELLS of the VALVE.
JUN1	JUN1IND $=-24$	Junction number at cell 1 of the VALVE.
JUN2	JUN2IND $=-25$	Junction number at cell NCELLS of the VALVE.
MODE	MODEIND $=-26$	Indicator for valve movement over the previous timestep. $\begin{aligned} -1 & =\text { closing; } \\ 0 & =\text { no movement } \\ 1 & =\text { opening } \end{aligned}$
NCELLS	NCELLSIND $=-27$	Total number of fluid cells in the VALVE.
NONOFF	NONOFFIND $=-28$	Number of timesteps the QPPP-factor table's controlling trip has been ON.

NQP3RF	NQP3RFIND $=-29$	Number of data pairs in the rate-factor table for the QPPP-factor table.		
NQP3SV	NQP3SVIND $=-30$	Signal-variable or control-block ID number defining the rate-factor table's abscissacoordinate variable for the QPPP-factor table.		
NQP3TB	NQP3TBIND $=-31$	Number of data pairs in the QPPP-factor table.		
NVRF	NVRFIND $=-32$	Number of rate-factor table data pairs whose rate factor is applied to the VALVE table's independent variable.		
NVSV	NVSVIND=-33	Signal-variable or control-block ID number defining the rate-factor table's abscissacoordinate variable for the VALVE table(s).		
NVTB1	NVTB1IND=-34	Number of data pairs in the first VALVE table.		
NVTB2	NVTB2IND $=-35$	Number of data pairs in the second VALVE table.		
ZI1111	ZI1111IND $=-36$	Dummy variable that provides a known end to the COMMON block for real-value variables.		
C.11.2. VLVEPT.H-VALVE Pointer Table. These pointer variables are declared to be INTEGER.				
Name	Array Dime	Dimension	Description	
LQP3RF	QP3RF INQP	\| NQP3RF	*2	Rate-factor table for the QPPPfactor table.
LQP3TB	QP3TB INQP	\| NQP3TB	*2	QPPP-factor table.
LVRF	VRF INVR	\| NVRF	*2	Rate-factor table for the VALVE table(s).
LVTB1	VTBI INVT	\| NVTB1 ${ }^{*} 2$	First VALVE table.	
LVTB2	VTB2 INVT	\| NVTB2	*2	Second VALVE table.

C.12. VESSEL COMPONENT

C.12.1. VSSELVLT.H—VESSEL Specific Component Table with

 Common Block vssCom.| Variable | Parameter Constant | Description |
| :---: | :---: | :---: |
| AA1111 | AA1111IND=1 | Dummy variable that provides a known start to the COMMON block. |
| BSMASS | BSMASSIND $=2$ | Integrated fluid mass flow from the VESSEL at the start of the timestep. |
| BSMSSN | BSMSSNIND=3 | Integrated fluid mass flow from the VESSEL at the end of the timestep. |
| CIMFR | CIMFRIND $=4$ | Core inlet fluid mass-flow rate. |
| CIMFRL | CIMFRLIND=5 | Core inlet liquid mass-flow rate. |
| CIMFRV | CIMFRVIND=6 | Core gas volume fraction. |
| COMFR | COMFRIND=7 | Core outlet fluid mass-flow rate. |
| COMFRL | COMFRLIND=8 | Core outlet liquid mass-flow rate. |
| COMFRV | COMFRVIND=9 | Core outlet gas mass-flow rate. |
| CORELQ | CORELQIND $=10$ | Core liquid volume fraction. |
| DCFLOW | DCFLOWIND=11 | Downcomer fluid mass-flow rate. |
| DCLQVL | DCLQVLIND=12 | Downcomer liquid volume fraction. |
| EPSW | EPSWIND=13 | Wall surface roughness. |
| GCC | GCCIND $=14$ | Gravity-acceleration constant. |
| GEOMFC | GEOMFCIND $=15$ | Geometry factor $(1.0=$ cylindrical, $0.0=$ Cartesian). |
| GRAVZ | GRAVZIND=16 | GRAV component in the z-direction. |

PCORE	PCOREIND=17	Core average pressure.
PDC	PDCIND=18	Downcomer average pressure.
PLP	PLPIND=19	Lower-plenum average pressure.
PUP	PUPIND=20	Upper-plenum average pressure.
QHSTOT	QHSTOTIND=21	Total heat flux from heat-structure components coupled to the VESSEL.
ROVSM(1)	R0VSMIND=61	Special purpose DOE-model parameter.
R0VSM(2)	at 62	
R0VSM(3)	at 63	An addition to the input Z coordinates to give elevations for computing GRAV in
SHELV	SHELVIND=22	one dimension.

TX0VSM TXOVSMIND=67 Special purpose DOE-model parameter.

TYOVSM \quad TYOVSMIND $=68$
TZOVSM TZOVSMIND=69
VBMASS VBMASSIND $=35$
VBMSSN VBMSSNIND=36
VCORE VCOREIND=37
VDCLQ VDCLQIND=38
VFMASS VFMASSIND=39
VFMSSN VFMSSNIND=40
VLCORE VLCOREIND=41
VLPLIQ VLPLIQIND=42 Lower-plenum liquid volume fraction.
VLPLM VLPLMIND=43 Lower-plenum liquid mass.
VLPLQ VLPLQIND=44 Total liquid mass in the lower plenum.
VLQMSS VLQMSSIND=45 Total liquid mass in the VESSEL.
VOLDC VOLDCIND=46 Downcomer volume.
VOLLP VOLLPIND=47 Lower-plenum volume.
VOLUP VOLUPIND=48 Upper-plenum volume.
VRMATSM(1,1) VRMATSMIND=52 Special purpose DOE-model parameter. $\operatorname{VRMATSM}(2,1)$ at 53
VSFLOW VSFLOWIND=49 VESSEL mass flow.
VUPLIQ VUPLIQIND=50 Upper-plenum liquid volume fraction.
VUPLM VUPLMIND=51 Upper-plenum liquid mass.

X0VSM	XOVSMIND=64	Special purpose DOE-model parameter.
YOVSM	YOVSMIND=65	Special purpose DOE-model parameter.
Z0VSM	ZOVSMIND=66	Special purpose DOE-model parameter.
Z11111	Z11111IND=70	Dummy variable that provides a known end to the COMMON block for real-value variables.
INTEGER VARIABLES WITH INTEGER PARAMETER CONSTANTS		

APPENDIX C C-89

ICX	ICXIND $=-14$	$\mathrm{ICOMM}+(\mathrm{NXBCM}+\mathrm{NXR}-2)^{*} \mathrm{NV}$.
ICXL	ICXLIND $=-15$	ICX.
ICXP	ICXPIND $=-16$	ICXL + NV.
ICXPL	ICXPLIND $=-17$	ICXP.
IDCL	mCLIND $=-18$	Downcomer lower-boundary segment number, Z (IDCL).
IDCR	IDCRIND $=-19$	Downcomer radial-boundary segment number, RAD(IDCR).
IDCU	IDCUIND $=-20$	Downcomer upper-boundary segment number, Z (IDCU).
IEXT	IEXTIND $=-21$	Specifies if the VESSEL input was generated by the post processor EXTRACT. $\begin{aligned} & 0=\text { no } ; \\ & 1=\text { yes } . \end{aligned}$
IF0	IFOIND $=-22$	IC0ML if IGEOM.EQ.1.AND.IGBCXR.EQ.1, else ICOL.
IFOL	IFOLIND $=-23$	IFO.
IFX	IFXIND $=-24$	IFOL + (NXRV-1)*NV.
IFXL	IFXLIND $=-25$	IFX.
IGBC	$\mathrm{IGBCIND}=-26$	$I G B C X R+I G B C Y T+I G B C Z$.
IGBCXR	IGBCXRIND=-27	Flag (0 or 1) for internal pressure/velocity boundary conditions on the x - or r direction walls of the VESSEL.
IGBCYT	IGBCYTIND $=-28$	Flag (0 or 1) for internal pressure/velocity boundary conditions on the y - or θ direction walls of the VESSEL.
IGBCZ	IGBCZIND $=-29$	Flag (0 or 1) for internal pressure/velocity boundary conditions on the z-direction walls of the VESSEL.
IGEOM	IGEOMIND $=-30$	Vessel-geometry option.

		0 = cylindrical geometry; 1 = Cartesian geometry.
ILCSP	ILCSPIND $=-31$	Lower-core support-plate axial segment number.
INHSMX	INHSMXIND=-32	Variable not used.
IUCSP	IUCSPIND=-33	Upper-core support-plate axial segment number.
IUHP	IUHPIND $=-34$	Upper head-plate axial segment number.
IVSSBF	IVSSBFIND=-35	Internal VESSEL boundary condition. $0=$ no internal boundaries (default); 2 = first axial level acts like a FILL, last axial level acts like a BREAK; 20 = first axial level acts like a BREAK, last axial level acts like a FILL; $\begin{aligned} 22= & \text { both the first and last axial levels act } \\ & \text { like BREAKs. }\end{aligned}$
IZBK	IZBKIND $=-36$	Switch for backup on water packing.
IZBK2	IZBK2IND $=-37$	Switch for re-donor-cell logic.
IZNX	IZNXIND=-38	Variable used in water-packing logic.
JALL	JALLIND=-39	$J C X+N Y B C P$.
JC0	JCOIND $=-40$	NYBCM +1.
JCOM	JCOMIND $=-41$	NYBCM.
JC0MM	JCOMMIND $=-42$	NYBCM-1.
JCX	JCXIND=-43	$\mathrm{JC0}+\mathrm{NYT}-1$.
JCXP	JCXPIND $=-44$	$\mathrm{JCX}+1$.
JF0	JFOIND $=-45$	JCOM if IGEOM.EQ.1 .AND. IGBCYT.EQ.1, else JC0.
JFX	JFXIND=-46	$\mathrm{JFO}+\mathrm{NYT}-1$.
KALL	KALLIND $=-47$	KCX + NZBCP.

KC0	$\mathrm{KCOIND}=-48$	NZBCM +1.
KCOM	KC0MIND $=-49$	NZBCM.
KC0MM	KC0MMIND $=-50$	NZBCM - 1.
KCX	$K \mathrm{CXIND}=-51$	$\mathrm{KCO}+\mathrm{NZZ}-1$.
KСХР	KCXPIND $=-52$	$K C X+1$.
KFO	$\mathrm{KFOIND}=-53$	KC0M if IGBCZ.EQ.1, else KC0.
KFX	KFXIND $=-54$	$\mathrm{KFO}+\mathrm{NZZ}-1$.
LENLD	LENLDIND $=-55$	Length of level data.
LENLDO	LENLDOIND $=-56$	Defined to be zero (variable not used).
LFVL	LFVLIND $=-57$	Relative position of old level-data variables.
LFVNL	LFVNLIND $=-58$	Relative position of new level-data variables.
LNFVL	LNFVLIND $=-59$	Number of level-data variables.
LNPTRL	LNPTRLIND $=-60$	Number of level-data pointers.
LOCVSP	LOCVSPIND=-61	Beginning offset for the VESSEL pointer table.
LSTVSP	LSTVSPIND=-62	Length of the VESSEL pointer table.
LTEMPL	LTEMPLIND $=-63$	Location of temporary space in the A array to contain one level of data for level-data editing (calculated but variable not used).
NASX	NASXIND $=-64$	Number of axial segments (levels).
NCELLS	NCELLSIND=-65	Number of fluid cells.
NCLX	NCLXIND $=-66$	Number of fluid cells per level.
NCRX	NCRXIND $=-67$	Number of core cells per level.

NCSHM	NCSHMIND=-79	Special purpose DOE-model parameter.
NCSR	NCSRIND $=-68$	Number of source connections to VESSEL cells.
NIJT	NIJTIND $=-69$	NI * JALL.
NODHS	NODHSIND $=-70$	Variable not used.
NRSX	NRSXIND $=-71$	Number of radial segments.
NSGRID	NSGRIDIND=-72	Number of spacer grids present in the core region (spacer grids are modeled only when the reflood model has been selected by inputting NAMELIST variable NEWRFD = 1).
NTISM	NTISMIND $=-80$	Special purpose DOE-model parameter.
NTSX	NTSXIND=-73	Number of θ segments.
NVENT	NVENTIND=-74	Number of cells with vent valves in the outer radial surface.
NVVTB	NVVTBIND=-75	Number of input data pairs in the multiple-point vent-valve table.
NXRV	NXRVIND $=-76$	NRSX if IGEOM.EQ. 0 .AND. IGBCXR.NE. 0 , else NRSXH if IGEOM. NE. 0 .AND. IGBCXR.NE.0, else NRSX-1.
NYTV	NYTVIND $=-77$	NTSX-1 if IGEOM.EQ. 0 .AND. IGBCYT.EQ.0, else NTSX+1 if IGEOM.NE. 0 .AND. IGBCYT.NE.0, else 0 if IGEOM.EQ. 0 .AND. NTSX.EQ.1, else NTSX.
NZISM	NZISMIND $=-81$	Special purpose DOE-model parameter.
NZZV	NZZVIND=-78	NASX+1 if IGBCZ.NE.0, else NASX-1.
Z11111	ZI1111IND $=-82$	Dummy variable that provides a known end to the COMMON block.

C.12.2. VSSLPT.H—VESSEL Pointer Table. These pointer variables are declared to be INTEGER.

COMMON DATA POINTERS:

Name	Array	Dimension	Description
LALPAG	ALPAG	TSX*NCSX	Old gas volume fraction at the agitated inverted annular flow (IAF).
LALPAN	ALPAN	NTSX*NRSX	New gas volume fraction at the agitated IAF.
LALPCN	ALPCN	NTSX*NRSX	New gas volume fraction at the CHF point.
LALPRN	ALPRN	NTSX*NRSX	New gas volume fraction at the rough-wavy IAF.
LALPRW	ALPRW	NTSX*NRSX	Old gas volume fraction at the rough-wavy IAF.
LALPSM	ALPSM	NTSX*NRSX	Old gas volume fraction at the smooth IAF.
LALPSN	ALPSN	NTSX*NRSX	New gas volume fraction at the smooth IAF.
LALPTN	ALPTN	NTSX*NRSX	New gas volume fraction at the transition boiling.
LAVENT	AVENT	NVENT	Pointer for vent-valve area.
LCTHRZ	CTHRZ	NTSX	Special purpose DOE-model parameter.
LCTHT	CTHT	NTSX	Special purpose DOE-model parameter.
LDPCVN	DPCVN	NVENT	Pointer for vent-valve maximum $\Delta \mathrm{P}$ to be closed.
LDPOVN	DPOVN	NVENT	Pointer for vent-valve minimum $\Delta \mathrm{P}$ to be open.

LDR	DR	NRSX	Radial- or x-direction cell length ($\Delta \mathrm{r}$ or $\Delta \mathrm{x}$).
LDTH	DTH	NTSX	Theta- or y-direction cell length ($\Delta \theta$ or Δy).
LDVLDP	DVLDP	NCSR	Derivative of the liquid velocity with respect to pressure.
LDVVDP	DVVDP	NCSR	Derivative of gas velocity with respect to pressure.
LDZ	DZ	NASX	Axial-direction cell length ($\Delta \mathrm{z}$).
LESM	ESM	3*NSIZESM	Special purpose DOE-model parameter (NSIZESM = NXRV*NTSX *NASX + NRSX ${ }^{*}$ NYTV*NASX + NRSX*NTSX*NZZV).
LEVSM	EVSM	3*NSIZESM	Special purpose DOE-model parameter.
LFRCVN	FRCVN	NVENT	FRIC value when the vent valve is closed.
LFROVN	FROVN	NVENT	FRIC value when the vent valve is open.
LFUNH	FUNH	NCLX*NEWRFD	Fraction of the heat-structure surface in each horizontal-plane cell that is unheated.
LGRAVR	GRAVR	$\begin{aligned} & \text { NYBCM } \\ & + \text { NTSX } \\ & + \text { NYBCP } \end{aligned}$	Radial- or x-direction component of the gravity unit vector on each r - or x -direction interface of a VESSEL cell.
LGRAVT	GRAVT	$\begin{aligned} & \text { NYBCM } \\ & + \text { NTSX } \\ & + \text { NYBCP } \end{aligned}$	Theta- or y-direction component of the gravity unit vector on each θ - or y-direction interface of a VESSEL cell.

LICJ	ICJ	NCSR	Component number adjacent to a source connection.
LISOLB	ISOLB	NCSR	Indicator for velocity update.
LISRC	ISRC	NCSR	Relative cell number associated with the source connection.
LISRF	ISRF	NCSR	Cell face number associated with the source connection.
LISRL	ISRL	NCSR	Level number associated with the source connection.
LIZINL	IZINL	0	Variable not used.
LIZINS	IZINS	0	Variable not used.
LJSN	JSN	NCSR	Junction sequence number associated with the source connection.
LJUNS	JUNS	NCSR	Junction number associated with the source connection.
LLOCVN	LOCVN	NVENT	Vent-valve location.
LMSC	MSC	NCSR	Absolute cell number of source connection.
LNF1SM	NF1SM	3*NSIZESM	Special purpose DOE-model parameter.
LNF2SM	NF2SM	3*NSIZESM	Special purpose DOE-model parameter.
LNF3SM	NF3SM	3*NSIZESM	Special purpose DOE-model parameter.
LNFCLSM	NFCLSM	NSIZESM	Special purpose DOE-model parameter.
LNFCVSM	NFCVSM	NSIZESM	Special purpose DOE-model parameter.

LNFL4SM	NFL4SM	3*NSIZESM	Special purpose DOE-model parameter.
LNFLSM	NFLSM	3*NSIZESM	Special purpose DOE-model parameter.
LNFV4SM	NFV4SM	3*NSIZESM	Special purpose DOE-model parameter.
LNFVSM	NFVSM	3*NSIZESM	Special purpose DOE-model parameter.
LNHSCA	NHSCA	NTSX*NRSX	Heat-structure element number for average-power rod.
LNSRL	NSRL	NASX	Number of source connections on an axial level.
LPSNEW	PSNEW	NCSR	New source pressure.
LPSOLD	PSOLD	NCSR	Old source pressure.
LRAD	RAD	NRSX	Radial cell outer radius.
LRADSM	RADSM	$\begin{aligned} & \text { NRSX*NYTV } \\ & \text { *NASX } \end{aligned}$	Special purpose DOE-model parameter.
LREFLD	REFLD	NTSX*NRSX	Reflood flag.
LRSM	RSM	3*NSIZESM	Special purpose DOE-model parameter.
LRVSM	RVSM	3*NSIZESM	Special purpose DOE-model parameter.
LSAC	SAC	NCSR*2	Noncondensable-gas mass source.
LSCC	SCC	NCSR *ISOLUT	Solute-concentration mass source. ISOLUT $=0$ or 1 .
LSLC	SLC	NCSR*2	Liquid mass source.
LSLE	SLE	NCSR*2	Liquid energy source.
LSMOML	SMOML	NCSR*6	Liquid momentum source.

LSMOMV	SMOMV	NCSR*6	Gas momentum source.
LSTHRZ	STHRZ	NTSX	Special purpose DOE-model parameter.
LSTHT	STHT	NTSX	Special purpose DOE-model parameter.
LSVC	SVC	NCSR*2	Gas mass source.
LSVE	SVE	NCSR*2	Vapor energy source.
LTEMPS	TEMPS	LENLD	Temporary array used to output a level of VESSEL data.
		NTH	NTSX

LZDFSN	ZDFSN	NTSX*NRSX	New location of disposed IAF.
LZRWS	ZRWS	NTSX*NRSX	Old location of rough-wavy IAF.
LZRWSN	ZRWSN	NTSX*NRSX	New location of rough-wavy IAF.
LZSGRD	ZSGRD	NTSX*NRSX	New location of grid spacer.
LZSMS	ZSMS	NTSX*NRSX	Old location of smooth IAF.
LZSMSN	ZSMSN	NTSX*NRSX	New location of smooth IAF.
LZTBN	ZTBN	NTSX*NRSX	New location of transition boiling.
LEVEL DATA GRAPHICS IDENTIFIERS:			
Name	Array	Dimension	Description
LAID1	AID1	0	Variable not used.
LAID1N	AID1N	0	Variable not used.
LAID2	AID2	0	Variable not used.
LAID2N	AID2N	0	Variable not used.
LALD1	ALD1	0	Variable not used.
LALD1N	ALD1N	0	Variable not used.
LALD2	ALD2	0	Variable not used.
LALD2N	ALD2N	0	Variable not used.
LCFZL	CFZL	NCLX*3 *NFRC3	Graphics identifier for directional form-loss coefficient for liquid.
LCFZV	CFZV	NCLX*3 *NFRC3	Graphics identifier for directional form-loss coefficient for gas.
LCNHS	CNHS	0	Variable not used.
LCNHSN	CNHSN	0	Variable not used.

LCPNS	CPNS	0	Variable not used.
LCPHSN	CPHSN	0	Variable not used.
LDLL	DLL	0	Variable not used.
LDRIV	DRIV	0	Variable not used.
LDROP	DROP	0	Variable not used.
LDVD1	DVD1	0	Variable not used.
LDVD2	DVD2	0	Variable not used.
LDVV	DVV	0	Variable not used.
LEMHS	EMHS	0	Variable not used.
LFAG	FAG	0	Variable not used.
LFRCIN	FRCIN	0	Variable not used.
LFRICI	FRICI	0	Variable not used.
LFRICL	FRICL	0	Variable not used.
LFRICV	FRICV	0	Variable not used.
LGCOND	GCOND	0	Variable not used.
LGEVAP	GEVAP	0	Variable not used.
LHD	HD	0	Variable not used.
LHLV	HLV	0	Variable not used.
LHLVN	HLVN	0	Variable not used.
LHSA	HSA	0	Variable not used.
LHSHL	HSHL	0	Variable not used.
LHSHLO	HSHLO	0	Variable not used.
LHSHV	HSHV	0	Variable not used.

LHSHVO	HSHVO	0	Variable not used.
LHST	HST	0	Variable not used.
LHSTN	HSTN	0	Variable not used.
LHSX	HSX	0	Variable not used.
LICMSH	ICMSH	0	Variable not used.
LIDRGS	IDRGS	0	Variable not used.
LIHSN	IHSN	0	Variable not used.
LISRN	ISRN	0	Variable not used.
LMATHS	MATHS	0	Variable not used.
LQVD1	QVD1	0	Variable not used.
LQVD2	QVD2	0	Variable not used.
LROHS	ROHS	0	Variable not used.
LROHSN	ROHSN	0	Variable not used.
LSI	S1	0	Variable not used.
LS2	S2	0	Variable not used.
LST	ST	0	Variable not used.
LTCHFS	TCHF	0	Variable not used.
LVD1	VD1	0	Variable not used.
LVD1N	VD1N	0	Variable not used.
LVD2	VD2	0	Variable not used.
LVD2N	VD2N	0	Variable not used.
LVL	VL	0	Variable not used
LVLC	VLC	0	Variable not used

LHSHVO	HSHVO	0	Variable not used.
LHST	HST	0	Variable not used.
LHSTN	HSTN	0	Variable not used.
LHSX	HSX	0	Variable not used.
LICMSH	ICMSH	0	Variable not used.
LIDRGS	IDRGS	0	Variable not used.
LIHSN	IHSN	0	Variable not used.
LISRN	ISRN	0	Variable not used.
LMATHS	MATHS	0	Variable not used.
LQVD1	QVD1	0	Variable not used.
LQVD2	QVD2	0	Variable not used.
LROHS	ROHS	0	Variable not used.
LROHSN	ROHSN	0	Variable not used.
LSI	S1	0	Variable not used.
LS2	S2	0	Variable not used.
LST	ST	0	Variable not used.
LTCHFS	TCHF	0	Variable not used.
LVD1	VD1	0	Variable not used.
LVD1N	VD1N	0	Variable not used.
LVD2	VD2	0	Variable not used.
LVD2N	VD2N	0	Variable not used.
LVL	VL	0	Variable not used.
LVLC	VLC	0	Variable not used

AM Noncondensable-gas mass.
QSL Wall heat flux.
ARC Density of solute in cell, $\mathrm{c}(1-\alpha) \rho_{\ell}$.
VOL Cell fluid volume.
VOLG Cell geometric volume.
VMFRL Liquid mass flux in the axial direction.
VMFRV Gas mass flux in the axial direction.
CPL Liquid specific heat at constant pressure.
CPV Gas specific heat at constant pressure.
TSN Saturation temperature at total pressure
TSSN Saturation temperature at steam pressure.
$\mathrm{CL} \quad$ Liquid thermal conductivity.
CV Gas thermal conductivity.
VISL Liquid viscosity.
VISV Gas viscosity.
HFG Latent heat of vaporization.
HGAM Energy contribution to phase change from subcooled boiling.
LCCFL Counter-current flow limitation (CCFL) flag.
FAYT Actual flow area of the azimuthal θ or y face.
FAZ Actual flow area of the axial z face.
FAXR Actual flow area of the radial r or x face.
FAGYT Geometric flow area of the azimuthal θ or y face.
FAGZ Geometric flow area of the axial z face.

FAGXR Geometric flow area of the radial r or x face

VMYT Mixture velocity at the azimuthal θ or y face.
VMZ Mixture velocity at the axial z face.
VMXR Mixture velocity at the radial r or x face.
HDYT Hydraulic diameter at the azimuthal θ or y face.
HDZ Hydraulic diameter at the axial z face.
HDXR Hydraulic diameter at the radial r or x face.
WFLYT Wall friction factor for liquid at the azimuthal θ or y face.
WFLZ Wall friction factor for liquid at the axial z face.
WFLXR Wall friction factor for liquid at the radial r or x face.
WFVYT Wall friction factor for gas at the azimuthal θ or y face.
WFVZ Wall friction factor for gas at the axial z face.
WFVXR Wall friction factor for gas at the radial r or x face.
VWFMLY Wall-friction multiplier factor for the liquid at the azimuthal θ or y face.

VWFMLZ Wall-friction multiplier factor for the liquid at the axial z face.

VWFMLX Wall-friction multiplier factor for the liquid at the radial r or x face.

VWFMVY Wall-friction multiplier factor for the gas at the azimuthal θ or y face.

VWFMVZ Wall-friction multiplier factor for the gas at the axial z face.
VWFMVX Wall-friction multiplier factor for the gas at the radial r or x face.

DVVYT	Derivative of the gas velocity with respect to pressure at the azimuthal θ or y face.
DVVZ	Derivative of the gas velocity with respect to pressure at the axial z face.
DVVXR	Derivative of the gas velocity with respect to pressure at the radial r or x face.
DVLYT	Derivative of the liquid velocity with respect to pressure at the azimuthal θ or y face.
DVLZ	Derivative of the liquid velocity with respect to pressure at the axial z face.
DVLXR	Derivative of the liquid velocity with respect to pressure at the radial r or x face.
CFZLYT	Liquid forward-flow-direction additive friction-loss coefficient at the azimuthal θ or y face.
CFZLZ	Liquid forward-flow-direction additive friction-loss coefficient at the axial z face.
CFZLXR	Liquid forward-flow-direction additive friction-loss coefficient at the radial r or x face.
CFRLYT	Liquid reverse-flow-direction additive friction-loss coefficient at the azimuthal θ or y face.
CFRLZ	Liquid reverse-flow-direction additive friction-loss coefficient at the axial z face.
CFRLXR	Liquid reverse-flow-direction additive friction-loss coefficient at the radial r or x face.
CFZVYT	Gas forward-flow-direction additive friction-loss coefficient at the azimuthal θ or y face.
CFZVZ	Gas forward-flow-direction additive friction-loss coefficient at the axial z face.
CFZVXR	Gas forward-flow-direction additive friction-loss coefficient at the radial r or x face.

CFRVYT	Gas reverse-flow-direction additive friction-loss coefficient at the azimuthal θ or y face.
CFRVZ	Gas reverse-flow-direction additive friction-loss coefficient at the axial z face.
CFRVXR	Gas reverse-flow-direction additive friction-loss coefficient at the radial r or x face.
DTSDP	Derivative of TSAT with respect to pressure.
DELDP	Derivative of the liquid internal energy with respect to pressure at constant temperature.
DEGDP	Derivative of the steam internal energy with respect to pressure at constant temperature.
DELDT	Derivative of the liquid internal energy with respect to temperature at constant pressure.
DEGDT	Derivative of the steam internal energy with respect to temperature at constant pressure.
DRLDP	Derivative of the liquid density with respect to pressure at constant temperature.
DRGDP	Derivative of the steam density with respect to pressure at constant temperature.
DRLDT	Derivative of the liquid density with respect to temperature at constant pressure.
DRGDT	Derivative of the steam density with respect to temperature at constant pressure.
HVS	Enthalpy of the steam at TSAT.
HLS	Enthalpy of the liquid at TSAT.
DHVS	Derivative of the enthalpy of the gas at TSAT with respect to pressure.
DHLS	Derivative of the enthalpy of the liquid at TSAT with respect to pressure.

DTSSDP	Derivative of the saturation temperature corresponding to the steam pressure with respect to pressure.
DEADT	Derivative of the noncondensable-gas internal energy with respect to temperature at constant pressure.
DEADP	Derivative of the noncondensable-gas internal energy with respect to pressure at constant temperature.
DRADP	Derivative of the noncondensable-gas density with respect to pressure at constant temperature.
DRADT	Derivative of the noncondensable-gas density with respect to temperature at constant pressure.
DRLAST	Variable not used.
ORYT	Scale factor used to reduce cross-flow at the azimuthal θ or y face to simulate the presence of an orifice (currently set to 1).
ORZ	Scale factor used to reduce cross-flow at the axial z face to simulate the presence of an orifice (currently set to 1).
ORXR	Scale factor used to reduce cross-flow at the radial r or x face to simulate the presence of an orifice (currently set to 1).
WMYT	Fraction of the momentum cell at the azimuthal θ or y face that is associated with flow from the upstream cell.
WMZ	Fraction of the momentum cell at the axial z face that is associated with flow from the upstream cell.
WMXR	Fraction of the momentum cell at the radial r or x face that is associated with flow the upstream cell.
DYT	Cell length in the y direction or azimuthal θ sector angle in radians.
DZZ	Cell length in the axial z direction.
DXR	Cell length in the radial r or x direction.
RDYT	Reciprocal of DYT.
RDZ	Reciprocal of DZZ.

RDXR	Reciprocal of DXR.
RMEAN	Radius to the cell center.
RDYTA	Reciprocal of the momentum cell length in the azimuthal θ or y direction.
RDZA	Reciprocal of the momentum cell length in the axial z direction.
RDXRA	Reciprocal of the momentum cell length in the radial r or x direction.
RDDYT	The maximum of RDYTA and FA/VOL of the momentum cell in the azimuthal θ or y direction.
RDDZ	The maximum of RDZA and FA/VOL of the momentum cell in the axial z direction.
RDDXR	The maximum of RDXRA and FA/VOL of the momentum cell in the radial r or x direction.
ALPO	Gas volume fraction at the start of the previous step ($\alpha^{\mathrm{n}-1}$).
DALVA	Variable not used.
DALP	Weighting factor for the new-time level contribution to outflow in the basic mass and energy equations.
FAVYT	Donor-cell averaged gas volume fraction at the azimuthal θ or y face.
FAVZ	Donor-cell averaged gas volume fraction at the axial z face.
FAVXR	Donor-cell averaged gas volume fraction at the radial r or x face.
FALYT	Donor-cell averaged liquid volume fraction at the azimuthal θ or y face.
FALZ	Donor-cell averaged liquid volume fraction at the axial z face.
FALXR	Donor-cell averaged liquid volume fraction at the radial r or x face.

FRVYT Product of the donor-cell-averaged gas macroscopic density, flow area, and timestep size at the azimuthal θ or y face.

FRVZ Product of the donor-cell-averaged gas macroscopic density, flow area, and timestep size at the axial z face.

FRVXR Product of the donor-cell-averaged gas macroscopic density, flow area, and timestep size at the radial r or x face.

FEVYT Product of the donor-cell-averaged gas internal energy, flow area, and timestep size at the azimuthal θ or y face.

FEVZ

FEVXR Product of the donor-cell averaged gas internal energy, flow area, and timestep size at the radial r or x face.

FRAYT Product of the donor-cell-averaged noncondensable-gas macroscopic density, flow area, and timestep size at the azimuthal θ or y face.

FRAZ Product of the donor-cell-averaged noncondensible-gas macroscopic density, flow area, and timestep size at the axial z face.

FRAXR Product of the donor-cell-averaged noncondensible-gas macroscopic density, flow area, and timestep size at the radial r or x face.

FRLYT Product of the donor-cell-averaged liquid macroscopic density, flow area, and timestep size at the azimuthal θ or y face.

FRLZ Product of the donor-cell-averaged liquid macroscopic density, flow area, and timestep size at the axial z face.

FRLXR Product of the donor-cell-averaged liquid macroscopic density, flow area, and timestep size at the radial r or x face.

FELYT Product of the donor-cell-averaged liquid internal energy, flow area, and timestep size at the azimuthal θ or y face.

FELXR Product of the donor-cell averaged liquid internal energy, flow area, and timestep size at the radial r or x face.
$\mathrm{CnPm} \quad$ Variables used as temporaries in a number of routines. Also the coefficient of the change in pressure across the m-th cell face in the equation for the n-th primary dependent variable in the basic step. The variables in order for $n=1,2,3,4,5$ are total pressure, gas temperature, liquid temperature, gas volume fraction, and partial pressure of noncondensable gas. The faces in order from $\mathrm{m}=1,2,3,4,5,6$ are the lowernumbered radial r or x face, the higher-numbered radial r or x face, the lower-numbered azimuthal θ or y face, the highernumbered azimuthal θ or y face, the lower-numbered axial z face, and the higher-numbered axial z face.

DPRHS Iterate change in pressure during the basic step before inclusion of effects due to the relative change in pressure across the cell faces.

DARHS Iterate change in gas volume fraction during the basic step before inclusion of effects due to the relative change in pressure across the cell faces.

DTVRHS Iterate change in gas temperature during the basic step before inclusion of effects due to the relative change in pressure across the cell faces.

DTLRHS Iterate change in liquid temperature during the basic step before inclusion of effects due to the relative change in pressure across the cell faces.

DPARHS Iterate change in the partial pressure of the noncondensable gas during the basic step before inclusion of effects due to the relative change in pressure across the cell faces.

FBIT
DVVS1 Scale factor applied to the derivative of the gas velocity at the outer radial r or x face with respect to cell pressure for the water-packing model.

DVVS1M Scale factor applied to the derivative of the gas velocity at the inner radial r or x face with respect to cell pressure for the water-packing model.

DVLS1 Scale factor applied to the derivative of the liquid velocity at the outer radial r or x face with respect to cell pressure for the water-packing model.

DVLS1M Scale factor applied to the derivative of the liquid velocity at the inner radial r or x face with respect to cell pressure for the water-packing model.

SC1 Area-ratio scale factor applied to the outer radial r or x face convecting velocities for cross-term contribution to the azimuthal $-\theta$ or y and axial-z motion equations.

SC1M Area-ratio scale factor applied to the inner radial r or x face convecting velocities for cross-term contribution to the azimuthal $-\theta$ or y and axial-z motion equations.

DVVS3 Scale-factor applied to the derivative of the gas velocity at the upper axial z face with respect to cell pressure for the waterpacking model.

DVVS3M Scale factor applied to the derivative of the gas velocity at the lower axial z face with respect to cell pressure for the waterpacking model.

DVLS3 Scale factor applied to the derivative of the liquid velocity at the upper axial z face with respect to cell pressure for the water-packing model.

DVLS3M Scale factor applied to the derivative of the liquid velocity at the lower axial z face with respect to cell pressure for the water-packing model.

SC3 Area-ratio scale factor applied to the upper axial z face convecting velocities for cross-term contribution to the radial-r or x and azimuthal- θ or y motion equations.

SC3M Area-ratio scale factor applied to the lower axial z face convecting velocities for cross-term contribution to the radial-r or x and azimuthal- θ or y motion equations.

DVVS2

DVLS2 Scale factor applied to the derivative of the liquid velocity at the forward azimuthal- θ or y face with respect to cell pressure for the water-packing model.

SC2 Area-ratio scale factor applied to the forward azimuthal- θ or y face convecting velocities for cross-term contribution to the radial-r or x and axial-z motion equations.

SCD1 Area-ratio scale factor associated with the outer face used in the diagonal V del V term in the radial-r or x motion equation.

SCD1M Area-ratio scale factor associated with the inner face used in the diagonal V del V term in the radial-r or x motion equation.

SCD2 Area-ratio scale factor associated with the forward face used in the diagonal V del V term in the azimuthal- θ or y motion equation.

SCD3

SCD3M Area-ratio scale factor associated with the lower face used in the diagonal V del V term in the axial-z motion equation.

BIT Bit flags from the previous timestep.
FRCI1 Variable not used.
FRCI2 Variable not used.

FRCI3 Variable not used.

CIYT Old interfacial drag coefficient at the azimuthal θ or y face.

CIXR
CHTI
Old vapor interfacial HTC times the interfacial area.

CHTIA	Old noncondensable-gas interfacial HTC times the interfacial area.
ALV	Old flashing interfacial HTC times the interfacial area.
ALVE	Old liquid interfacial HTC times the interfacial area.
ARV	Old stabilizer macroscopic gas density, $\alpha \rho_{v}$.
CONCO	Old ratio of the solute mass to the liquid mass.
PA	Old noncondensable-gas partial pressure.
ROA	Old noncondensable-gas density.
EA	Old gas volume fraction.
ALP	Old gas density.
ROV	Old liquid density.
ROL	Old gas temperature.
S	Old temperature.
Old mas internal energy.	

GAM Old vapor generation rate per unit volume.
$P \quad$ Old total pressure.
AREV Old stabilizer gas internal energy, $\alpha \rho_{v} e_{v} .$.

VVTYT Old stabilizer gas velocity at the azimuthal θ or y face.
VVTZ Old stabilizer gas velocity at the axial z face.
VVTXR Old stabilizer gas velocity at the radial r or x face.
ARL
Old stabilizer $(1-\alpha) \rho_{\ell}$.
AREL Old stabilizer $(1-\alpha) \rho_{\ell} e_{\ell}$.

VLTYT Old stabilizer liquid velocity at the azimuthal θ or y face.
VLTZ Old stabilizer liquid velocity at the axial z face.
VLTXR Old stabilizer liquid velocity at the radial r or x face.
ARA Old stabilizer $\alpha \rho_{a}$.

OWVYT Old donor-cell factor at the azimuthal θ or y)face for gas.
OWVZ Old donor-cell factor at the axial z face for gas.
OWVXR Old donor-cell factor at the radial r or x face for gas.

OWLYT Old donor-cell factor at the azimuthal θ or y face for liquid.
OWLZ Old donor-cell factor at the axial z face for liquid.
OWLXR Old donor-cell factor at the radial r or x face for liquid.
BITN Bit flags for the current timestep.
FRCIIN Variable not used.
FRCI2N Variable not used.
FRCI3N Variable not used.

CINYT	New interfacial drag coefficient at the azimuthal θ or y face.
CINZ	New interfacial drag coefficient at the axial z face.
CINXR	New interfacial drag coefficient at the radial r or x face.
CHTIN	New vapor interfacial HTC times the inter-facial area.
CHTAN	New noncondensable-gas interfacial HTC times the interfacial area.
ALVN	New flashing interfacial HTC times the interfacial area.
ALVEN	New liquid interfacial HTC times the interfacial area.
ARVN	New stabilizer $\alpha \rho_{v}$.
CONC	New ratio of solute mass to liquid mass.
PAN	New noncondensable-gas partial pressure.
ROAN	New noncondensable-gas density.
EAN	New noncondensable-gas internal energy.
ALPN	New gas volume fraction.
ROVN	New gas density.
ROLN	New liquid density.
SN	New solute mass plated out on structure surfaces.
VVNYT	New basic gas velocity at the azimuthal θ or y face.
VVNZ	New basic gas velocity at the axial z face.
VVNXR	New basic gas velocity at the radial r or x face.
VLNYT	New basic liquid velocity at the azimuthal θ or y face.
VLNZ	New basic liquid velocity at the axial z face.
VLNXR	New basic liquid velocity at the radial r or x face.

[^1]EVN New gas internal energy.
ELN New liquid internal energy.
TVN New gas temperature.
TLN New liquid temperature.
GAMN New vapor generation rate per unit volume.
PN New total pressure.
AREVN \quad New stabilizer $\alpha \rho_{v} e_{v}$.
VVNTYT New stabilizer gas velocity at the azimuthal θ or y face.
VVNTZ New stabilizer gas velocity at the axial z face.
VVNTXR New stabilizer gas velocity at the radial r or x face.
ARLN \quad New stabilizer $(1-\alpha) \rho_{\ell}$.
ARELN \quad New stabilizer $(1-\alpha) \rho_{\ell} e_{\ell}$.

VLNTYT New stabilizer liquid velocity at the azimuthal θ or y face.
VLNTZ New stabilizer liquid velocity at the axial z face.
VLNTXR New stabilizer liquid velocity at the radial r or x face.
ARAN New stabilizer $\alpha \rho_{a}$.
WVYT New donor-cell factor at the azimuthal θ or y face for gas.
WVZ New donor-cell factor at the axial z face for gas.
WVXR New donor-cell factor at the radial r or x face for gas.

WLYT \quad New donor-cell factor at the azimuthal θ or y face for liquid.
WLZ New donor-cell factor at the axial z face for liquid.
WLXR New donor-cell factor at the radial r or x face for liquid.

SPIFZ Stratified-flow weighting factor for the inter-facial heattransfer correlations.

DVVS2M Scale-factor applied to the derivative of the gas velocity at the backward azimuthal θ or y face with respect to cell pressure for the water-packing model.

DVLS2M Scale-factor applied to the derivative of the liquid velocity at the backward azimuthal θ or y face with respect to cell pressure for the water-packing model.

SC2M Area-ratio scale factor applied to the back-ward azimuthal θ or y face convecting velocities for cross-term contribution to the radial-r or x and axial-z motion equations.

SCD2M Area-ratio scale factor associated with the backward face used in the diagonal V del V term in the azimuthal θ or y motion equation.

These array variables are declared to be REAL* 8 , dimensioned (NI, NJ), and stored in common block vssWhat. They are used to save VESSEL level data in the heat-structure ROD- or SLAB-surface heat-flux calculation.

Array Description

UALPAG Gas volume fraction at the agitated-inverted-annular-flow (agitated-IAF) location for moving VESSEL data to heatstructure data.

UALPRW Gas volume fraction at the rough-wavy-inverted-annularflow (rough-wavy-IAF) location for moving VESSEL data to heat-structure data.

UALPSM Gas volume fraction at the smooth-inverted-annular-flow (smooth-IAF) location for moving VESSEL data to heatstructure data.

UZAGS Location of agitated IAF for moving VESSEL data to heatstructure data.

UZDFS Location of dispersed IAF for moving VESSEL data to heatstructure data.

UZRWS Location of rough-wavy IAF for moving VESSEL data to heat-structure data.

UZSMS	Location of smooth IAF for moving VESSEL data to heat- structure data.
UFUNH	Fraction of the heat-structure ROD or SLAB surface that is heated.
INHSCA	Heat-structure element number for the average-power ROD or SLAB.
VALPAG	Gas volume fraction at the agitated-IAF location for moving heat-structure data to VESSEL data.
VALPCF	Gas volume fraction at the CHF-point location for moving heat-structure data to VESSEL data.
VALPRW	Gas volume fraction at the rough-wavy-IAF location for moving heat-structure data to VESSEL data.
VALPSM	Gas volume fraction at the smooth-IAF location for moving heat-structure data to VESSEL data.
VALPTB	Gas volume fraction at the transition-boiling-point location for moving heat-structure data to VESSEL data.
VZAGS	Location of agitated IAF for moving heat-structure data to
VZESSEL data.	

APPENDIX D

DESCRIPTION OF TRAC-M COMMON-BLOCK VARIABLES

D.1. BANDW.H

COMMON/BANDW/ MUX, MUY, MUZ INTEGER VARIABLES:
MUX The number of diagonal rows above and below the main diagonal lying within the $M U X+1+M U X$ bandwidth of the VESSEL matrix for the x - or θ-directional stabilizer motion equation.
MUY The number of diagonal rows above and below the main diagonal lying within the MUY+1+MUY bandwidth of the VESSEL matrix for the y - or θ-direction stabilizer motion equation.
MUZ The number of diagonal rows above and below the main diagonal lying within the $M U Z+1+M U Z$ bandwidth of the VESSEL matrix for the z-direction stabilizer motion equation, pressure semi-implicit equation, and the stabilizer mass and energy equations.

D.2. BKCNTRL.H

COMMON/BKCTRL/ IPREIT, LBCKV, LREIT, LREITV
COMMON/DONR/ ITDON, JDONP, NCOMDP
LOGICAL LBCKV, LREIT, LREITV
INTEGER VARIABLE:
IPREIT Flag to print messages on forced reiteration.
LOGICAL VARIABLES:
LBCKV If .TRUE., then variable forces a timestep backup.
LREIT If .TRUE., then variable forces a reiteration.
LREITV If .TRUE., then variable forces a reiteration.
INTEGER VARIABLES:
ITDON If flow reversals occur for OTTNO $>$ ITDON, the timestep is backed up.
JDONP Cell number in NCOMDP.
NCOMDP Component number of flow reversal forcing backup.

[^2]

D.3. BKPOST.H

COMMON/BKPOST/ BKPALL, BKPALU, BKPSTA, BKPSTP, BKPSTT
COMMON/BKPOST/ IBKPST, JBKPST, LBKPST, LBKCYL
LOGICAL LBKPST, LBKCYL
REAL*8 VARIABLES:
BKPALL Maximum lower limits on the gas volume fraction such that a backup is forced if the gas volume fraction lies within these limits.
BKPALU Maximum upper limits on the gas volume fraction such that a backup is forced if the gas volume fraction lies within these limits.
BKPSTA Gas-volume-fraction variation that is allowed in the POST stage. If the gas-volume-fraction change exceeds BKPSTA, a backup is forced.
BKPSTP Maximum fractional pressure change that is allowed in the POST stage. If the fractional pressure change exceeds BKSTP, a backup is forced.
BKPSTT Maximum variation in liquid and gas temperatures that is allowed in the POST stage. If the temperature change exceeds BKPSTT, a backup is forced.
INTEGER VARIABLES:
IBKPST Component that forces a backup.
JBKPST Cell number that forces a backup.
LOGICAL VARIABLES:
LBKPST If .TRUE., then a timestep backup is forced from POST.
LBKCYL If .TRUE., then a timestep backup is forced because heat-transfer energy conservation is not satisfied.

D.4. BLANKCOM.H

INTEGER

PARAMETER
REAL*8
COMMON

IFXSIZ
(IFXSIZ=7000000)
A(IFXSIZ)
A

REAL*8 VARIABLE:
A Blank-common container array dimensioned IFXSIZ.

LENTITLE Number of REAL*8 words of computer memory for the problem title.

INTEGER	IFREEAG, IFREEIG, IGSIZE
PARAMETER	(IGSIZE=7500)
REAL*8	AG(IGSIZE)
INTEGER	IG(IGSIZE)
COMMON/IGCOM/	AG,IFREEAG,IG, IFREEIG

IFREEAG First free element of the AG array.
IG Global data container array for INTEGER variables.
IFREEIG First free element of the IG array.

INTEGER
PARAMETER
REAL*8
INTEGER
COMMON/CSSCOM/ ACS, ICS
REAL*8 VARIABLE:
ACS Constrained steady-state data container array for REAL*8 variables.
INTEGER VARIABLE:
ICS Constrained steady-state data container array for INTEGER variables.

INTEGER
PARAMETER
REAL*8
INTEGER
COMMON/CTCOM/

CTLSIZE
(CTLSIZE=15000)
ACT(CTLSIZE)
ICT(CTLSIZE)
ACT, ICT

REAL*8 VARIABLE:
ACT Control-parameter data container array for REAL*8 variables. INTEGER VARIABLE:
ICT Control-parameter data container array for INTEGER variables.

INTEGER
PARAMETER
REAL*8
INTEGER

SCRSIZE
(SCRSIZE=15000)
SCRATCH(SCRSIZE), SCRATCH1(SCRSIZE)
ISCRATCH4(SCRSIZE), ISCRATCH(SCRSIZE)
SCRATCH, SCRATCH1, ISCRATCH4, ISCRATCH REAL*8 VARIABLES:
SCRATCH Temporary scratch data container array for REAL*8 variables.
SCRATCH1 Temporary scratch data container array for REAL*8 variables.
INTEGER VARIABLES:
ISCRATCH4 Temporary scratch data container array for INTEGER variables.
ISCRATCH Temporary scratch data container array for INTEGER variables.

INTEGER
PARAMETER
INTEGER

MAXCOMPS, CURRENTCOMPIND
(MAXCOMPS=500)
COMPINDICES(MAXCOMPS)
COMMON/COMPINDCOM/COMPINDICES, CURRENTCOMPIND
INTEGER VARIABLES:

COMPINDICES Component-data starting indices in the container A array of blank common.
CURRENTCOMPIND Element of the COMPINDICES array for the current component.

INTEGER	GENTABLESIZE, GENDUMPSIZE
PARAMETER	(GENTABLESIZE=21), (GENDUMPSIZE=29)
REAL*8	RGENTABLE(MAXCOMPS, GENTABLESIZE)
INTEGER	IGENTABLE(MAXCOMPS, GENTABLESIZE)
COMMON/GENTABLECOM/RGENTABLE, IGENTABLE	
REAL*8 VARIABLE:	
RGENTABLE Generic component table container array for REAL*8 variables.	
INTEGER VARIABLE:	
IGENTABLE Generic component table container array for INTEGER variables.	

LASTI Last index element of the container A array in blank common that is used.

D.5. BOIL.H

COMMON/BOIL/
COND(NK), CVFAL(NK), DALVJ(NK), DHSDP(NK), DHSDT(NK), EHG(NK), EVAP(NK), FLASH(NK), GAMDP(NK), GAMDPA(NK), GAMMA(NK), SCL(NK)

COND Gas-side heat-transfer coefficient to the gas/liquid interface.
CVFAL Energy transfer between the gas and liquid based on DALVJ scaling.
DALVJ Derivative of ALV (FLASH coefficient) with respect to the gas volume fraction (currently set to zero).
DHSDP Derivative of EHG with respect to the total pressure.
DHSDT Derivative of EHG with respect to the saturation temperature.
EHG Internal energy of saturation-temperature gas.
EVAP Liquid-side heat-transfer coefficient to the gas/liquid interface based on evaporation when the liquid temperature is above the saturation temperature based on vapor pressure.
FLASH Liquid-side heat-transfer coefficient to the gas/liquid interface based on flashing when the liquid temperature is above the saturation temperature based on total pressure.
GAMDP Derivative of Γ with respect to the total pressure.
GAMDPA Derivative of Γ with respect to the noncondensable-gas pressure.
GAMMA Energy transfer between the gas and liquid based on SCL scaling.
SCL Scale factor for the phase-change heat-transfer coefficients.
INTEGER VARIABLE:
ITLEQ Flag to indicate that no evaporation or condensation is expected to occur to the single-phase fluid during the timestep.
$0=$ evaporation or condensation is evaluated;
1 = no evaporation or condensation is evaluated.

D.6. CCFLCM.H

\(\left.\begin{array}{ll}PARAMETER \& (MCCFL=10)

COMMON/CCFL/ \& CCFLM(MCCFL), CCFLC(MCCFL), CBETA(MCCFL),

\& CTRANS(MCCFL), DIAH(MCCFL)\end{array}\right]\)\begin{tabular}{ll}
COMMON/CCFL/ \& NCCFL, NHOLES(MCCFL)

REAL*8 VARIABLES:

CCFLM \& Slope of the CCFL correlation.

CCFLC \& Constant of the CCFL correlation.

CBETA \& | Bankoff interpolation constant for interpolating between Wallis |
| :--- |
| and Kutalatze characteristic length dimensions. |

\end{tabular}

CTRANS Bond number above which the CCFL constant is independent of the Bond number.
DIAH Diameter of one hole in the perforated plate.
INTEGER VARIABLES:
NCCFL Number of CCFL parameter sets.
NHOLES Number of holes in the perforated plate.

D.7. CDBLKS.H

COMMON/CODEBK/ MAX1LV, MAXLEN, MAXLN3, MLNVMT INTEGER VARIABLES:
MAX1LV Maximum amount of computer-memory space needed for 3D components when only one level of data is required.
MAXLEN Maximum amount of computer-memory space needed to process any 1D component.
MAXLN3 Maximum amount of computer-memory space needed to process any 3D component.
MLNVMT Amount of computer-memory space required to solve the VESSEL matrix.

D.8. CFLOW.H

COMMON/CFLOW/ C1RC,C1RCLT, C2RC, C2RCLT, CHM1, CHM2, CHMLT1, CHMLT2
COMMON/CFLOW/ ICFLOW, IHOR, IHORG DIMENSION C1RC(5), C2RC(5), CHM1(5), CHM2(5) REAL*8 VARIABLES:
C1RC Five sets of C 1 time constants to constrain the choked-flow model interface velocities during transient calculations.
C1RCLT Default value of the C1 time constant to constrain the chokedflow model interface velocities during transient calculations.
C2RC Five sets of C2 time constants to constrain the choked-flow model interface velocities during transient calculations.
C2RCLT Default value of the C2 time constant to constrain the chokedflow model interface velocities during transient calculations.
CHM1 Five sets of choked-flow multipliers for subcooled critical flow.
CHM2 Five sets of choked-flow multipliers for two-phase critical flow.
CHMLT1 Default multiplier for subcooled critical flow.

CHMLT2 Default multiplier for two-phase critical flow.
INTEGER VARIABLES:
ICFLOW Choked-flow option (Namelist variable).
$0=$ model turned off;
$1=$ model using default multipliers turned on only for components connected to a BREAK (default value);
$2=$ model using optional multipliers turned on at cell edges defined by component input (note that this option requires additional array data for all 1D hydrodynamic components).
IHOR Wall-drag form option (Namelist variable).
$0=$ uses dispersed drag only;
$1=$ uses stratified drag in 1D if conditions are met (default value);
$2=$ always uses stratified drag;
3 = turns off head gradient force.
IHORG Variable not used.

D.9. CHECKS.H

COMMON/CHECKS/ DTEND, HDUMP, HEDIT, HGRAF, HSEDIT
COMMON/CHECKS/ NALT, NDID
REAL*8 VARIABLES:
DTEND Time interval during which the special timestep data are used.
HDUMP Saved value of the next data-dump-edit time from the regular timestep data when the special timestep data are used.
HEDIT Saved value of the next large-edit time from the regular timestep data when the special timestep data are used.
HGRAF Saved value of the next graphics-edit time from the regular timestep data when the special timestep data are used.
HSEDTT Saved value of the next small-edit time from the regular timestep data when the special timestep data are used.
INTEGER VARIABLES:
NALT Constant used to determine if gas-volume-fraction adjustments are needed when the interfacial drag is calculated at a 1D junction connected to a BREAK.
NDID ID number of the special timestep data that are being used.

D.10. CHFINT.H

COMMON/CHFINT/ ALPCHF
REAL*8 VARIABLE:
ALPCHF Gas volume fraction at the critical heat flux (CHF) location.

D.11. CHGALP.H

COMMON/CHGALP/ DAL, DAU, OAL, OAU, XDAL, XDAU, XOAL, XOAU COMMON/CHGALP/ JDAL, JDAU, JOAL, JOAU, NDAL, NDAU, NOAL, NOAU REAL*8 VARIABLES:
DAL Maximum decrease in the gas volume fraction over the timestep.
DAU Maximum increase in the gas volume fraction over the timestep.
OAL Maximum decrease in the gas volume fraction immediately following an increase.
OAU Maximum increase in the gas volume fraction immediately following a decrease.
XDAL Limit on DAL beyond which the timestep is reduced.
XDAU Limit on DAU beyond which the timestep is reduced.
XOAL Limit on OAL beyond which the timestep is reduced.
XOAU Limit on OAU beyond which the timestep is reduced.
INTEGER VARIABLES:
JDAL Cell where DAL occurred.
JDAU Cell where DAU occurred.
JOAL Cell where OAL occurred.
JOAU Cell where OAU occurred.
NDAL Component where DAL occurred.
NDAU Component where DAU occurred.
NOAL Component where OAL occurred.
NOAU Component where OAU occurred.

D.12. CIFLIM.H

COMMON/CIFLIM/ FIFI, FIFR
REAL*8 VARIABLES:
FIFI Maximum decrease factor for the time-constant constraint on the interfacial-drag coefficient (0.4).

FIFR Maximum increase factor for the time-constant constraint on the interfacial-drag coefficient (2.0).

```
D.13. CNRSLV.H
    COMMON/CNRSLV/ AA(NRFMX1,NRZFMX), BB(NRZFMX), W(NRZFMX)
    COMMON/CNRSLV/ KEY, M, M1, N, NRSLV
    COMMON/CNRSLV/ ERR
    LOGICAL ERR
    REAL*8 VARIABLES:
        AA Coefficient matrix.
        BB Right-hand-side (known) vector.
        W Working-area vector.
    INTEGER VARIABLES:
        KEY Evaluation-flag option.
            1 = solves the linear matrix equation by forward-elimination
        and backward-substitution.
    2 = performs the forward-elimination only.
    3 = performs the backward-substitution only.
M Number of r-or x-direction nodes in the heat-transfer mesh that
    defines the matrix AA bandwidth of M+1+M.
M1 M + 1.
N Order of matrix A that is stored in matrix AA.
NRSLV Axial-direction heat-transfer-calculation numerics option
(Namelist variable).
    0 = evaluate axial direction explicitly (default);
    1 = evaluate axial direction implicitly.
LOGICAL VARIABLE:
ERR Error flag from subroutine BANSOL that indicates a singular
    matrix when .TRUE.
```


D.14. CONCCK.H

COMMON/CONCCK/ JFLAGC
INTEGER VARIABLE:
JFLAGC Flag that indicates an error in specifying the $1 D$ component input-parameter values.

D.15. CONDHT.H

COMMON/CONDHT/ YLV, YLL REAL*8 VARIABLES:

YLV Axial distance above node row JL where the gas-liquid interface is located.
YLL Axial distance above node row JL where the gas-liquid interface is located.

D.16. CONSTANT.H

COMMON/CONST/ PI,GC,ZERO, ONE, EPSALP,EXPLIM REAL*8 VARIABLES:
PI Constant pi (3.1415926535898).
GC Gravitational constant ($9.80665 \mathrm{~m} \cdot \mathrm{~s}^{-2}$).
ZERO Real constant zero.
ONE Real constant one.
EPSALP Gas-volume-fraction cutoff for thermodynamic vapor properties.
EXPLIM Maximum value of the exponent for time-constant constraint of the heat-transfer coefficients.

D.17. CONTRLLR.H

COMMON/CONTRL/ CPUFLG, DAMMC, DAMX, DELT, DELTHT, DIFMIN, DPRMX, DTLMX, DTMAX, DTMIN, DTO, DTRAT, DTRMX, DTSMX, DTVMX, ENCMAX, EPS1, EPS2, EPSO, ERCEMX, EPSS, ETIME, FRGH, HTLOSI, HTLOSO, ODELT, POWERC, PSSMN, PSSMX, RFAT, RVMAX, TEND, TERCMX, TIMEC, TIMET, TMMAX, VARER, VCMN, VCMX, VMAXO, VMAXT, VMAXT3, VMCON, VMNEW, VMOLD, VMXT3O, XTABLE, X0SM, YOSM, ZOSM, OMSASM, WSASM, WDSASM, TOSM(3), XVSM, YVSM, ZVSM, RMATSM(3,3), OMSM(3), WSM(3), WDSM(3), ERRSM, DTSM
COMMON/CONTRL/ DSTEP, IADDED, IBLAUS, ICCMX, ICMP, ICMPMX, ICP, IDIAG, IDIAGS, IECCPX, IEOS, IFF3D, IFPREP, IGEOM3, IM100, IM100X, IMFR, INVAN, IOFFTK, IPAK, IPAK3D, IPAKON, IPKPMP, IRESET, IRSFLG, IRSTFL, ISOLUT,

ISSFLG, ISTDY, ISTTC, ITHD, ITMIN, ITPAKO, ITRANS, JFAT, KCCMX, LCMPTR, LEVSTG, LLVFLG, NCMN, NCMX, NCONTR, NCONTS, NCONTT, NCRG, NDIA1, NENCL, NEWRFD, NFRC1, NFRC3, NITAV, NITMN, NITMX, NLOOPP, NOSETS, NSEND, NSEO, NSMN, NSMX, NSPL, NSPU, NSSO, NSTAB, NSTP, NVGRAV, NVPOW, OITMAX, SITMAX, STDYST, TRANSI, MOTSM, STATSM, SAXSM
INTEGER DSTEP, OITMAX, SITMAX, STDYST, TRANSI, STATSM, SAXSM
REAL*8 VARIABLES:
CPUFLG Option for eliminating the cpu time from being output to files TRCMSG and TRCOUT and the terminal so that a DIFF file comparison between TRAC-P versions will not include the cputime differences between calculations (Namelist variable).
DAMMC Maximum gas-volume-fraction change during the timestep (not used).
DAMX Error caused by the relative change in the gas volume fraction (not used).
DELT Current timestep size for advancement in time of the finite-difference-equation solution.
DELTHT Heat-transfer timestep size.
DIFMIN Minimum diffusion number required for stability of the ROD or SLAB conduction solution.
DPRMX Maximum pressure change during the timestep.
DTLMX Maximum liquid-temperature change during the timestep.
DTMAX Maximum allowable timestep size for the time interval.
DTMIN Minimum allowable timestep size for the time interval.
DTO Previous timestep size.
DTRAT Ratio of the previous timestep size to the reduced timestep size that results in a trip (assigned special timestep data) crossing its setpoint at the end of the timestep.
DTRMX Maximum ROD or SLAB temperature change during the timestep.
DTSMX Maximum metal-temperature change during the timestep.
DTVMX Maximum gas-temperature change during the timestep.

ENCMAX Worst-case convection-power difference from a timestep.

EPS1

EPS2

EPSO
ERCEMX
EPSS
ETIME
FRGH

HTLOSI

HTLOSO

ODELT Previous timestep size.
POWERC Maximum convection-power difference between what goes into the fluid and what comes from the wall in convection heattransfer from HTSTRs.
PSSMN Minimum steam-generator secondary-side pressure.
PSSMX Maximum steam-generator secondary-side pressure.
RFAT Maximum ratio of the interface flow area to the adjacent-meshcell average flow area.
RVMAX Maximum ratio of the adjacent-mesh-cell average flow areas when their interface does not have an additive loss coefficient specified.
TEND End time for the timestep data domain.
TERCMX Time at which the worst-case power difference occurred during a calculation.
TIMEC Clock time in seconds.
TIMET The lower-bound criterion for increasing the Kaganove-method integration timestep for solving the point-reactor kinetics equations.
The upper-bound criterion for decreasing the Kaganove-method integration timestep for solving the point-reactor kinetics equations.
Convergence criterion for the outer iteration.
Worse-case convection-power difference during a calculation. Convergence criterion for the steady-state calculation. Current calculation time. Multiplier applied to the gravity-head term in all motion equations (Namelist variable; 1.0 default value).
Wall inner-surface heat loss by 1D components only (total system heat loss from the fluid to the wall inner surface for 1 D hydraulic components only). system heat loss from the wall outer surface to the exterior surroundings for 1D hydraulic components only).

Current calculation time.

TMMAX Time at which the worse-case convection-power difference occurred during a calculation.
VARER Variable error.
VCMN Final convergence for component NCMN at step NSMN.
VCMX Final convergence for component NCMX at step NSMX.
VMAXO 1D component maximum ratio of the Courant number to the timestep size at the beginning of the previous timestep.
VMAXT 1D component maximum ratio of the Courant number to the timestep size at the beginning of the present timestep.
VMAXT3 3D VESSEL component maximum ratio of the Courant number to the timestep size at the beginning of the present timestep.
VMCON Net water mass (liquid plus vapor) convected into VESSEL component(s) during the time interval $\mathfrak{t}^{n+1}-\mathrm{t}^{\mathrm{n}}$.
VMNEW VESSEL water mass (liquid plus vapor) at $\mathrm{t}^{\mathrm{n+1}}$.
VMOLD VESSEL water mass (liquid plus vapor) at t^{n}.
VMXT3O 3D VESSEL component maximum ratio of the Courant number to the timestep size at the beginning of the previous timestep.
XTABLE Abscissa-coordinate value from the last axial power-shape table evaluation.
X0SM Special purpose DOE-model parameter.
YOSM Special purpose DOE-model parameter.
ZOSM Special purpose DOE-model parameter.
OMSASM Special purpose DOE-model parameter.
WSASM Special purpose DOE-model parameter.
WDSASM Special purpose DOE-model parameter.
TOSM(3) Special purpose DOE-model parameter.
XVSM Special purpose DOE-model parameter.
YVSM Special purpose DOE-model parameter.
ZVSM Special purpose DOE-model parameter.
RMATSM(3,3)Special purpose DOE-model parameter.
OMSM(3) Special purpose DOE-model parameter.
WSM(3) Special purpose DOE-model parameter.
WDSM(3) Special purpose DOE-model parameter.
ERRSM Special purpose DOE-model parameter.
DTSM Special purpose DOE-model parameter.
INTEGER VARIABLES:

DSTEP

IADDED

IBLAUS

ICCMX Component number in the IORDER array having the most

ICMP Component indicator.
ICMPMX Component number in which the worse-case convection-power difference occurred during the timestep.
ICP

IDIAG

IDIAGS
Timestep number of the data dump to be used for the restart calculation.
Number-of-timesteps interval for printing calculation summary to the terminal and TRCMSG file (0 suppresses this printout). Option to apply the Blasius interfacial-drag correlation in the downcomer and lower plenum of the VESSEL components (Namelist variable). severe timestep limit for numerical stability of the calculation.

Temporary pointer to next free location in the dynamic computer-memory space for component data.
Option that defines different levels of debugging information of appropriate parameter values (Namelist variable).
Option to select alternate variables to be written in a large edit to the TRCOUT file for 1D hydraulic components when IDIAG >0 (Namelist variable).

IECCPX

IEOS

IFF3D

IFPREP
Outer-iteration VESSEL-evaluation flag.
$0=$ evaluate the VESSEL-coefficient matrix equation;
1 = back-substitute the VESSEL matrix-equation solution.
Flag that indicates sections of PREPER to be executed (nonzero only for 1D cores).

IGEOM3 VESSEL-geometry flag.
$0=$ flow areas between the downcomer and inside of the VESSEL set to zero (default value);
$1=$ flow areas between the downcomer and inside of the VESSEL maintained at the user input values.
Note: The vent-valve option overrides the IGEOM3 $=1$ option in cells that have vent-valve connections.
IM100 Flag that indicates if the back up occurred during previous timestep (used for mass check on logic).
IM100X Flag that indicates whether the previous timestep that failed was obtained from a restart.
IMFR Calculates the azimuthal- θ or y, axial-z, and radial-r or x mass flows for both liquid and gas, and outputs them to the TRCGRF graphics file (Namelist variable).
1 = outputs no phasic mass flows (default);
3 = outputs 3D VESSEL mass flow.
INVAN Option to select either $\mathrm{T}_{\mathrm{CHF}}$ or $\mathrm{T}_{\text {sat }}$ for control of the inverted annular-flow regime.
IOFFTK Option to select the TEE offtake model.
0 = offtake model off;
1 = offtake model on.
IPAK 1D hydraulic-component water-packing option.
0 = off;
1 = on.
IPAK3D 3D VESSEL water-packing option.
0 = off;
$1=$ on.
IPAKON Flag that indicates if water-packing logic is on during the timestep.
IPKPMP Flag that indicates if water-packing corrections are made at a pump momentum-source interface.
$0=$ no (default);
$1=$ yes.
IRESET Option to reinitialize the energy error to zero at the start of a restart calculation.
$0=$ no (allow the energy error to accumulate from the previous calculation.
1 = yes.
IRSFLG . Composite number of the number of signal variables, control blocks, and trips that need to be read from the TRCRST restart file.
IRSTFL Variable not used.
ISOLUT Solute-tracking option for the entire system model.
$0=$ off;
$1=o n$.
ISSFLG Flag that controls steady-state convergence editing.
ISTDY Flag that indicates the type of calculation.
$0=$ transient;
1 = steady state.
ISTTC Static-check flag.
$0=$ normal mode;
$1=$ a static-balance check was requested when STDYST $=5$ was input.
Option for inputting heat-transfer diameters for HTSTRs.
$0=$ no (heat-transfer diameters defined by hydraulic diameters);
1 = yes.
ITMIN Minimum stable-film-boiling option.
ITPAKO Iteration number at which water packing was detected.
ITRANS Value of TRANSI from the data-dump calculation read from file TRCRST or the value 0 for an initial calculation where all input data is read from file TRACIN.
JFAT Flow-area-ratio test-results flag.
0 = flow-area ratios are appropriate;
$1=$ one or more ratios of the interface flow area to the adjacent mesh-cell volume-average flow area are invalid.
$2=$ one or more ratios of the adjacent mesh-cell volumeaverage flow areas are invalid.
3 = one or more of both types of flow-area ratios are invalid.
KCCMX Component number of cell that limits stability.
LCMPTR Pointer to end of component data for last component read.

LEVSTG Gas-volume-fraction averaging flag.
$0=$ no gas-volume-fraction averaging is performed in HTCOR for steam-generator secondaries (default value);
$1=$ special gas-volume-fraction averaging is performed in HTCOR for steam-generator secondaries.
LLVFLG Switch that determines averaging procedure used in subroutine HTIF.
NCMN Element number the in IORDER array for the component that was last to converge at timestep NSMN.
NCMX Element number in the IORDER array for the component that was last to converge at timestep NSMX.
NCONTR Number of constrained steady-state controllers.
NCONTS Number of constrained steady-state controllers that adjust pumps or valves so that their coolant mass flow equals a monitored coolant mass flow elsewhere in the system.
NCONTT Number of constrained steady-state controllers that adjust the flow resistance across the VESSEL (NCONTT $=0$).
NCRG Variable (not documented elsewhere and defaulted to zero) that could be used to force the input of ICRRG (see the VESSEL variable-length table, Appendix C). Logic is incomplete.
NDIA1 Heat-transfer diameter input option for 1D components (Namelist variable).
1 = no heat-transfer diameter input for 1D components (default value);
$2=$ heat-transfer diameter input for 1D components.
NENCL Total number of radiation enclosures in the radiation heattransfer model (Namelist variable).
NEWRFD Option that activates the reflood-model calculation for HTSTR components coupled to VESSEL components when internal test criteria are satisfied (Namelist variable).
0 = off;
$1=$ on.
NFRC1 Additive-loss-coefficient defining form option for 1D components (Namelist variable).
$1=$ FRIC additive loss coefficients are input for both flow directions (default);

2 = FRIC and RFRIC forward- and reverse-flow additive loss coefficients are input.
NFRC3 Additive-loss-coefficient defining form option for VESSEL components (Namelist variable).
NITAV Average number of outer iterations since the last small edit.

NITMN
NITMX
NLOOPP

NOSETS

NSEND
NSEO
NSMN
NSMX
NSPL
NSPU
NSSO
NSTAB
NSTP
NVGRAV

NVPOW

OITMAX
SITMAX

STDYST Steady-state calculation indicator.
TRANSI Transient calculation indicator.
MOTSM Special purpose DOE-model parameter.

STATSM Special purpose DOE-model parameter.
SAXSM Special purpose DOE-model parameter.

D.18. COUPLE.H

COMMON/COUPLE/ RS, CCF, CCF1
COMMON/COUPLE/ ICUPLE, IEVEN, NT1, NT2
REAL*8 VARIABLES:RS Factor applied to radical velocity across the $\mathrm{r}=0$ cylindrical-geometry axis.
CCF Cylindrical-geometry factor (CCF $=0.0$ when NTSX is an even number and CCF $=1.0$ when NTSX is an odd number).
CCF1 Cylindrical-geometry factor (CCF1 $=1.0$ when NTSX is an even number and CCF1 $=0.0$ when NTSX is an odd number).
INTEGER VARIABLES:
ICUPLE Flag to indicate radial-direction convective coupling across the r $=0$ cylindrical-geometry axis (not used).
IEVEN Flag to indicate that the number of azimuthal sectors is an odd (0) or even (1) number.
NT1 Number of azimuthal sectors divided by 2 (NTSX/2).
NT2 NT1 + 1 .

D.19. DAMPER.H

COMMON/DAMPER/ FIHT, IFRCR REAL*8 VARIABLE:
FIHT Wall-drag-coefficient adjustment factor (variable not used).
INTEGER VARIABLE:
IFRCR Wall-drag evaluation option.
0 = no;
$1=$ yes.

D.20. DECAYC.H

COMMON/DECAYC/ FISPHI, FP235, FP238, FP239, QAVG, Q235, Q238, Q239, RANS, R239PF, TOPATE
COMMON/DECAYC/ IANS79
REAL*8 VARIABLES:
FISPHI Fissions per initial fissile atom.

FP235 Fraction of reactor-core power from U^{235} fissions.
FP238 Fraction of reactor-core power from U^{238} fissions.
FP239 Fraction of reactor-core power from Pu^{239} fissions.
QAVG Average energy per fission.
Q235 Energy per fission from U^{235}.
Q238 Energy per fission from U^{238}.
Q239 Energy per fission from Pu^{239}.
RANS Multiplier applied to the ANS79 decay heat.
R239PF Atoms of U^{239} produced per fission.
TOPATE Four years in seconds units.
INTEGER VARIABLE:
IANS79 ANS79 decay-heat standard evaluation flag.
$0=$ not evaluated;
1 = evaluate the 69-group ANS79 decay-heat standard;
$2=$ evaluate the ANS79 decay-heat standard and the heavymetal decay for U^{239} and Np^{239}.

D.21. DEFVAL.H

COMMON/DEFVAL/ ALPQ, HSTNQ, PQ, PAQ, QPPPQ, TLQ, TVQ, TWQ, VLQ, VVQ, CFZ3Q, HD3Q
COMMON/DEFVAL/ ISTOPT
REAL*8 VARIABLES:
ALPQ Default value for initial gas volume fractions input through NAMELIST and used to specify gas volume fractions when ISTOPT $=1$ or 2.
HSTNQ Default value for initial HTSTR temperatures input through NAMELIST and used to specify the HTSTR temperatures when ISTOPT = 1 or 2 .
$\mathrm{PQ} \quad$ Default value for initial pressures input through NAMELIST and used to specify pressures when ISTOPT $=1$ or 2 .
PAQ Default value for initial noncondensable-gas partial pressures input through NAMELIST and used to specify noncondensablegas partial pressures when STOPT $=1$ or 2 .
QPPPQ Default value for initial volumetric heat sources in flow channel walls input through NAMELIST and used to specify volumetric heat sources when ISTOPT $=1$ or 2 .

TLQ Default value for initial liquid temperatures input through NAMELIST and used to specify liquid temperatures when ISTOPT = 1 or 2 .
TVQ Default value for initial gas temperatures input through NAMELIST and used to specify gas temperatures when ISTOPT $=1$ or 2 .
TWQ Default value for initial wall temperatures input through NAMELIST and used to specify wall temperatures when ISTOPT $=1$ or 2 .
VLQ Default value for initial liquid velocities input through NAMELIST and used to specify liquid velocities when ISTOPT $=$ 1 or 2.
VVQ Default value for initial gas velocities input through NAMELIST and used to specify gas velocities when ISTOPT $=1$ or 2 .
CFZ3Q Default value for 3D VESSEL component additive loss coefficients input through NAMELIST and used to specify VESSEL additive loss coefficients when ISTOPT $=1$ or 2.
HD3Q Default value for 3D VESSEL component hydraulic diameters input through NAMELIST and used to specify VESSEL hydraulic diameters when ISTOPT $=1$ or 2 .
INTEGER VARIABLE:
ISTOPT Option for defining thermal-hydraulic parameter default values through Namelist input (Namelist variable).

D.22. DETC.H

COMMON/DETC/
 NDETC

INTEGER VARIABLE:

NDETC Flag for generating debug printout from the outer-iteration cellwise matrix definition.

D.23. DFIDC.H

COMMON/DF1DC/

ARDMIN, ARN, ARY, A11111, ALPST, C1A, C1AV, C2A, C2AV, CT, CTP, DVJP, FL1, FL2, FV1, FV2, HAVLV, QTP, R1L, R1V, R2L, R2V, SO1, SO2, SALT, SAVT, SSAC, SSE, SSMC, SSMOM, SSVC, SSVE, VJS, ZZZZZZ IIO2, IIO3, IL, IPHSEP, ISLB, ISRB, IVPVLV, JSTART, MSC, NC2, NSTG, NTEE, NJN, ISFLG, ICLFLG, LPINDX

REAL*8 VARIABLES:

ARDMIN Minimum value of the difference between the flow-area ratios one mesh-cell distance from a junction interface with a PLENUM component and at the junction interface with a PLENUM component for flow from the PLENUM component.
ARN No factor for applying flow-area ratios in the momentumconvection term.
$0.0=$ apply area ratios;
$1.0=$ do not apply area ratios.
ARY Yes factor for applying flow-area ratios in the momentumconvection term.
1.0 = apply area ratios;
$0.0=$ do not apply area ratios.
A11111 Dummy variable that provides a known start to the COMMON block.
ALPST The JCELL fluid gas volume fraction to be convected into the TEE side tube by the TEE offtake model.
C1A Fraction of the liquid velocity at the left face of the TEE JCELL that contributes to momentum transfer into the TEE side tube.
C1AV Fraction of the gas velocity at the left face of the TEE JCELL that contributes to momentum transfer into the TEE side tube.
C2A Fraction of the liquid velocity at the right face of the TEE JCELL that contributes to momentum transfer into the TEE side tube.
C2AV Fraction of the gas velocity at the right face of the TEE JCELL that contributes to momentum transfer into the TEE side tube.
CT Momentum source coefficient.
CTP
AMAX1(0.0, COST).
DVJP Pressure derivative of source velocity.
FL1 Temporary storage for liquid mass-flow corrections for massconservation checks at low-numbered cell face.
FL2 Temporary storage for liquid mass-flow corrections for massconservation checks at high-numbered cell face.

FV1 Temporary storage for gas mass-flow corrections for massconservation checks at low-numbered cell face.
FV2 Temporary storage for gas mass-flow corrections for massconservation checks at high-numbered cell face.
HAVLV Temporary storage for the hydraulic diameter when the valve is open.
QTP Total direct power input.
R1L Coefficient of the SEPD or TEE side-tube coupled momentum-convection term at the left interface of JCELL for liquid.
R1V Coefficient of the SEPD or TEE side-tube coupled momentum-convection term at the left interface of JCELL for gas.
R2L Coefficient of the SEPD or TEE side-tube coupled momentum-convection term at the right interface of JCELL for liquid.
R2V Coefficient of the SEPD or TEE side-tube coupled momentum-convection term at the right interface of JCELL for gas.
S01 Sign of IOU(1,current component).
S02
Sign of IOU(2,current component).
SALT Source term to liquid for compressible work.
SAVT Source term to gas for compressible work.
SSAC Noncondensable-gas source.
SSE Energy source.
SSMC Mass source.
SSMOM Momentum source to left-hand-cell boundary.
SSVC Gas mass source.
SSVE Gas energy source.
VJS
ZZZZZZ Dummy variable that provides a known end to the COMMON block.
INTEGER VARIABLES:

I01
102
103
IACC2
IBKS

ABS(IOU(1,current component)).
ABS(IOU(2, current component)).
IOU(3,current component) [always positive].
Flag for PIPE to model an accumulator.
Indicator for network solution.

ICME Component index for referencing IOU array.
ICORL Reactor-core region lower boundary.
ICORU Reactor-core region upper boundary.
П01
П02
[03
I01 plus a displacement for the current loop.

IL I02 plus a loop displacement.
I03 plus a loop displacement.
Loop number index.

IPHSEP
ISLB
ISRB
IVPVLV
JSTART Cell number at the left end of the 1D segment.
MSC
NC2 Cell number that begins a SEPD or TEE side tube.
NSTG Variable not used.
NTEE . Counter for a SPED or TEE.
NJN Number of network matrix junctions.
ISFLG Variable not used.
ICLFLG Variable not used.
LPINDX Loop index that indicates the loop in the system.

D.24. DIDDLE.H

COMMON/DIDDLE/	ALPCC, AFCT, ALPSHL, ALPSHU, ENCUT, ENFAC1,
	ENFAC2, ALW1, ALW2, FAREA1, FAREAH, FAREAV,
	FSE5, VRTCUT, ALPBCT, VECVCT, VECLCT, VINTF,
	ALPLVU, ALPLVL, CBMIN, CALV2, VRBCUT, VDRPF,
	VDRPMX, VLVCMX, ENMIN, SCINAN, TGRAV

COMMON/DIDDLE/ NIFSLB
REAL*8 VARIABLES:
ALPCC Gas volume fraction that gives the minimum value for the bubble condensation rate.
AFCT Area scaling for waves on inverted annular interface.
ALPSHL Gas volume fraction below which the interface sharpener is off.
ALPSHU Gas volume fraction above which the interface sharpener is on.
ENCUT Minimum droplet-entrainment fraction.
ENFAC1 Scaling factor for minimum-entrainment velocity.
$\left.\begin{array}{ll}\text { ENFAC2 } & \text { Scaling factor for entrainment-correlation exponent. } \\ \text { ALW1 } & \\ & \text { Gas volume fraction lower limit for transition from bubbly-slug } \\ \text { (at ALW1=0.5) to annular-mist (at ALW2 }=0.75 \text {) flow regimes. }\end{array}\right\}$

TGRAV Absolute value of GRAV (0.75) above which horizontal stratified flow cannot exist.
INTEGER VARIABLE:
NIFSLB If nonzero, then slabs should be used to test for inverted annular flow.

D.25. DIDDLH.H

COMMON/DIDDLH/	ALP2, ALP3, ALPBR, ALPCUT, ALPCTR, ALOW, AUP,
	AFLML, AFLMU, ALPAG, ALPDF, FLILER, FLILES, FBER,
	FBEX, FDFHL, HGF, HGVMN, FACTHL3, FDALVA,
	FREQ1, FREQ2, FUDGE1, FUDGE2
COMMON/DIDDLH/	LIMFLG, IHTAV, IHTCN, NSHTCN
REAL*8 VARIABLES:	

ALP2 Gas volume fraction (1.0) above which the gas is in forced
ALP3 Gas volume fraction (0.9999) above which there is no liquid heat transfer.
ALPBR Gas volume fraction (0.99) above which liquid convection is

ALPCUT Gas volume fraction (0.98) above which nucleate boiling is not permitted (if other criteria are met).
ALPCTR Gas volume fraction (0.995).
ALOW Lowest value of the gas volume fraction in adjacent cells.
AUP
AFLML Gas volume fraction below which Bromley film boiling contributes fully to the liquid.
AFLMU Gas volume fraction above which no Bromley coefficient is added to the liquid.

ALPAG	Gas volume fraction at the agitated-to-post-agitated inverted- annular flow transition boundary.
ALPDF	Gas volume fraction describing the beginning of the highly dispersed inverted-annular flow.
FLILER	Constant used to adjust the wall-to-liquid HTC obtained by modified Bromley correlation in reflood.
FLILES	Same as FLILER for non-reflood cases.
FBER	Variable not used.

FBEX	Power of ($1-\alpha$) weighting of the Bromley correlation.
FDFHL	A scaling factor for the wall-to-droplet heat-transfer correlation.
HGF	Function of nucleate-boiling heat transfer, which contributed to subcooled boiling.
HGVMN	Cutoff velocity for condensation used to suppress subcooled nucleate boiling.
FACTHL3	Power that (ALOFF2-ALP)/(ALOFF2-ALPX2) is raised to.
FDALVA	Multiplier of DALVA(J), which is the rate of change of ALW with respect to gas volume fraction and is currently set to zero.
FREQ1	Time-constant constraint frequency for the maximum increase in interfacial heat-transfer and drag coefficients.
FREQ2	Time-constant constraint frequency for the maximum decrease in interfacial heat-transfer and drag coefficients.
FUDGE1	Time-constant constraint factor of maximum increase when the timestep size is $1.0 /$ FREQ1.
FUDGE2	Time-constant constraint factor of maximum decrease when the timestep size is $1.0 /$ FREQ2.
INTEGER VARIABLES:	
LIMFLG	Flag for evaluating time-constant constraint of the evaporation and condensation rate coefficients. $\begin{aligned} & 0=\text { no } ; \\ & 1=\text { yes } . \end{aligned}$
IHTAV	Variable is normally 1 . When IHTAV is 0 , there is no time averaging of HTCs.
IHTCN	Variable is normally 0 . When IHTCN is 1, HTCs are forced to remain constant.
NSHTCN	Variable is normally 10000000 . I f NSTEP $>$ NSHTCN, then IHTCH is set to 1 (for debugging only).

D.26. DIDDLI.H

COMMON/DIDDLI/ SMIVX
COMMON/DIDDLI/ NSCOOL, IIABK
REAL*8 VARIABLE:
SMIVX Constant value 1.5 (variable not used).
INTEGER VARIABLES:

NSCOOL Flag (when having its default value of 1) that constrains the subcooled boiling heat flux to not exceed the wall heat flux to the liquid.
IIABK Constant value 1 (variable not used).

D.27. DIMNSION.H

COMMON/DIMEN/
IFREE, JNVSSL, KVEL1T, KVEL2T, KVEL3T, LAST, LDIM, LENBD, LENDIM, LENTBL, LFREE, LLAST, LM1DP, LNLDPV, LSTART, LVER, MDIM, MEMFLG, MOFF, NCOMP, NCOMPT, NHTSTR, NJNMX, NJNT, NJUN, NLOOPS, NMVSSL, NPX, NSTGJ, NTHM, NUMTCR, NVCON, NVELX, NVELY, NVELZ, NWRDA

INTEGER VARIABLES:

IFREE
JNVSSL Maximum number of VESSEL junctions in a loop.
KVELIT Order of the r - or x -direction stabilizer motion-equation VESSEL matrix.
KVEL2T Order of the θ - or y-direction stabilizer motion-equation VESSEL matrix.
KVEL3T Order of the z-direction stabilizer motion-equation VESSEL matrix.
LAST Last location in the dynamic computer-memory space.
LDIM Maximum size order of the capacitance matrix.
LENBD Length of boundary-data array for each junction.
LENDIM Variable that dimensions the component variable-length tables.
LENTBL Length of the fixed-length table.
LFREE \quad First free location in the computer-memory space.
LLAST Last location in the computer-memory space.
LM1DP Pointer variable for array that stores M1D input-data values for HTSTR components.
LNLDPV Pointer variable for the network matrix equation right-hand side vector.
LSTART First free location in the computer-memory space.
LVER Location of version information data.
MDIM Maximum order of the banded VESSEL matrix.
MEMFLG Flag for monitoring dynamic computer-memory expansion.

MOFF Array row number of the main diagonal elements from the banded VESSEL matrix.
NCOMP Number of components.
NCOMPT Total number of components.
NHTSTR Total number of HTSTR components (Namelist variable).
NJNMX Maximum number of network junctions.
NJNT Total number of network junctions for all loops.
NJUN Number of junctions.
NLOOPS Number of 1D loops in the system model.
NMVSSL Number of VESSELs.
NPX Number of pointers in the PTRS COMMON block.
NSTGJ Variable not used.
NTHM Number of elements per cell in the DRIV array.
NUMTCR Number of title cards.
NVCON Total number of VESSEL connections.
NVELX Order of the r - or x -direction stabilizer motion equation VESSEL matrix.
NVELY Order of the θ - or y-direction stabilizer motion equation VESSEL matrix.
NVELZ Order of the z-direction stabilizer motion equation VESSEL matrix.
NWRDA Size of the A array under *IF DEF,ASIZE.

DELDMX	Timestep limit caused by numerical considerations in the ROD and SLAB heat-transfer calculation.
DELEMX	Timestep limit caused by VESSEL mass errors.
DELPMX	Timestep limit that results in a maximum 10% change in reactor-core power.
DELRMX	Timestep limit caused by final value of the percentage variation in pressure from iteration to iteration.
DELVMX	Material Courant stability limit (computed only in VESSELs).
DELXMX	Timestep limit that results in the maximum allowed adjustment of VALVE components.
DPRMC	Maximum fractional change (0.5) in the pressure to control the timestep size.
DTBKUP	Timestep limit defined by DELPMX or DELXMX when a back up calculation is required after the prep-stage calculation.
DTLMC	Maximum change ($20.0 \mathrm{~K}, 36.0^{\circ} \mathrm{F}$) in the liquid temperature to control the timestep size.
DTRMC	Maximum change ($20.0 \mathrm{~K}, 36.0^{\circ} \mathrm{F}$) in the HTSTR-component wall inner- and outer-surface temperatures to control the timestep size.
DTSMC	Maximum change ($20.0 \mathrm{~K}, 36.0{ }^{\circ} \mathrm{F}$) in the 1 D hydrauliccomponent wall outer-surface temperature to control the timestep size.
DTVMC	Maximum change ($25.0 \mathrm{~K}, 45.0^{\circ} \mathrm{F}$) in the gas temperature to control the timestep size.
FPMAX	Maximum fractional change (0.1) in reactor-core power per timestep.
FXMAX	VALVE-adjustment algorithm parameter (0.4).
GXMAX	Minimum fractional change (0.05) in the VALVE maximum flow-area fraction change over a timestep.
SVMAXT	Reciprocal of the material Courant timestep size in all 1D hydraulic components.
SVMXT3	Reciprocal of the material Courant timestep size in all 3D VESSEL components.
VMERMX	VESSEL-component maximum fractional (10000.0) mass error to control the timestep size.

VRMX Maximum fraction change (0.1) in the pressure to control the timestep size.
INTEGER VARIABLES:
MAXIT Switch to continue the TRAC-P calculation without reducing the timestep size when outer-iteration convergence is not satisfied after OITMAX or SITMAX outer iterations.
MAXITB Previous converged outer-iteration number below which the previous timestep size is increased by the multiplier DDI.
MAXITC Previous converged outer-iteration number OITNO above which the previous timestep size is decreased by the multiplier MAXITC/OITNO.
MINDT Switch to continue the TRAC-P calculation without reducing the timestep size below DTMIN, which would stop the calculation.
NLIM Array that stores the number of timesteps that were constrained by each of the timestep limits since the last small or large edit.
NLIM2 Array that stores the number of timesteps that were constrained by each of the six different timestep limits defining DELCMX since the last small or large edit (the sum of all six NLIM2(I) equals NLIM(5), which is the number of times DELCMX controls the timestep size).
NOBKUP Switch to continue the TRAC-P calculation without doing any timestep-reduction backup evaluations.

D.29. DMPCK.H

COMMON/DMPCK/ LVCK

INTEGER VARIABLE:
LVCK Summed number of values over the VESSEL component that were written to the TRCDMP dump file (summed by subroutine DLEVEL but not used).

D.30. DMPCTRL.H

COMMON/CTRLDP/	DMPINT, LTDUMP, TDUMP
COMMON/CTRLDP/	DMPFLG, ICTRLD, NSDO
REAL*8	DMPINT, LTDUMP, TDUMP
INTEGER	DMPFLG, ICTRLD(8), NSDO

REAL*8 VARIABLES:

DMPINT Dump interval for time domain.
LTDUMP Cpu time when last data dump was taken.
TDUMP Calculation time when next data dump will be taken.
INTEGER VARIABLES:
DMPFLG Flag that signals whether the dump output file has been initialized.
$0=$ uninitialized;
1 = initialized.
ICTRLD Array that contains buffering information about the dump output file.
NSDO Timestep number of the last completed data dump.

D.31. DTINFO.H

COMMON/DTINFO/	DDI, DELTIT, DELTNC, DELV3X, DPRSV, DTDDI, DTFL,
	DTLSV, DTRSV, DTSSV, DTVSV, PRMXSV, SVDELC,
	TLMXSV, TRMXSV, TSMXSV, TVMXSV
COMMON/DTINFO//	ICSAVE, ICSRC, IDCDAL, IDCDAU, IDCOAL, IDCOAU,
	ITRPDT, IZDAL, IZDAU, IZOAL, IZOAU, JCSAVE,
	KCCMXT, KCSAVE, NCFACE

REAL*8 VARIABLES:
DDI Timestep-size maximum-increase factor.
DELTIT Timestep size from the iteration-count logic that results in scaling back the timestep size.
DELTNC Timestep size from the iteration-count logic that results in no change to the timestep size.
DELV3X Timestep size from the 3D material Courant limit in the VESSEL components.
DPRSV Pressure change DELCMX limiter.
DTDDI Timestep size from the iteration-count logic that results in an increase in the timestep size by the factor DDI.
DTFL Value of 0.5^{*} DELT used in the DELCMX timestep-size control logic.
DTLSV Liquid-temperature change DELCMX limiter.
DTRSV HTSTR-temperature change DELCMX limiter.
DTSSV 1D component wall-temperature change DELCMX limiter.

DTVSV Gas-temperature change DELCMX limiter.
PRMXSV Maximum pressure change used in the DELCMX logic.
SVDELC Current value of DELCMX (before 0.5*DELT minimum applied).
TLMXSV Maximum liquid-temperature change used in the DELCMX logic.
TRMXSV Maximum HTSTR wall-temperature change used in the DELCMX logic.
TSMXSV Maximum 1D component wall-temperature change used in the DELCMX logic.
TVMXSV Maximum gas-temperature change used in the DELCMX logic.
INTEGER VARIABLES:
ICSAVE Radial-r or x direction cell index for the 3D material Courant limit timestep-size diagnostic edit.
ICSRC Flag to indicate that the 3D material Courant limit is at a 1D source connection to the VESSEL which is used for the timestepsize diagnostic edit.
IDCDAL Cell number in the 3D level for gas-volume-fraction change timestep-size control variable DAL.
IDCDAU Cell number in the 3D level for gas-volume-fraction change timestep-size control variable DAU.
IDCOAL Cell number in the 3D level for gas-volume-fraction change timestep-size control variable OAL.
IDCOAU Cell number in the 3D level for gas-volume-fraction change timestep-size control variable OAU.
ITRPDT Flag to indicate that trip-controlled timestep-size logic was used in subroutine TRPSET.
IZDAL 3D level number for gas-volume-fraction change timestep-size control variable DAL.
IZDAU 3D level number for gas-volume-fraction change timestep-size control variable DAU.
IZOAL 3 D level number for gas-volume-fraction change timestep-size control variable OAL.

IZOAU 3D level number for gas-volume-fraction change timestep-size control variable OAU.
JCSAVE Azimuthal- θ or y direction cell index for the 3D material Courant limit timestep-size diagnostic edit.

KCCMXT Cell-face-index absolute value for 1D material Courant limit logic.
KCSAVE Axial-z direction cell index for the 3D material Courant limit timestep-size diagnostic edit.
NCFACE 3D cell-face number for the material Courant limit with a positive or negative value for a 1D source connection and a positive value for a 3D cell interface which is used for the timestep-size diagnostic edit.

D.32. DTPC.H

 COMMON/DTPC/ DCNFACH, DCNFACL, DCSF1D, DCSF3DH, DDDI, DDPRMC, DDTLMC, DDTRMC, DDTSMC, DDTVMC, DFPMAX, DFXMAX, DGXMAX, DVMERMX, DVRMX, DXDAL, DXDAU, DXOAL, DXOAUCOMMON/DTPC/ IDTPC, NMAXIT, NMAXITB, NMAXITC, NMINDT, NNOBKUP

REAL*8 VARIABLES:

DCNFACH Constant 0.8 used to initialize CNFACH in subroutine INPUT. DCNFACL Constant 0.75 used to initialize CNFACL in subroutine INPUT.

DCSF1D
DCSF3DH
DDDI
DDPRMC Constant 0.5 used to initialize DPRMC in subroutine INPUT.
DDTLMC Constant 20.0 used to initialize DTLMC in subroutine INPUT.
DDTRMC Constant 20.0 used to initialize DTRMC in subroutine INPUT. DDTSMC Constant 20.0 used to initialize DTSMC in subroutine INPUT. DDTVMC Constant 25.0 used to initialize DTVMC in subroutine INPUT. DFPMAX Constant 0.1 used to initialize FPMAX in subroutine INPUT. DFXMAX Constant 0.4 used to initialize FXMAX in subroutine INPUT. DGXMAX Constant 0.05 used to initialize GXMAX in subroutine INPUT. DVMERMX Constant 10000.0 used to initialize VMERMX in subroutine INPUT.
DVRMX Constant 0.1 used to initialize VRMX in subroutine INPUT. DXDAL Constant 0.2 used to initialize XDAL in subroutine INPUT. DXDAU Constant 0.05 used to initialize XDAU in subroutine INPUT. DXOAL Constant 1.0 used to initialize XOAL in subroutine INPUT.

DXOAU Constant 1.0 used to initialize XOAU in subroutine INPUT. INTEGER VARIABLES:
IDTPC Option for inputting timestep-control parameter constants and switch variables to prevent timestep reductions (Namelist variable).
NMAXIT Constant 0 used to initialize MAXIT in subroutine INPUT.
NMAXITB Constant 4 used to initialize MAXITB in subroutine INPUT.
NMAXITC Constant 5 used to initialize MAXITC in subroutine INPUT.
NMINDT Constant 0 used to initialize MINDT in subroutine INPUT.
NNOBKUP Constant 0 used to initialize NOBKUP in subroutine INPUT.

D.33. EDIFF.H

COMMON/EDIFF/ NTLTST, JTLTST, LTLTST, NTVTST, JTVTST, LTVTST, NTMTST, JTMTST, LTMTST, NPRTST, JPRTST, LPRTST, NDAMX, KDAMX, LDAMX, IDIAG2
INTEGER VARIABLES:
NTLTST Component number that controls the timestep size due to the liquid-temperature change limit.
JTLTST Horizontal-plane cell number of component NTLTST that controls the timestep size due to the liquid-temperature change limit.
LTLTST Axial-z cell number of component NTLTST that controls the timestep size due to the liquid-temperature change limit.
NTVTST Component number that controls the timestep size due to the gas-temperature change limit.
JTVTST Horizontal-plane cell number of component NTVTST that controls the timestep size due to the gas-temperature change limit.
LTVTST Axial-z cell number of component NTVTST that controls the timestep size due to the gas-temperature change limit.
NTMTST Component number that controls the timestep size due to the metal-temperature change limit.
JTMTST Structure node number of component NTMTST that controls the timestep size due to the "metal"-temperature change limit.
LTMTST Axial-z cell number of component NTMTST that controls the timestep size due to the "metal"-temperature change limit.

NPRTST Component number that controls the timestep size due to the pressure change limit.
JPRTST Horizontal-plane cell number of component NPRTST that controls the timestep size due to the pressure change limit.
LPRTST Axial-z cell number of component NPRTST that controls the timestep size due to the pressure change limit.
NDAMX Variable not used.
KDAMX Variable not used.
LDAMX Variable not used.
IDIAG2 Flag that allows skipping of certain diagnostics generated in subroutine NEWDLT by the IDIAG option (default is on).

D.34. ELVKF.H

COMMON/ELVKF/ IELV, IINL, IKFAC, MWFL, MWFV INTEGER VARIABLES:

IELV	Option for inputting cell-centered elevations to the gravity array (Namelist variable).
IINL	Index for the two passes through INIT. IKFACOption for inputting K-factors to the additive form-loss coefficient array (Namelist variable).
MWFL	Option for inputting wall-to-liquid wall-friction multiplier factors (Namelist variable).
MWFV	Option for inputting wall-to-gas wall-fraction multiplier factors (Namelist variable).

D.35. EMOT.H

COMMON/EMOT/	CNFACH, CNFACL, CSF, CSF1D, CSF3D, CSF3DL,
	CSF3DH, FNCIF
COMMON/EMOT/	IVMN, IVMX, JIV, NOLDV
REAL*8 VARIABLES:	

CNFACH Multiplier (0.8) applied to the 3D VESSEL-component material Courant limit that, when the timestep size equals or is greater than this timestep limit, starts the evaluation of the 3DSETS method when Namelist variable NOSETS $=0$.
CNFACL Multiplier (0.75) applied to the 3D VESSEL-component material Courant limit that, when the timestep size equals or is less than
this timestep limit, stops the evaluation of the 3DSETS method when Namelist variable NOSETS $=0$.
CSF A factor (1.0) applied to CSF1D and CSF3D to define the maximum material Courant number.
CSF1D Maximum material Courant number (1000.0) for the 1D hydraulic components.
CSF3D Maximum material Courant number (1000.0) for the 3D VESSEL components.
CSF3DL Maximum material Courant number (1.0) for the 3D VESSEL components when the SET3D equations are not evaluated.
CSF3DH Maximum material Courant number (1000.0) for the 3D VESSEL components when the SET3D equations are evaluated.
FNCIF Constant 0.7 (variable not used).
INTEGER VARIABLES:
IVMN Minimum timestep number for debug outputting interface JIV velocities.
IVMX Maximum timestep number for debug outputting interface JIV velocities.
JIV Mesh-cell interface number for debug outputting gas and liquid tilde and basic velocities in subroutine TF1DS1.
NOLDV Flag for setting the beta factor in the momentum-convection term to zero.
0 = no;
1 = yes.

D.36. ERRCON.H

COMMON/ERRCON/ ANTEST, ATEST1, DARA, DARL, DARV, DDVL, DDVV, DTLL, DTLLM, DTLU, DTLUM, DTVL, DTVLM, DTVU, DTVUM, TIMDL, TIMDU, TSDLT, TSDUT
COMMON/ERRCON/ IATEST, ICHGA, ILREIT, IPTEST, IVTEST, JATEST, JDARA, JDARL, JDARV, JDDVL, JDDVV, JDTLL, JDTLU, JDTVL, JDTVU, JPTEST, JVTEST, KPTEST, NDARA, NDARL, NDARV, NDDVL, NDDVV, NDTLL, NDTLU, NDTVL, NDTVU, NPTEST, NSDL, NSDU, TSDLS, TSDUS
INTEGER TSDLS, TSDUS

REAL*8 VARIABLES:

ANTEST End-of-timestep gas volume fraction that is outside its 0.0 to 1.0 value range in mesh cell JATEST of component IATEST.
ATEST1 Beginning-of-timestep gas volume fraction in mesh cell JATEST of component IATEST.
DARA Maximum change in $\alpha \rho_{a}$.
DARL
Measure of the maximum difference in $(1-\alpha) \rho_{\ell}$ between the basic and stabilizer steps.
DARV Measure of the maximum difference in $\alpha \rho_{g}$ between the basic and stabilizer steps.
DDVL Measure of the maximum difference in V_{ℓ} between the basic and stabilizer steps.
DDVV Measure of the maximum difference in V_{g} between the basic and stabilizer steps.
DTLL Largest decrease in T_{ℓ} from the current iteration.
DTLLM DTVLM and DTLLM are limits on DTVL and DTLL beyond which another iteration must be performed.
DTLU Largest increase in T_{ℓ} from the current iteration.
DTLUM DTVLM and DTLLM are limits on DTVL and DTLL beyond which another iteration must be performed.
DTVL Largest decrease in gas temperature in a given iteration.
DTVLM DTVLM and DTLLM are limits on DTVL and DTLL beyond which another iteration must be performed.
DTVU Largest increase in T_{g} from the current iteration.
DTVUM DTVLM and DTLLM are limits on DTVL and DTLL beyond which another iteration must be performed.
TIMDL If TIMDL \leq TIMET \leq TIMDU for the problem time, details of DARV, etc., should be output.
TIMDU If TIMDL \leq TIMET \leq TIMDU for the problem time, details of DARV, etc., should be output.
TSDLT Starting time at which detailed timestep-diagnostic information on the logic used to evaluate the timestep size is output to file TRCMSG.

TSDUT Ending time at which detailed timestep-diagnostic information on the logic used to evaluate the timestep size is output to file TRCMSG.
INTEGER VARIABLES:
IATEST Component number with an out-of-range gas-volume-fraction value.

ICHGA Flag to print the maximum gas-volume-fraction changes to the TRCMSG file.
ILREIT Flag that allows reiteration messages when equation set changes. IPTEST VESSEL radial-r or x direction mesh-cell number having maximum $\mid \delta p / \mathrm{pl}$.
IVTEST Component number having a velocity that changed its numerical sign during the last outer iteration.
JATEST Mesh-cell number in component IATEST where the gas volume fraction has an out-of-range value.
JDARA Cell number where DARA occurred.
JDARL Cell number where DARL occurred.
JDARV Cell number where DARV occurred.
JDDVL Cell number where DDVL occurred.
JDDVV Cell number where DDVV occurred.
JDTLL Cell number where DTLL occurred.
JDTLU Cell number where DTLU occurred.
JDTVL Cell number where DTVL occurred.
JDTVU Cell number where DTVU occurred.
JPTEST VESSEL azimuthal- θ or y direction mesh-cell number or 1D component mesh-cell number with maximum $|\delta \mathrm{p} / \mathrm{p}|$.
JVTEST Mesh-cell interface number in component IVTEST with a velocity that changed numerical sign during the last outer iteration.
KPTEST VESSEL axial-z direction mesh-cell number with maximum $|\delta p / \mathrm{p}|$.
NDARA Component number where DARA occurred.
NDARL Component number where DARL occurred.
NDARV Component number where DARV occurred.
NDDVL Component number where DDVL occurred.
NDDVV Component number where DDVV occurred.

NDTLL Component number where DTLL occurred.
NDTLU Component number where DTLU occurred.
NDTVL Component number where DTVL occurred.
NDTVU Component number where DTVU occurred.
NPTEST Component number with maximum $|\delta \mathrm{p} / \mathrm{p}|$.
NSDL If NSDL \leq NSTEP \leq NSDU for the timestep number, a detailed diagnostic of DARV, etc., should be output to the TRCOUT file and IDIAG $=3$ diagnostics to the TRCMSG file.
NSDU If NSDL \leq NSTEP \leq NSDU for the timestep number, a detailed diagnostic of DARV, etc., should be output to the TRCOUT file and IDIAG $=3$ diagnostics to the to TRCMSG.
TSDLS First timestep number where detailed timestep-diagnostic information on the logic used to evaluate the timestep size is output to file TRCMSG.
TSDUS Last timestep number where detailed timestep-diagnostic information on the logic used to evaluate the timestep size is output to file TRCMSG.
D.37. FILM.H

COMMON/FILM/ CONFLM, FILMU, FILML, XFDCON, FDMAX, ALPF1, FFUNH1, ALPF2, FFUNH2, XPFUNH
REAL*8 VARIABLES:
CONFLM Constant used in film thickness calculation.
FILMU Upper bound on film thickness.
FILML Lower bound on film thickness.
XFDCON Multiplier on wet-wall film drag.
FDMAX Factor indicating how much bigger film drag may be than wall drag.
ALPF1 Gas volume fraction when factor indicating cross-channel coldwall effect begins.
FFUNH1 Factor indicating minimum cross-channel cold-wall effect.
ALPF2

FFUNH2 Factor indicating maximum cross-channel cold-wall effect.
XPFUNH decay power for cross-channel cold-wall effect.

NUMBM1	NUMBM1IND=-13	Index to access large numerals for printing component NUM and IORDER.
NUMBM2	NUMBM2IND=-14	Index to access large numerals for printing component NUM and IORDER.
NUMBM3	NUMBM3IND $=-15$	Index to access large numerals for printing component NUM and IORDER.
NUMBN1	NUMBN1IND=-16	Index to access large numerals for printing component NUM and IORDER.
NUMBN2	NUMBN2IND=-17	Index to access large numerals for printing component NUM and IORDER.
NUMBN3	NUMBN3IND=-18	Index to access large numerals for printing
NODES	NODESIND=-19	component NUM and IORDER. Number of heat-transfer nodes.
NUM	NUMIND=-20	Component number.
NRVLT	NRVLTIND=-21	Number of real variables in component's each
NCELLT	NCELLTIND=-12	COMMON block.
Total number of cells.		

D.39. FIXUM.H

COMMON/FIXUM/ NOAIR, NSMEC, NTHRMC, NVTC INTEGER VARIABLES:
NOAIR Variable that turns off noncondensable gas calculations.
NSMEC Variable that turns off stabilizer mass and energy equations.
NTHRMC Variable that turns off (debugs) basic equation set.
NVTC Variable that turns off stabilizer motion equations.

D.40. FLUID.H

COMMON/FLUID/	LH2O, ID2O
LOGICAL	LH2O

LOGICAL VARIABLE:
LH2O Logic flag for fluid properties.
.TRUE. = H2O properties;
.FALSE. $=$ D2O properties.

INTEGER VARIABLE:
ID2O Option for fluid properties.
$1=\mathrm{H} 2 \mathrm{O}$ properties;
2 = D2O properties.

D.41. GENPT.H

PARAMETER
(IPTSIZ=320)
INTEGER
PT(IPTSIZ)
COMMON/PLTAB/ PT
INTEGER VARIABLE:
PT Graphics pointer table.

D.42. GRAPHICS.H

DIMENSION
 ICTRLG(8)

COMMON/GRAPH/ EDINT, GFINT, SEDINT, TEDIT, TGRAF, TSEDIT

COMMON/GRAPH/ IBUFF, ICTRLG, IPKG, KP, LCAT, LCMGCT, LENCAT,	
	NCTX, NSGO, NWTX

REAL*8 VARIABLES:
EDINT Large-edit interval for the time domain.
GFINT Graphics-edit interval for the time domain.
SEDINT Small-edit interval for the time domain.
TEDIT Time of next large edit.
TGRAF Time of next graphics edit.
TSEDIT Time of next small edit.
INTEGER VARIABLES:
IBUFF Length of graphics buffer.
ICTRLG Array that contains buffering information about the graphics output file.
IPKG Graphics file packing density.
KP Pointer in graphics catalog block.
LCAT Address of graphics catalog in SCM.
LCMGCT Address of graphics catalog in LCM.
LENCAT Number of words in each catalog entry.
NCTX Number of graphics catalog entries.
NSGO Timestep number of last completed graphics edit.
NWTX Number of words written to disk per graphics edit.

D.43. H2FDBK.H

COMMON/H2FDBK/ IH2SRC

 INTEGER VARIABLE:IH2SRC Hydrogen-source flag (Namelist variable; when nonzero, TRAC sets Namelist variables IGAS $=2$ and NOAIR $=0$).

D.44. HPSSD.H

COMMON/HPSSD/	NIC(200), IIC, LDCINF, LDCLOC, LDCOUF, LDCPWI,
	LDCPWO, LDDINF, LDDLOC, LDDOUF, LDDPW,
	LDDPWO, LMASI, LMASM, LMASN, LMAST, LPHM,
	LPMVL, LPMVV, LPOWER, LPP, LPPA, LPTL, LPTV,
	NFPI, NPATHS, NTPI

INTEGER VARIABLES:

NIC Component ID numbers that are not being initialized by the hydraulic-path steady-state initialization procedure.
IIC Total number of components that are not being initialized by the hydraulic-path steady-state initialization procedure.
LDCINF A-array pointer variable for the 1D component ID number of the hydraulic-path inflow location of the hydraulic path.
LDCLOC A-array pointer variable for the 1D component ID number of the hydraulic-path condition location defining the hydraulic condition.
LDCOUF A-array pointer variable for the 1D component ID number of the hydraulic-path outflow location of the hydraulic path.
LDCPWI A-array pointer variable for the 1D component ID number of the hydraulic-path inflow location of the first cell having a heat source or sink.
LDCPWO A-array pointer variable for the 1D component ID number of the hydraulic-path inflow location of the last cell having a heat source or sink.
LDDINF A-array pointer variable for the interface number of the hydraulic-path inflow location of the hydraulic path.
LDDLOC A-array pointer variable for the interface number of the hydraulic-path condition location defining the hydraulic condition.

LDDOUF A-array pointer variable for the interface number of the hydraulic-path outflow location of the hydraulic path
LDDPWI A-array pointer variable for the cell number of the hydraulicpath inflow location of the first cell having a heat source or sink.
LDDPWO A-array pointer variable for the cell number of the hydraulicpath inflow location of the last cell having a heat source or sink.
LMASI A-array pointer variable for the input-specified coolant mass in each hydraulically coupled region of the system model.
LMASM A-array pointer variable for the two-phase coolant mass based on $\alpha=\alpha_{\mathrm{m}}$ and $\mathrm{T}_{\mathrm{G}}=\mathrm{T}_{\text {sat }}=\mathrm{T}_{\mathrm{L}}$ in each hydraulically coupled region of the system model.
LMASN A-array pointer variable for the two-phase coolant mass based on $\alpha=\alpha_{\mathrm{n}}$ and $\mathrm{T}_{\mathrm{G}}=\mathrm{T}_{\text {sat }}=\mathrm{T}_{\mathrm{L}}$ in each hydraulically coupled region of the system model.
LMAST A-array pointer variable for the coolant mass based on $\alpha=0, \alpha_{n}$, or 1 and T_{G} and T_{L} in each hydraulically coupled region of the system model.
LPHM A-array pointer variable for the initial liquid mass flow or velocity at the location defining the hydraulic condition.
LPMVL A-array pointer variable for the initial liquid mass flow or velocity at the interface location defining the hydraulic condition.
LPMVV A-array pointer variable for the initial gas mass flow or velocity at the interface location defining the hydraulic condition.
LPOWER A-array pointer variable for the total heat source or sink power between and including cells A(LDDINF) to A(LDDOUF).
LPP A-array pointer variable for the total pressure in all cells along the hydraulic path (when NTPI $=0$).
LPPA A-array pointer variable for the noncondensable-gas pressure in all cells along the hydraulic path (when NTPI $=0$).
LPTL A-array pointer variable for the initial liquid temperature at the donor-cell location defining the hydraulic condition.
LPTV A-array pointer variable for the initial gas temperature at the donor-cell location defining the hydraulic condition.
NFPI Mass-flow or velocity input option. $0=$ input liquid and gas mass flows;
$1=$ input liquid and gas velocities.
NPATHS Number of 1D hydraulic paths defined in the system model.
NTPI Total pressure and noncondensable-gas pressure input option.
$0=$ input pressures for all hydraulic-path cells;
1 = define the hydraulic-condition donor-cell pressures for all hydraulic-path cells;
$2=$ define pressure from the component input data.

INTEGER	IHPSIZE, AHPSIZE
PARAMETER	(IHPSIZE=1000, AHPSIZE=1000)
COMMON/HPCOM/	AHP(AHPSIZE), IHP(IHPSIZE), IFREEHP
REAL*8 VARIABLE:	
AHP	HPSSD real variable container array.
INTEGER VARIABLES:	
IHP	HPSSD integer variable container array.
IFREEHP	Pointer for the next element of free storage space in the
	container A array for storing the masi, masm, masn, and
	mast arrays.

D.45. HTCAV.H

COMMON/HTCAV/ FHTCU, FHTCL, OWHTD

REAL*8 VARIABLES:
FHTCU Maximum factor of increase (2.0) in the liquid and gas heattransfer coefficients.
FHTCL Minimum factor of decrease (0.0) in the liquid and gas heattransfer coefficients.
OWHTD Fraction (0.55) of the previous time-averaged liquid or gas heattransfer coefficient that is averaged together with the fraction 1.0 - OWHTD (0.45) of the present coefficient to define the present time-averaged value.

D.46. HTCREF1.H

COMMON/HTCREF1/ ALPAG2(NXRYT), ALPCF2(NXRYT), ALPRW(NXRYT), ALPSM(NXRYT), ALPTB(NXRYT), FUNH(NXRYT), ZAGS(NXRYT), ZCHFL(NXRYT), ZDFS(NXRYT),

ZRWS(NXRYT), ZSMS(NXRYT), ZTB(NXRTY), QCHF, ZSLAB
COMMON/HTCREF1/ IJ, NNODES, NHSCA(NXRYT) REAL*8 VARIABLES:

ALPG2 Array of gas volume fractions at the top of the agitated section for a given (r, θ) or (x, y) cell.
ALPCF2 Array of gas volume fractions at the CHF location for a given (r, θ) or (x, y) cell.
ALPRW Array of gas volume fractions at the top of the rough wavy section for a given (r, θ) or (x, y) cell.
ALPSM Array of gas volume fractions at the top of the smooth section for a given (r, θ) or (x, y) cell.
ALPTB Array of gas volume fractions at the transition boiling location for a given (r, θ) or (x, y) cell.
FUNH Array of the fraction of each heat-structure surface that is unheated.
ZAGS Array of the elevation where agitated inverted annular flow ends for a given (r, θ) or (x, y) cell.
ZCHFL Array of the elevation of the CHF point for a given (r, θ) or (x, y) cell.
ZDFS Array of the elevation where highly dispersed flow begins for a given (r, θ) or (x, y) cell.
ZRWS Array of the elevation where rough-wavy inverted annular flow ends for a given (r, θ) or (x, y) cell.
ZSMS
Array of the elevation where smooth inverted annular flow ends for a given (r, θ) or (x, y) cell.
ZTB Array of the elevation of the transition boiling point for a given (r, θ) or (x, y) cell.
QCHF Critical heat flux (CHF).
ZSLAB Elevation of the heat-transfer node being considered.
INTEGER VARIABLES:
I] $\quad(r, \theta)$ or (x, y) horizontal-plane hydraulic-cell number.
NNODES Number of nodes in a given ROD or SLAB.
NHSCA Array of HTSTR-component numbers that defines the principal powered RODs or SLABs.

D.47. HTCREF2.H

COMMON/HTCREF2/ TVZ(NZFMX), TWZ(NZFMX), ZNODES(NZFMX)
REAL VARIABLES:
TVZ Array of gas temperatures for a given ROD or SLAB.
TWZ Array of wall temperatures for a given ROD or SLAB.
ZNODES Array of node-center elevations.

D.48. HTCREF3.H

COMMON/HTCREF3/ IFREZ, NREFLD(NXRYT)
INTEGER VARIABLES:
IFREZ Flag used to turn interfacial vapor heat transfer off; i.e., freeze the drop size.
NREFLD Flag indicating the reflood model is on (set in subroutine CORE1).

D.49. HTCS.H

$$
\begin{array}{ll}
\text { COMMON/HTCS/ } & \text { HVAP, HLIQ, SLIP, QSTEAM, HTCWL, HTCWV, } \\
& \text { ICONHT, MHTLI, MHTLO, MHTVI, MHTVO }
\end{array}
$$

REAL*8 VARIABLES:
HVAP Enthalpy of the gas.

HLIQ Enthalpy of the liquid.
SLIP Slip ratio between phasic velocities.
QSTEAM Wall-to-wall heat flux.
HTCWL Constant wall-to-liquid HTC (Namelist variable).
HTCWV Constant wall-to-gas HTC (Namelist variable).
INTEGER VARIABLES:
ICONHT Heat-transfer option (Namelist variable).
$0=\mathrm{HTCs}$ evaluated (default);
$1=$ constant HTCs defined by Namelist variables.
MHTLI Option for inputting wall-to-liquid heat-transfer multiplier factors for the inner surface of all HTSTRs (Namelist variable).
MHTLO Option for inputting wall-to-liquid heat-transfer multiplier factors for the outer surface of all HTSTRs (Namelist variable).
MHTVI Option for inputting wall-to-gas heat-transfer multiplier factors for the inner surface of all HTSTRs (Namelist variable).

MHTVO Option for inputting wall-to-gas heat-transfer multiplier factors for the outer surface of all HTSTRs (Namelist variable).

D.50. IFCRS.H

COMMON/IFCRS/

COMMON/IFCRS/

COMMON/IRCRS/ IEPRI, IWILS, IHOTP, IPDRGX
REAL*8 VARIABLES:

ALMAX	Maximum gas volume fraction (0.9999) to use in calculation of interfacial drag.
ALMIN	Minimum gas volume fraction (0.00001) to use in calculation of interfacial drag.
ALPBCD	Minimum gas volume fraction (0.00001) to use in calculation of bubbly-interfacial drag.
ALPBCH	Minimum gas volume fraction (0.00001) to use in calculation of bubbly-interfacial heat transfer.
ALPBCW	Minimum gas volume fraction (0.00001) to use in the Wilson model (upper-plenum) calculation of interfacial drag.

\(\left.\begin{array}{ll}ALPDCH \& Maximum gas volume fraction (0.9995) for calculation of droplet

diameter in the annular-mist regime.\end{array}\right]\)| Variable not used. | |
| :--- | :--- |
| ALPMCT | Variable not used. |
| ALPTS1 | Variable not used. |
| ALPTS2 | Variable not used. |
| ALPTP | Minimum gas volume fraction (0.9) in cell above for vertical
 stratified flow in the VESSEL. |
| ALPTM | Maximum gas volume fraction (0.1) in cell below for vertical
 stratified flow in the VESSEL. |
| ALPVS | Gas volume fraction constant (0.3) in model for bubbly flow
 below a stratified level. |
| ALVCN | Time constant in rate model for change in condensing ALVE. |
| ALVCN1 | Constant used in determining the upper bound at the liquid-side |
| HTC for subcooled liquids. | |

CHTACC Gas-side HTC for ACCUMs (variable not used).
CHTAFX Constant used in determining the limit of the gas-side HTC for noncondensable gas.
CHTCN1 Constant used in determining the upper bound of the gas-side HTC for subcooled vapor.
CHTCN2 Constant used in determining the lower bound of the gas-side HTC for subcooled vapor.
CHTEV1 Constant used in determining the upper bound of the gas-side HTC for saturated or superheated vapor.
CHTEV2 Constant used in determining the lower bound of the gas-side HTC for saturated or superheated vapor.
CHTFAX Constant used in determining the limit of the gas-side HTC between timesteps.
CHTICN Constant used in determining the limits of the gas-side HTC.
CHTIEV Constant used in determining the limits of the gas-side HTC.
CNDBS Constant to adjust the interfacial area for condensing bubble.
CNDFL Constant to adjust the liquid-side HTC in annular-mist flow.
CNDPL Constant to adjust the liquid-side HTC for condensation in plug flows.

CNDRO Constant to adjust the liquid-side HTC in annular-mist flows.
CNDST Multiplier for stratified-flow condensation interfacial heat transfer.
CHTINV Liquid-side HTC for smooth, rough-wavy, and agitated invertedannular flows.
CHTANV Liquid-side HTC of noncondensable gas for smooth, roughwavy, and agitated inverted-annular flow.
D1X Constant in EPRI model.
D2X Constant in EPRI model.
DCALW1 Minimum gas volume fraction (0.0001) for averaging the bubbly-flow-regime axial drag and separated-flow-regime Blausis axial drag in the downcomer and lower plenum.
DCALW2 Maximum gas volume fraction (0.05) for averaging the bubbly-flow-regime axial drag and separated-flow-regime Blausis axial drag in the downcomer and lower plenum.
DCDGM1 Multiplier (0.5) for Blausis axial drag in the downcomer and lower plenum for the bubbly-flow regime.

DCDGM2 Multiplier (0.5) for Blausis axial drag in the downcomer and lower plenum for the separated-flow regime.
DTVHT • Variable not used.
EPMAX Maximum drag on EPRI model for CORE-component interfacial drag (variable not used).
EPMIN Minimum drag on EPRI model for CORE-component interfacial drag (variable not used).
EVFAX Constant in the evaporation model.
F2MX Factor in the droplet vapor to interface heat-transfer model.
FCSUB Multiplication constant in the subcooled-boiling condensation model.
FDIS1 Constant in the dispersed-droplet interfacial-drag model.
FDIS2 Constant in the dispersed-droplet interfacial-drag model.
FDISV1 Constant in the dispersed-droplet interfacial-drag model.
FDISV2 Constant in the dispersed-droplet interfacial-drag model.
FIFAM Factor (1.0) applied to annular-mist interfacial drag.
FIFBL Multiplier for downcomer interfacial-drag model.
FIFBS Factor (1.0) applied to bubbly-slug interfacial drag.
FIFCR Variable not used.
FIFEP Multiplier (1.0) in EPRI interfacial-drag model (variable not used).
FIFST
FIFWL

FISHI
FLMIN
FLSHF
FLSH1
FLSH2
FRII
FRI2
FUII
FUI2
FSB

Factor (1.0) applied to stratified-flow interfacial drag.
Multiplier (1.0) for Wilson-model interfacial drag in the upper plenum of the VESSEL.
Variable not used.
Minimum film thickness for annular flow.
Multiplier on liquid superheat for flashing.
Maximum-flash multiplier.
Minimum-flash multiplier.
Time constant for rate of decrease in C_{i}.
Time constant for rate of increase in C_{i}.
Minimum allowed change in C_{i}.
Maximum allowed change in C_{i}.
Constant to adjust the interfacial-drag coefficient for the subcooled nucleate-boiling regime.

FFS

FSM

FRW Constant to adjust the interfacial-drag coefficient for the roughwavy inverted-annular flow.
FMDIS Constant to adjust the interfacial-drag coefficient for the postagitated inverted-annular flow.
FCDROP Constant to adjust the droplet interfacial-drag coefficient for lightly dispersed inverted-annular flow.
FDIS Constant to adjust the interfacial-drag coefficient for highly dispersed inverted-annular flow.
FFD Constant to adjust the interfacial-drag coefficient for liquid flow in highly dispersed inverted-annular flow.
VOIDS1 Lower limit of the gas volume fraction (0.05) for smooth inverted-annular flow.
VOIDS2 Upper limit on the gas volume fraction for rough-wavy inverted-annular flow.

VOIDS3 Upper limit on the gas volume fraction (0.3) for smooth inverted-annular flow.
VOIDD1 Variable not used.
VOIDD2 Gas volume fraction limit in the rough-wavy reflood flow regime.
XMDIS Constant to adjust the weighting for the post-agitated inverted-annular-flow interfacial-drag coefficient.
XNB Constant to adjust the weighting for the bubbly-flow interfacialdrag coefficient in the intermediate gas-volume-fraction region.
XHVDIS Constant to adjust the weighting for rough-wavy- and smooth-inverted-annular-flow interfacial-drag coefficient in the intermediate gas-volume-fraction region.
HARMX Variable not used.
HAMIN Product of the heat-transfer coefficient times the interfacial area.
HCMIN Variable not used.
HCAMIN Variable not used.
HDMAX Hydraulic diameter used in the VESSEL component if userinput hydraulic diameter is $<10^{-5}$.

HFVL Constant used in dispersed-droplet interfacial-drag model.
HFVU Constant used in dispersed-droplet interfacial-drag model.
HIMFAC Multiplication constant used in the calculation of the minimum gas-interface heat-transfer rate.
H0 Constant in subcooled-boiling condensation model.
PC24
Pressure constant ($1.95187 \mathrm{E}+15 \mathrm{~Pa}^{2}$).
PCRIT
Critical-point pressure ($2.209 \mathrm{E}+07 \mathrm{~Pa}$).
REGMN Minimum Reynold's number in stratified flow.
RDMAX Maximum droplet radius in annular-mist flow.
RDMIN Minimum droplet radius in annular-mist flow.
SLP1 Constant in subcooled-boiling model.
STFRL Stratified-flow lower-velocity limit multiplier.
STFRU Stratified-flow upper-velocity limit multiplier.
STSTRT Multiplier (1.0) on stratified-flow interfacial heat transfer.
TLGTS Maximum liquid superheat used to calculate limit on interfacial heat transfer.
TVLTL Maximum gas temperature less than liquid temperature used to calculate limit on interfacial heat transfer.
TVLTS Maximum vapor subcooling used to calculate limit on interfacial heat transfer.
TWDFAC Constant in subcooled-boiling model.
TWDFAK Constant in subcooled-boiling model.
VLACC Maximum liquid velocity in ACCUM for calculation of interfacial heat transfer (variable not used).
VLMAX Maximum liquid velocity in annular film for calculation of interfacial heat transfer.
VRCMIN Minimum relative velocity (0.1) used to calculate a run.
VRFMIN Minimum relative velocity to be used in the bubbly-slug C_{i} calculation.
VR2MIN Variable not used.
INTEGER VARIABLES:
IEPRI EPRI interfacial-drag-model flag used for rod bundles in the core region when set to 1 .
IWILS Wilson interfacial-drag-model flag for use in the upper plenum when set to 1 .
IHOTP Hot-patch modeling option.

$$
0 \text { = off; }
$$

$$
1=\mathrm{on} .
$$

IPDRGX Lower-plenum Blasius interfacial-drag off flag.
$0=$ apply Blasius interfacial drag in the lower plenum when IBLAUS $=1$.
1 = do not apply Blasius interfacial drag in the lower plenum when IBLAUS $=1$.

D.51. IFDPTR.H

INTEGER TMPVL

COMMON/IFDPTR/ IWRTPT, LASTP1, NTMPV
COMMON/IFDPTR/ LVT1, LVT2, LVT3, LVT4, LVT5, LVT6, LVT7, LVT8, LVT9, LVT10, LVT11, LVT12, LVT13, LVT14, LVT15, LVT16, LVT17, LVT18, LVT19, LVT20, LVT21, LVT22, LVT23, LVT24, LVT25, LVT26, LVT27, LVT28, LVT29, LVT30, LVT31, LVT32, LVT33, LVT34, LVT35, LVT36, LVT37, LVT38, LVT39, LVT40, LVT41, LVT42, LVT43, LVT44, LVT45, LVT46, LVT47, LVT48, LVT49, LVT50, LVT51, LVT52, LVT53, LVT54, LVT55, LVT56, LVT57, LVT58, LVT59, LVT60, LVT61, LVT62, LVT63, LVT64, LVT65, LVT66, LVT67, LVT68, LVT69, LVT70, LVT71, LVT72, LVT73, LVT74, LVT75, LVT76, LVT77, LVT78, LVT79, LVT80, LVT81, LVT82, LVT83, LVT84, LVT85, LVT86, LVT87, LVT88, LVT89, LVT90, LVT91, LVT92, LVT93, LVT94, LVT95, LVT96, LVT97, LVT98, LVT99, LVT100, LVT101, LVT102, LVT103, LVT104, LVT105, LVT106, LVT107, LVT108, LVT109, LVT110, LVT111, LVT112, LVT113, LVT114, LVT115, LVT116, LVT117, LVT118, LVT119, LVT120, LVT121, LVT122, LVT123, LVT124, LVT125, LVT126, LVT127, LVT128, LVT129, LVT130
INTEGER VARIABLES:
TMPVL Number of calculative mesh cells in the 3D VESSEL component.
IWRTPT Flag to set up temporary pointers for subroutines PREFWD and PREIFD.

LASTP1 LAST +1 pointer for the first free location in memory for the temporary storage arrays set up to vectorize the 3D wall-shear and interfacial-drag coefficient evaluations.
NTMPV Number of temporary storage arrays (130) in. subroutines PREFWD and PREIFD set up to vectorize the 3D wall-shear and interfacial-drag coefficient evaluations.
LVT\# Pointer variable for the \#th (\# = 1 to 130) temporary storage array set up to vectorize the 3D wall-shear and interfacial-drag coefficient evaluations.

D.52. INFOHL.H

COMMON/INFOHL/ DROPD, FHLF, QDEN, QFR, QTOTAL, QWEBB, VR2 REAL*8 VARIABLES:
DROPD Calculated drop diameter used in the Forsland-Rohsenow correlation.
FHLF Factor carried along to separate the Denham and ForslandRohsenow regions.
QDEN Heat flux calculated using the Denham correlation.
QFR Heat flux calculated using the Forsland-Rohsenow correlation.
QTOTAL Total heat flux calculated including radiation.
QWEBB Heat flux calculated using the Webb-Chen correlation.
VR2 Local relative velocity minus quench-front relative velocity.
D.53. IOUNITS.H

COMMON/UNITS/ IBFADD, IBFADG, IBFADR, IBFLND, IBFLNG, IBFLNR, IDOUT, IEEEG, IGOUT, IKEYBD, IMOUT, IN, INLAB, INPROC, IOALL, IODONE, IOERR, IOGRF, IOINP, IOLAB, IOOUT, IOSKIP, IOUT, IRSTRT, ITTY, IUNLAB, IUNOUT, LCMCPD, NITTAB, NPWTAB, NRDY
COMMON/CUNITS/ CARD
CHARACTER*100 CARD
INTEGER VARIABLES:
IBFADD Pointer to the beginning of dump LCM buffer.
IBFADG Pointer to the beginning of graphics LCM buffer.
IBFADR Pointer to the beginning of restart LCM buffer.
IBFLND Length of dump buffer.

IBFLNG Length of graphics buffer.
IBFLNR Length of restart buffer.
IDOUT
IEEEG

IGOUT I/O unit number for graphics output file (currently set to unit 11).
IDEYBD I/O unit number for the terminal keyboard (currently set to unit 59 for -DEF,IBM and unit 5 for DEF,IBM).
IMOUT I/O unit number for warning messages (currently set to unit 7).
IN
I/O unit number for input to TRAC-P (initially set to unit 5 to point to file TRCINP; if the input does not invoke free format, IN is changed to 1 to point to file TRACIN).
INLAB I/O unit number for TRAC to generate a labeled input-data file (currently set to unit 3).
INPROC Flag set during input to indicate whether component data are being processed.
IOALL \quad OOALL $=\mid$ IOGRF $|+|$ IOINP $|+|$ IOLAB $|+|I O O U T|$.
IODONE Flag that indicates if the current input card has been read.
IOERR Input error flag.
IOGRF SI/English-units flag for writing graphics data to file TRCGRF (Namelist variable).
IOINP SI/English-units flag for reading input data from file TRACIN (Namelist variable).
IOLAB SI/English-units flag for writing comment-labeled input data to file INLAB (Namelist variable).
IOOUT SI/English-units flag for echoing input and restart data and writing small and large edits to file TRCO"UT and writing calculative information to file TRCMSG and the terminal (Namelist variable).
IOSKIP Flag that turns input processing off and on.
IOUT I/O unit number for the printed-output file (currently set to unit 6).

IRSTRT I/O unit number for the restart-input file (currently set to unit
13).

ITTY I/O unit number for terminal output (currently set to unit 59).
IUNLAB Option for inputting user-defined units-name labels required for defining the units of control block or trip-signal-expression parameters (Namelist variable).
IUNOUT Option for writing SI/English units to file TRCOUT (Namelist variable).
LCMCPD Storage for the beginning address for reading from or writing to LCM with calls to subroutines RDLCM and WRLCM.
NITTAB Flag for printing the timestep data table heading label to the terminal (-1) or message file (-2) because a warning message(s) has been printed since the last table values were printed.
NPWTAB Flag for printing the power/reactivity feedback table heading label to the message file (-1) because a warning message(s) has been printed since the last table values were printed.
NRDY Flag for reading the input-data files. $0=$ reading the TRCRST restart-data file;
1 = reading the TRACIN user-input-data file.
LOGICAL VARIABLE:
CARD Variable that contains the current input-card data.

D.54. ITERSTAT.H

COMMON/ISTAT/	VARERM, VERR
COMMON/ISTAT/	IOTT, NSTEP, OITNO
INTEGER	OITNO

REAL*8 VARIABLES:
VARERM Maximum variable error.
VERR Velocity error at component junction.
INTEGER VARIABLES:
IOTT Temporary storage for IITNO.
NSTEP Number of timesteps evaluated during the TRAC-P calculation.
OITNO Outer-iteration number.
D.55. JUNCTION.H

COMMON/JUNCT/ JPTR, JMATCH
INTEGER VARIABLES:
JPTR Number of junction-component pairs.

JMATCH Number of bad junction numbers detected during the network trace in SRTLP.
D.56. LABELV.H
COMMON/LABELV1/ LABUN(150)COMMON/LABELV2/ LUNCB(2,150)
COMMON/LABELV3/ LUPCB $(2,150)$
COMMON/LABELV4/ RUNCB(2,150)
COMMON/LABELV5/ LABSV $(2,150)$
COMMON/LABELV/ FACTOR(150), OFFSET(150)
COMMON/LABELV/ IH(26), ITLS(777), ITSV(105), ILS, ILU, ILUN, IOLD
COMMON/LABELV/ LABELS(777)
COMMON/LABELV/ ALPBET, LUAR, LUCP, LUD, LUDH, LUE, LUEN, LUH,LUHA, LUHX, LUID, LUIS, LUM, LUMF, LUP, LUPD,LUPH, LUPT, LUPW, LUR, LUS, LUSP, LUSZ, LUT,LUTC, LUTM, LUTP, LUV, LUVF, LUVO, LUZ
NOTE: 777 --> 806 with pending KAPL updates.
LOGICAL VARIABLES:
LABUN CHARACTER*8 names of the units-name labels.
LUNCB CHARACTER*13 left-justified names of the SI-units andEnglish-units symbols of the units-name labels.LUPCB CHARACTER*13 names surrounded by parentheses of the SI-units and English-units symbols of the units-name labels.RUNCB CHARACTER*12 right-justified names of the SI-units andEnglish-units symbols of the units-name labels.
LABSV CHARACTER*14 names of the signal-variable parameters.
REAL*8 VARIABLES:
FACTOR Conversion factor from SI units to English units.
OFFSET Offset shift value from SI units to English units after theconversion factor is applied to the SI-units value.
INTEGER VARIABLES:IH $\quad 1 \leq \mathrm{IH}(\mathrm{I}) \leq 777$ defines the index of the first FORTRAN I/O real-variable name in TRAC-P beginning with the Ith letter of thealphabet.

ITLS

ITSV $\quad 1<\operatorname{ITSV}(\mathrm{K}) \leq 150$ defines the index of the units-name label
$1 \leq \operatorname{ITLS}(\mathrm{J}) \leq 150$ defines the index of the units-name label defining the units of the Jth FORTRAN I/O real-variable name in TRAC-P. defining the units of the Kth signal-variable parameter.
ILS Total number of FORTRAN I/O real-variable names in TRAC-P. ILU Index of the last units-name label defined internally in TRAC-P. ILUN Index of the last units-name label in TRAC-P after user-defined units-name labels are input.
IOLD Index of the units-name label for the last FORTRAN I/O realvariable name processed for possible units conversion by subroutine UNCNVT.
LOGICAL VARIABLES:
LABELS CHARACTER*8 names of the FORTRAN I/O real variables in TRAC-P.
ALPBET CHARACTER*26 string of the 26 letters of the alphabet.
LUAR Commonly used CHARACTER*4 units symbol ' m 2 ' or ' ft2' for area.
LUCP Commonly used CHARACTER*10 units symbol ' $\mathrm{w}^{*} \mathrm{~s} / \mathrm{kg} / \mathrm{k}$ ' or ' btu/lbm/f' for specific heat.
LUD Commonly used CHARACTER*2 units symbol ' -' for a dash indicating no units.
LUDH Commonly used CHARACTER*19 units symbol '—— $\mathrm{w} / \mathrm{m} 2 / \mathrm{k}$
\qquad ' or '- btu/ft2/f/hr -' with dashes on each side for a heat-transfer coefficient.
LUE Commonly used CHARACTER*4 units symbol ' $\mathrm{w}^{*} \mathrm{~s}^{\prime}$ or ' btu' for energy.
LUEN Commonly used CHARACTER*7 string ' end ' or 'end (s)'.
LUH Commonly used CHARACTER*13 units symbol ' w/m2/k ' or ' btu/ft2/f/hr' for a heat-transfer coefficient.
LUHA Commonly used CHARACTER*9 units symbol' w/k 'or ' $\mathrm{btu} / \mathrm{f} / \mathrm{hr}$ ' for interfacial heat transfer total flux.
LUHX Commonly used CHARACTER*12 units symbol ' w/m2 'or ' $\mathrm{btu} / \mathrm{ft} 2 / \mathrm{hr}$ ' for heat flux.
LUID Commonly used CHARACTER*8 units symbol ' $\mathrm{kg} / \mathrm{m} 4$ ' or ' lbm/ft4' for interfacial drag.

UIS	Commonly used CHARACTER*6 units symbol ' rad/s' or ' rpm for the pump-impeller rotational speed.
LUM	Commonly used CHARACTER*4 units symbol ' kg ' or ' lbm ' for mass.
LUMF	Commonly used CHARACTER*7 units symbol ' kg / s ' or - lbm/hr' for mass flow.
LUP	Commonly used CHARACTER*5 units symbol ' pa ' or ' psia' for absolute pressure.
LUPD	Commonly used CHARACTER*5 units symbol ' pa ' or ' psid' for a pressure difference.
LUPH	Commonly used CHARACTER*11 units symbol' $\mathrm{m} 2 / \mathrm{s} 2$ ' or ' $\mathrm{lbf} \neq \mathrm{ft} / \mathrm{lbm}$ ' for pump head.
LUPT	Commonly used CHARACTER*7 units symbol ' $\mathrm{pa}^{*} \mathrm{~m} 3$ ' or ' lbffft' for torque.
LUPW	Commonly used CHARACTER*7 units symbol ' w ' or ' btu/hr' for power.
LUR	Commonly used CHARACTER*8 units symbol ' $\mathrm{kg} / \mathrm{m} 3$ ' or ' $\mathrm{lbm} / \mathrm{ft} 3$ ' for density.
LUS	Commonly used CHARACTER*2 units symbol ' s' for time.
LUSP	Commonly used CHARACTER*8 string ' step ' or 'step (s)'.
LUSZ	Commonly used CHARACTER*8 string ' size ' or 'size (s)'
LUT	Commonly used CHARACTER*3 string ' **'
LUTC	Commonly used CHARACTER*12 units symbol ' $\mathrm{w} / \mathrm{m} / \mathrm{k}$ ' or ' $\mathrm{btu} / \mathrm{ft} / \mathrm{f} / \mathrm{hr}$ ' for thermal conductivity.
LUTM	Commonly used CHARACTER*8 string ' time ' or 'time (s)'.
LUTP	Commonly used CHARACTER*2 units symbol ' k ' or ' f ' for temperature.
LUV	Commonly used CHARACTER*5 units symbol ' m / s ' or ' ft / s ' for velocity.
LUVF	Commonly used CHARACTER*5 units symbol ' $\mathrm{m} 3 / \mathrm{s}$ ' or ' gpm for volumetric flow.
Luvo	Commonly used CHARACTER*4 units symbol ' m3' or ' ft3' for volume.
LUZ	Commonly used CHARACTER*3 units symbol ' m ' or ' ft ' for length.

NSTABO Old value of NSTAB (flag for evaluating the SETS3D equations) from the previous timestep.

D.58. MELFLG.H

COMMON/MELFLG/ MELTRC

INTEGER VARIABLE:
MELTRC Flag to indicate whether subroutine THERMO is called from TRAC-P components or MELVSL (necessary due to differing convention on mixture properties).
$0=$ call is from MELVSL;
$1=$ call is from TRAC-P.

D.59. MEMORY.H

COMMON/TIMER/ ADATE, ATIME, CPUT, TIMCPU, TIMEI, TIMIOM, TIMSYS, TIMTOT

COMMON/TIMER NSTEPT
REAL*8 VARIABLES:
ADATE Date obtained from calling system routine DATE.
ATIME Time obtained from calling system routine DATE.
CPUT Cumulative CPU time from previous jobs in a restarted series of calculations; CPUT is set to 0.0 s at time 0.0 s .
TIMCPU CPU time obtained from calling system routine TIMING.
TIMEI Time limit of the current job obtained from calling system routine GETJTL.
TIMIOM I/O time obtained from calling system routine TIMING.
TIMSYS System time obtained from calling system routine TIMING.
TIMTOT Total of CPU, I/O, and system times obtained from calling system routine TIMING.
INTEGER VARIABLE:
NSTEPT Cumulative number of timesteps from previous jobs in a restarted series of calculations; NSTEPT is set to 0 at time 0.0 s .

D.60. NAVGN.H

COMMON/NAVGN/ NAVG1
 INTEGER VARIABLE:

NAVG1 Value defined to IDALPI in subroutine TF1DS when the interface is a junction connected to a BREAK component with flow into the BREAK.

D.61. NMFAIL.H

COMMON/NMFAIL IFTP, ITFL1, NFL1, NFL3
INTEGER VARIABLES:
IFTP Flag that prevents thermal failure messages if a message has come from TF1SD3 or FF3D.
ITFL1 Iteration number of the last TF1DS3 failure.
NFL1 Total number of TF1DS3 failures in the current timestep.
NFL3 Total number of FF3D failures in the current timestep.

D.62. NRCMP.H

COMMON/NRCMP/ NCMPMX, NHTSMN, NRCOMP INTEGER VARIABLES:
NCMPMX Maximum hydraulic-component number.
NHTSMN Minimum heat-structure component number.
NRCOMP Number of components defined from the TRCRST restart-data file.

D.63. OVLI.H

COMMON/OVLI/ JFLAG, ISTORE

INTEGER VARIABLES:
JFLAG Flag that is set to 1 when an input-data error is encountered and TRAC-P is to abort the calculation after all input data have been processed.
ISTORE Pointer variable for the A array where unused computermemory space starts.

D.64. PMPSTB.H

COMMON/PMPSTB/ FWPA

COMMON/PMPSTB/
 IPMPCN

REAL*8 VARIABLE:
FWPA Fraction 0.1 of the present donor-celled gas volume fraction across the pump-impeller interface that is averaged with the fraction ($1.0-$ FWPA $=0.9$) of its previous gas volume fraction average to define the gas volume fraction for evaluating the PUMP-curve HDM table.

INTEGER VARIABLE:

IPMPCN Flag for not defining the donor-celled mixture density and gas volume fraction across the pump-impeller interface.

D.65. POINTERS.H

LCONTR Pointer to the location where the first parameter of constrained steady-state parameter data is stored in the A array.
LDRA Storage for right-hand side of the noncondensable stabilizer mass equation.
LDRC Pointers for network variables for the solute-tracking option.
LICVS Pointer for a temporary array that contains a list of all VESSEL composite-cell numbers that have a source connection to one of their cell faces.
LDPMAX Pointer for an array saving the maximum pressure error for each hydraulic component during the last outer iteration.
LIJVS Pointer for a temporary array that contains a list of all junction numbers that link to a VESSEL.
LILCMP Component LCM pointers stored in the order in which the components were read.
LIOU Network junction numbers for the junctions of all components excluding BREAKs and FILLs.
LISVF Pointer to an array of flags indicating whether or not a particular component is used to evaluate one or more signal variables (-1 , no signal variable; +1 , signal variable); this array uses the same order in which the component data are processed.
LIVCON Pointer to network junction numbers that connect to a VESSEL.
LIVLJN IVLJN(I) is the VESSEL junction number that corresponds to the network junction number given by IVCON(I).
LJOUT Storage area for pointers that locate the beginning of each system loop within data for IOU.
LJSEQ Junction numbers in the order in which junctions occur in the junction-component array.
LJUN Junction-component pair array pointer.
LLCMHS Pointer to define the starting address for the fixed-length table of each heat-structure component.
LLCON Number of times each component was the last to converge since the last edit.
LLOOPN IA(LLOOPN+IL-1) gives the element of the IORDER array that begins the $\mathrm{IL}^{\text {th }}$ loop pass.
LMATB Pointer for additional material-property ID numbers.

LMCMSH Storage for number of coarse-mesh VESSEL source cells or absolute cell index if direct VESSEL solution is used.
LMSCT Temporary storage for VESSEL pressure changes adjacent to sources.
LNBR Component numbers stored in the order in which components were read.
LNJN NJN(IL) is the number of network junctions in loop IL.
LNSIG NSIG(IL) is the total number of components excluding BREAKs and FILLs in a loop.
LNSIGP NSIGP(IL) is NSIG(IL).
LNVCNL IA(LNVCNL+IL-1) points to the elements of IVCON and IVLJN that begin the $\mathrm{IL}^{\text {th }}$ loop.
LORDER Component numbers stored in the order used for iteration.
LPRPTB Pointer to user-defined material-property tables.
LPTBLN Pointer for the number of entry groups in the user-defined material-property table.
LTITLE Problem title and version information (stored using only the first four bytes of each word).
LVSI Junction flow reversal indicators in the order in which junctions occur in the junction-component array.
LWP Pointer for the composite location numbers of hydraulic cells coupled to a heat-structure component surface.
NETWORK SOLUTION POINTERS:
LAOL Variable to rework solution of ARL, AREL, and VLT (contains rework matrix).
LAOU Network junction coefficient matrix.
LAOV Variable to rework solution of ARV, AREV, and VVT (contains rework matrix).
LDPVC Locator that shows the beginning of coefficients to evaluate the derivatives of junction velocities with respect to VESSEL pressures.
LDPVCV Pointer for reordered coupling coefficients between the VESSEL and the 1D network solution.
LDREL Storage for right-hand side of the liquid stabilizer equation.
LDREV Storage for right-hand side of the vapor stabilizer equation.

LDRL Variable to rework solution of ARL and VLT (contains righthand side of linear equations).
LDRV Variable to rework solution of ARV and VVT (contains righthand side of linear equations).
LDVB Storage for the right-hand side of the network junction equations or the changes in junction velocities.
LIDPCV Pointers to coefficients stored in DPCV.
LOD Temporary storage for intercomponent coupling information.
LVRH Storage for explicit information to evaluate equations of motion at network junctions.
JAOL Variable not used.
JAOV Variable not used.
JDRV Variable not used.
JDRL Variable not used.
JOD Variable not used.
JDREL Variable not used.
JDREV Variable not used.
JDRA Variable not used.
JDRC Variable not used.
JNJUN Temporary storage location used to define the number of junctions in the current network solution procedure.
LILPRB Pointer for the A array which defines if each hydraulic loop has VESSEL predictor velocities coupled in different directions.
LIVLFC Pointer for the A array which defines the face-connect number for all junction connections to VESSELs for a given hydraulic loop.
LIVVTO Pointer for the A array which defines the gas tilde velocity at a source-connection junction to a VESSEL for a hydraulic loop.
LIVLTO Pointer for the A array which defines the liquid tilde velocity at a source-connection junction to a VESSEL for a hydraulic loop.
COMBINATION OF UNSHIFTED POINTERS AND ARRAY LENGTHS:
LBVEC Pointer for storing in the A array the capacitance-matrix equation right-hand-side vector.
LBW Number of element rows in the array that stores the VESSEL banded coefficient matrix.

LDMAT Pointer for storing in the A array the capacitance coefficient matrix.
LEMAT Pointer for storing in the A array the E matrix of the capacitancematrix method.
LENFXD Length of data that always remains in the SCM array A.
LFXD First word address in the A array of the data defined by LENFXD.
LRMAT Pointer for storing in the A array the R matrix of the capacitancematrix method.
LVMAT VESSEL matrix storage for coarse-mesh rebalance or direct inversion.
LVSSC Right-hand side of equation associated with LVMAT.
LVSSIP Pivoting information for LVMAT.
NCLEAR Number of values in the A (LVMAT) array storing the VESSEL banded coefficient matrix.
NMAT Number of additional material-property tables provided by the user through input.
NVCELL Total number of cells in all VESSELs.
D.66. PSE.H

COMMON/PSE/
NPICMP, NPSE, NPSE1, NPSE3, NPSIZ, NPSJ, NPSK, NPSV1, NPSHTI
INTEGER VARIABLES:
NPICMP Component number in TF1DS if NSTEP $=$ NPSE1 and in HTIF if NSTEP = NPSHTI that causes a pause.
NPSE Pause in TRANS if NSTEP = NPSE.
NPSE1 Pause in TF1DS if NSTEP = NPSE1; the cell number is NPSJ, and the component number is NPICMP.
NPSE3 Pause in TF3DS if NSTEP = NPSE3; the cell index K is NPSK, and the second level is NPSIZ.
NPSIZ Pause in TF3DS for each level if NSTEP = NPSE3.
NPSJ Pause in TF1DS for each cell if NSTEP = NPSE1.
NPSK Pause in TF3DS for each cell if NSTEP = NPSE3.
NPSV1 Pause in TF1DS1 if NSTEP = NPSE1; the cell number is NPSJ and the component number is NPICMP.
NPSHTI Pause in HTIF if NSTEP = NPSHTI.

COMMON/RADATA/	ALPR1, ALPR2, CRAD1, DDRMIN, DDRMAX, RADC1,
	RADC2, RADGC1, RADGC2, RADGC3, RADGC4,
	RADGC5, RADGC6, RADGC7, RADGC8, RADGC9,
	RADG10

REAL*8 VARIABLES:
ALPR1 Gas volume fraction below which the liquid absorbs all the radiant energy.
ALPR2 Gas volume fraction above which the liquid and gas absorb all the radiant energy.
CRAD1 Exponent-power constant used in subroutine RADFP for liquid property.
DDRMIN Minimum drop size in the radiation model.
DDRMAX Maximum drop size in the radiation model.
RADC1 Constant used in subroutine RADFP.
RADC2 Constant used in subroutine RADFP.
RADGC1 Constant used in subroutine RADFP for gas property.
RADGC2 Constant used in subroutine RADFP for gas property.
RADGC3 Constant used in subroutine RADFP for gas property.
RADGC4 Constant used in subroutine RADFP for gas property.
RADGC5 Constant used in subroutine RADFP for gas property.
RADGC6 Constant used in subroutine RADFP for gas property.
RADGC7 Constant used in subroutine RADFP for gas property.
RADGC8 Constant used in subroutine RADFP for gas property.
RADGC9 Constant used in subroutine RADFP for gas property.
RADG10 Constant used in subroutine RADFP for gas property.

D.68. RADNEL.H
COMMON/RADMEM/ NFIX1, NFIX2, NFIX3, NFQUAN, MTNFCE, MTNHYD, MNTFCE, MXTFCE, NUTFCE, MAXHZS, MFIXLD, MVARLV, MVARLD
COMMON/RADPTB/ LENCLI, LENCLO, LTOTHL, LTOTZS, LTOTRF, LNPMF, LUTOTF, LTFOS, LMTFOS, LTMPE1
COMMON/RADPTR/ LZFACP, LPMPTR, LHTSCM, LHTSND, LINOUT, LHTSCB, LRODNM, LHSARA, LEMCO1, LEMCO2,

 with the total number of faces over all radiation levels.

LENCLI A-array pointer where the basic enclosure information with respect to the enclosure number is stored (these are TRAC's reordered numbers).
LENCLO A-array pointer where the basic enclosure information with respect to the enclosure number is stored (these are the user's original enclosure numbers).
LTOTHL A-array pointer where the basic enclosure information with respect to the total number of enclosure faces is stored.
LTOTZS A-array pointer where the basic enclosure information with respect to the total number of hydraulic levels is stored.
LTOTRF A-array pointer where the basic enclosure information with respect to the total number of enclosure levels is stored.
LNPMF A-array pointer where the basic enclosure information with respect to whether the radiation level has a participating medium or not is stored.
NUTOTF A-array pointer where the basic enclosure information with the unique total number of faces in increasing order.
LTFOS A-array pointer where the basic enclosure information with the off set in variable length data corresponding to where the total number of faces changes.
LMTFOS A-array pointer where the basic enclosure information with the m-number corresponding to a change in the total number of faces takes place.
LTMPE1 A-array pointer where the scratch vector in basic enclosure information is located.
INFORMATION NEEDED TO SET UP AND LOCATE THE MAJOR PORTION OF THE RADIATION MODEL'S DATA
LZFACP A-array pointer where a vector 'MTNFCE' long exists that contains the face number of each radiation level for all radiation levels is stored.
LPMPTR Pointer where flag for whether the face as a participating media is stored within the face-related information in the A array.
LHTSCM Pointer where the heat-structure component number for a given face is stored within the face-related information in the A array.

LHTSND Pointer where the heat-structure node/elevation number for a given face is stored within the face-related information in the A array.
LINOUT Pointer where information as to whether the radiation node is on the inner or outer surface of the heat structure is stored in the A array.
LHTSCB Pointer where information as to whether this m-number face has its wall heat flux combined with another for the conduction solution is stored in the A array.
LRODNM Pointer where information as to the heat-structure rod number for a given radiation face is stored in the A array.
LHSARA Pointer where information as to the heat-structure surface area for a given radiation face is stored in the A array.
LEMCO1 A-array pointer where the first coefficient for a quadratic fit to emissivity vs temperature for the radiation model begins.
LEMCO2 A-array pointer where the second coefficient for a quadratic fit to emissivity vs temperature for the radiation model begins.
LEMCO3 A-array pointer where the third coefficient for a quadratic fit to emissivity vs temperature for the radiation model begins.
LEMISN A-array pointer where the radiation-level surface emissivity is stored.

LRGMRD A-array pointer where the radiation flow regime for each radiation face is stored.
LRODTP A-array pointer where addresses of the wall temperatures for each radiation face are stored.
LQRADG A-array pointer where phasic radiation heat flux for gas for each radiation face is stored.

LQRADL A-array pointer where phasic radiation heat flux for liquid for each radiation face is stored.
LQRAD A-array pointer where the radiation heat flux for each radiation face is stored.
LQRADP A-array pointer where addresses of the radiation wall heat fluxes for the proper heat-structure node for each radiation face are stored.

INFORMATION NEEDED TO SET UP AND LOCATE STORAGE NEEDED FOR THE RADIATION MODEL
LGVF A-array pointer where geometric view-factor storage for the radiation model begins.
LPATHL A-array pointer where the path-length storage for the radiation model begins.
LEMITG A-array pointer where the gas-emittance storage for the radiation model begins.
LASBG A-array pointer where the gas-absorbence storage for the radiation model begins.
LPROBG A-array pointer where the gas-probability storage for the radiation model begins.
LTAUG A-array pointer where the gas-transmittance storage for the radiation model begins.
LEMITL A-array pointer where the liquid-emittance storage for the radiation model begins.
LASBL A-array pointer where the liquid-absorptance storage for the radiation model begins.
LPROBL A-array pointer where the liquid-probability storage for the radiation model begins.
LTAUL A-array pointer where the liquid-transmittance storage for the radiation model begins.
LTAU A-array pointer where the total-transmittance storage for the radiation model begins.
INFORMATION ASSOCIATED WITH THE RADIATION MODEL'S DATA
LENCO A-array pointer where the integer vector of the basic enclosure information that is NENCL long is stored.
LHYDEO A-array pointer where the integer vector of the basic enclosure information that is NENCL long is stored.
LFACEM A-array pointer where a vector MTNFCE long is stored that contains m-numbers ordered in terms of a 4D array where the m-numbers are a function of the face number, radiation-level number, hydraulic-cell number, and enclosure number.
LHYDMU A-array pointer where a vector MTNFCE long is stored that contains a hydraulic-level number for each m-number, which is
an assigned number that always increases independent of what enclosure is involved.
LHYDM A-array pointer where a vector MTNFCE long is stored that contains a hydraulic-level number for each m-number, which is an assigned number that is relative to the enclosure being considered.
LVLOS A-array pointer where an integer vector MTNFCE long is stored that contains offset points for variable length data associated with each enclosure's m numbers.
INFORMATION, ASSOCIATED WITH EACH RADIATION HYDRAULIC LEVEL, THAT SETS UP AND LOCATES RADIATION-MODEL STORAGE
LHYDOS A-array pointer where off set data associated with radiation hydraulic-level information begins.
LHYDCM A-array pointer where the hydraulic-component number (with which a given face might communicate) is stored within the hydraulic-level related information.
LHYDCL A-array pointer where the hydraulic-component cell number (with which a given face might communicate) is stored within the hydraulic-level related information.
LRODID A-array pointer where information as to the rod ID number or the hydraulic r-theta (with which a given face might communicate) is stored within the hydraulic-level related information.
LHYALP A-array pointer where indices for the hydraulic-cell gas volume fraction for a given hydraulic-level is stored within the hydraulic-level related information.
LHYP A-array pointer where indices for the hydraulic-cell pressure for a given hydraulic-level is stored within the hydraulic-level related information.
LHYPA A-array pointer where indices for the hydraulic-cell non-condensable-gas pressure for a given hydraulic-level is stored within the hydraulic-level related information.
LHYROL A-array pointer where indices for the hydraulic-cell liquid density for a given hydraulic-level is stored within the hydraulic-level related information.

LHYROV A-array pointer where indices for the hydraulic-cell gas density for a given hydraulic-level is stored within the hydraulic-level related information.
LHYMUL A-array pointer where indices for the hydraulic-cell liquid viscosity for a given hydraulic-level is stored within the hydraulic-level related information.
LHYMUV A-array pointer where indices for the hydraulic-cell gas viscosity for a given hydraulic-level is stored within the hydraulic-level related information.
LHYSIG A-array pointer where indices for the hydraulic-cell surface tension for a given hydraulic-level is stored within the hydraulic-level related information.
LHYTL A-array pointer where indices for the hydraulic-cell liquid temperature for a given hydraulic-level is stored within the hydraulic-level related information.
LHYTV A-array pointer where indices for the hydraulic-cell gas temperature for a given hydraulic-level is stored within the hydraulic-level related information.
LHYQRV A-array pointer where indices for the hydraulic-cell gas radiation heat flux for a given hydraulic-level is stored within the hydraulic-level related information.
LHYQRL A-array pointer where indices for the hydraulic-cell liquid radiation heat flux for a given hydraulic-level is stored within the hydraulic-level related information.
LHYHD A-array pointer where indices for the hydraulic-cell hydraulic diameter for a given hydraulic-level is stored within the hydraulic-level related information.
LHYVL A-array pointer where indices for the hydraulic-cell liquid velocity for a given hydraulic-level is stored within the hydraulic-level related information.
LHYVV A-array pointer where indices for the hydraulic-cell gas velocity for a given hydraulic-level is stored within the hydraulic-level related information.

LHYPMD A-array pointer where the flag for whether the hydraulic cell has a participating media is stored within the hydraulic-related information.

LHYRGM A-array pointer where the radiation flow-regime indicator is stored within the hydraulic-related information.
LHYQDG A-array pointer where the phasic radiation heat flux for the gas is stored within the hydraulic-related information.
LHYQDL A-array pointer where the phasic radiation heat flux for the liquid is stored within the hydraulic-related information.
LENDRD A-array pointer where radiation data storage ends.

D.69. RADTMP.H

> COMMON/RADTMP/ LTMPI1, LTMPI2, LTMPR1, LTMPR2, LTMPR3, LTMPR4, LTMPL1, LTMPL2

INTEGER VARIABLES:
LTMPI1 A-array pointer to a vector for temporary storage of integers.
LTMPI2 A-array pointer to a vector for temporary storage of integers.
LTMPR1 A-array pointer to a vector for temporary storage of reals.
LTMPR2 A-array pointer to a vector for temporary storage of reals.
LTMPR3 A-array pointer to a vector for temporary storage of reals.
LTMPR4 A-array pointer to a vector for temporary storage of reals.
LTMPL1 A-array pointer to a vector for temporary storage of long vectors.
LTMPL2 A-array pointer to a vector for temporary storage of long vectors.

D.70. REFHTI.H

$$
\begin{array}{ll}
\text { COMMON/REFHTI/ } & \text { AGALP, AGSZ, CHFALP, CHFHV, CHFZ, DFALP, DFSZ, } \\
& \text { RWALP, RWSZ, SMALP, SMSZ, TBALP, TBZ, UNHF, } \\
& \text { CAFJ, VLAG, VVAG }
\end{array}
$$

REAL*8 VARIABLES:

AGALP Gas volume fraction at the agitated section of inverted-annular flow.

AGSZ Elevation of the agitated section of inverted-annular flow.
CHFALP Gas volume fraction at the CHF point.
CHFHV Vapor heat transfer at CHF.
CHFZ Elevation of CHF.
DFALP Gas volume fraction at the highly dispersed section elevation.
DFSZ
Elevation of highly dispersed section of inverted-annular flow.
RWALP Gas volume fraction of rough-wavy section elevation.
RWSZ Elevation of rough-wavy section of inverted-annular flow.

SMALP Gas volume fraction at the smooth section elevation.
SMSZ Elevation of smooth section of inverted-annular flow.
TBALP Gas volume fraction at transition-boiling point.
TBZ Elevation of transition boiling.
UNHF Fraction of heated surface that is unheated.
CAFJ Capillary number.
VLAG Liquid velocity at the agitated level.
VVAG Gas velocity at the agitated level.

D.71. REFHTI2.H

COMMON/REFHTL2/ ALPTSL, ALPTRL, ALPTAL, ALPTSU, ALPTRU, ALPTAU

REAL*8 VARIABLES:

ALPTSL Minimum gas volume fraction allowed for the end of the smooth-inverted flow regime.
ALPTRL Minimum gas volume fraction allowed for the end of the rough-wavy-inverted flow regime.
ALPTAL Minimum gas volume fraction allowed for the end of the agitated-inverted flow regime.
ALPTSU Maximum gas volume fraction allowed for the end of the smooth-inverted flow regime.
ALPTRU Maximum gas volume fraction allowed for the end of the rough-wavy-inverted flow regime.
ALPTAU Maximum gas volume fraction allowed for the end of the agitated-inverted flow regime.

D.72. RESTART.H

INTEGER
DLNFLT, DNCOMP, ICTRLR(8)
COMMON/RSTART/ DDATE, DDTIME
COMMON/RSTART/ DLNFLT, DNCOMP, ICTRLR
REAL*8 VARIABLES:
DDATE Date the restart file was created.
DDTIME Time the restart file was created.
INTEGER VARIABLES:
DLNFLT Length of the fixed-length tables read from the restart file.

DNCOMP Number of components in the restart file.
ICTRLR Array that contains buffering information about the restart file.

D.73. ROWS.H

COMMON/ROWS/ ISCL
INTEGER VARIABLE:
ISCL Flag that has TRAC-P divide by the largest matrix element in each matrix row for all 4 or 5 matrix elements and 3 right-handside elements in each row of the 4×4 or 5×5 outer-iteration mesh-cell matrix equation.
$0=$ no;
$1=$ yes.

D.74. RSPARM.H

COMMON/RSPARM/ DTSTRT

COMMON/RSPARM/ ICDELT
REAL*8 VARIABLE:
DTSTRT Timestep that can be set as the initial timestep size for a restart calculation (Namelist variable; -1.0 default value).
INTEGER VARIABLE:
ICDELT Option that overrides the evaluation of DELT at the beginning of an initial calculation.
$0=$ DELT is set to DTMIN;
$1=$ DELT is evaluated.

D.75. SEPCB.H

COMMON/SEPCB/ ALPSPC, ALPDRC, DPSEPC
COMMON/SEPCB/ ISEPCB, IDRYCB, NCSEPC, NDRYRC, NSEPSC, ISTAGC
REAL*8 VARIABLES:

ALPSPC Separator gas volume fraction.
ALPDRC Gas volume fraction to be convected from the dryer.
DPSEPC Separator pressure drop.
INTEGER VARIABLES:
ISEPCB Separator flag.
IDRYCB Dryer flag.
NCSEPC Cell number for separator.

NDRYRC Cell number for dryer.
NSEPSC Number of separators modeled.
ISTAGC Separator-option type.

D.76. SIGNAL.H

DIMENSION	CPV(42), DSV(2)
COMMON/SIGNAL/	CPV, DSV

REAL*8 VARIABLES:
CPV Control-panel vector for storing the values of signal-variable parameter numbers 1 through 6 for the global parameters and 7 through 15 for up to four coolant loops (variable not used).
DSV Dummy signal-variable vector for storing the values of signalvariable parameter numbers 16 and 17 (variable not used).

D.77. SOLCON.H

COMMON/SOLCON/ CNT, CNC, CNTLMN, CNMIN, CNTLMX, CNMAX REAL*8 VARIABLES:
CNT Coefficient of liquid temperature (kg solute $/ \mathrm{kg}$ liquid $\mathrm{K}, \mathrm{lb}_{\mathrm{m}}$ solute $/ \mathrm{lb}_{\mathrm{m}}$ liquid F) in linear fit to solubility.
CNC Constant term (kg solute $/ \mathrm{kg}$ liquid, lb_{m} solute $/ \mathrm{lb}_{\mathrm{m}}$ liquid) in linear fit to solubility.
CNTLMN Minimum liquid temperature (K, F) of linear fit.
CNMIN Solubility (kg solute $/ \mathrm{kg}$ liquid, lb_{m} solute $/ \mathrm{lb}_{\mathrm{m}}$ liquid) when the liquid temperature is at or below CNTLMN.
CNTLMX Maximum liquid temperature (K, F) of linear fit.
CNMAX Solubility (kg solute $/ \mathrm{kg}$ liquid, lb_{m} solute $/ \mathrm{lb}_{\mathrm{m}}$ liquid) when the liquid temperature is at or above CNTLMX.
D.78. STDYERR.H

DIMENSION	FMAX(7), LOK(7,2)
REAL*8	MAXFLN
COMMON/SSCON/	CF, EPS, EPSPOW, FFLW, FMAX, MAXFLN, RPCF,
	RTWFP, STIME, TPOWR
COMMON/SSCON/	IPOVEL, IPOWR, ISSCVT, LOK, NCORES, NEF, NET,
	NOPOW

REAL*8 VARIABLES:

CF Fluid mass flow through the reactor-core region.
EPS Tolerance on calculation time for editing and terminating the problem.
EPSPOW Convergence criterion on the fractional change in liquid velocity per second for setting on the steady-state power when all reactorcore inlet interfaces satisfy this criterion.
FFLW Fraction of the steady-state power level that the coolant mass flow through the reactor core times RPCF defines.
FMAX Array of maximum normalized errors.
MAXFLN Maximum 1D mass flow at this steady-state convergence test.
RPCF Ratio of reactor-core power to coolant mass flow based on the difference in internal energies from the core inlet and outlet temperatures that are input.
RTWFP Ratio of heat-transfer to fluid-dynamics timestep sizes.
STIME Steady-state calculation time.
TPOWR Steady-state calculation time when the reactor-core power is set on.

INTEGER VARIABLES:
IPOVEL Number of reactor-core inlet interfaces that satisfy the EPSPOW criterion based on the date-of-change of the liquid velocity.
IPOWR Flag that turns on the steady-state power.
ISSCVT Option for evaluating the EPSS steady-state convergence test during a TRANSI = 1 transient calculation (Namelist variable).
LOK Array of locations of maximum normalized errors.
NCORES Total number of reactor-core region inlet interfaces.
NEF Number of timesteps (100) between steady-state convergence check printouts to the terminal and message files.
NET Number of timesteps (5) between steady-state convergence checks.
NOPOW Steady-state power flag.
$0=$ on;
1 = off.

COMMON/STNCOM/ STNMAX, TMSTNU, TLDMIN, TMTLD
COMMON/STNCOM/ ISTNU, JSTNU, KSTNU, NSTNU, ITLDM, JTLDM, KTLDM, NTLDM

REAL*8 VARIABLES:

STNMAX Largest Stanton number evaluated in this calculation.
TLDMIN The minimum liquid temperature (for any heat structure) when subcooled boiling begins based on the Saha-Zuber correlation.
TMTLD Time when TLDMIN was found.
TMSTNU Time when STNMAX was evaluated.
INTEGER VARIABLES:
ISTNU $3 D$ r- or x-cell number where STNMAX was evaluated.
JSTNU 3D θ - or y-cell number where STNMAX was evaluated.
KSTNU 3D z-level number where STNMAX was evaluated.
NSTNU Component number where STNMAX was evaluated.
ITLDM Variable not used.
JTLDM Axial node number where TLDMIN was found.
KTLDM Variable not used.
NTLDM Component number where TLDMIN was found.

D.80. STRTNT.H

COMMON/STRTNT/ SDTINT, STFVL, STFVU, STFLL, STFLU, FSTRV, FSTRL REAL*8 VARIABLES:
SDTINT Variable not used.
STFVL Variable not used.
STFVU Variable not used.
STFLL Constant used to determine stratified-flow weighting factors.
STFLU Constant used to determine stratified-flow weighting factors.
FSTRV Variable not used.
FSTRL Multiplier on the liquid velocity check for stratified flow in subroutine CELLA3.

D.81. SUPRES.H

Factor in nucleate-boiling heat-transfer coefficient evaluation in subroutine CHEN.

D.82. SYSSUM.H

COMMON/SYSSUM/	ALQCOR, ALQPRZ, ALQUP, CORWM, PMX, TLMX,
	TLNCOR, TSHCOR, TSNCOR, TVMX, VOLCOR,
	XLQCOR, XTSHCR
COMMON/SYSSUM/	JPMX, JTLMX, JTVMX, NPMX, NTLMX, NTVMX
REAL*8 VARIABLES:	

ALQCOR Core-region mean liquid volume fraction.
ALQPRZ PRIZER (pressurizer) mean liquid volume fraction.
ALQUP Upper-plenum mean liquid volume fraction (evaluated only for 3D VESSELs).
CORWM Core-region water mass.
PMX Maximum pressure.
TLMX Maximum liquid temperature.
TLNCOR Core-region mean liquid temperature.
TSHCOR Core region mean superheat.
TSNCOR Core-region mean saturation temperature.
TVMX Maximum gas temperature.
VOLCOR Core-region volume.
XLQCOR Minimum core-region liquid volume fraction.
XTSHCR Maximum core-region superheat.
INTEGER VARIABLES:
JPMX Cell number for the maximum pressure.
JTLMX Cell number for the maximum liquid temperature.
JTVMX Cell number for the maximum gas temperature.
NPMX Component number for the maximum pressure.
NTLMX Component number for the maximum liquid temperature.
NTVMX Component number for the maximum gas temperature.

D.83. TEEOPT.H

COMMON/TEEOPT/ NOSRCE
INTEGER VARIABLE:
NOSRCE Option to turn off momentum-source coupling between the main tube and side tube of a SEPD or TEE component.
$0=$ evaluate momentum-source coupling;
$1=$ turn off momentum-source coupling.
D.84. TF3DC.H

INTEGER
COMMON/TF3DC/

ORG
INSCT, IZ, KABSO, KCMSH, KL, KLEV, KU, ORG, KVEL1, KVEL2, KVEL3

INTEGER VARIABLES:
INSCT Variable used to obtain a displacement into network arrays involving VESSEL junctions when there is more than one VESSEL.
IZ VESSEL level number currently being evaluated.
KABSO Storage offset to obtain an absolute cell number when multiple VESSELs are used.
KCMSH Offset for coarse-mesh indexing with multiple VESSELs.
KL Displacement of level (IZ-1) from level (IZ) in A-array storage for the VESSEL 3D data array.
KLEV VESSEL component axial-direction K index [the axial-level number IZ plus NZBCM (for two lower pseudo-cell levels)].
KU Displacement of level ($\mathrm{IZ}+1$) from level (IZ) in A-array storage for the VESSEL 3D data array.
ORG Starting location of the 3D VESSEL-component IZ level data in the A array.
KVEL1 Order of the r- or x-direction stabilizer motion-equation matrix for the present VESSEL component.
KVEL2 Order of the θ - or y-direction stabilizer motion-equation matrix for the present VESSEL component.
KVEL3 Order of the z-direction stabilizer motion-equation matrix for the present VESSEL component.

D.85. THERM.H

REAL*8 NTC

COMMON/THERM/ NTC, DIATC, ATC, VTC, AW, ATW, CKW
COMMON/THERM/ ITTC
REAL*8 VARIABLES:
NTC Number of thermocouples per ROD or SLAB element.

DIATC Diameter of thermocouple.
ATC Area per unit length of thermocouple.
VTC Volume per unit length of thermocouple.
AW Area of ROD or SLAB element to thermocouple weld.
ATW Thickness of ROD or SLAB element to thermocouple weld.
CKW Thermal conductivity of the ROD or SLAB element-tothermocouple weld.
INTEGER VARIABLE:
ITTC: Thermocouple flag.
$0=$ no thermocouple on ROD or SLAB element;
$1=$ thermocouple present on ROD or SLAB element.

D.86. THERMV.H

COMMON/THERMV/ ISTRT3, IEND3, NVTHM, NDIMV1, NIXNJ, NSTHM INTEGER VARIABLES:
ISTRT3 First cell number (ICO) in the VESSEL component r - or x direction.
IEND3 Last cell number (ICX) in the VESSEL component r - or x direction.
NVTHM Number of different array parameters in the EQUIV common block for a VESSEL component.
NDIMV1 NVTHM times the total number of r - or x-direction calculation plus pseudo cells dimensioned for.
NIXNJ NDIMV1 times the total number of θ - or y-direction calculation plus pseudo cells dimensioned for.
NSTHM $\quad \mathrm{NI}^{*} \mathrm{NJ}^{*} \mathrm{NK}$ stride between derivative pointer variables for a VESSEL component.
D.87. TMP.H

COMMON/TMP/

APPENDIX D

S2B(NK), S2C(NK), S2D(NK), S3A(NK), S3B(NK), S3C(NK), S3D(NK), S5A(NK), STDER(NK), STPRS(NK), LIFEQ

REAL*8 VARIABLES:

AFLUX Net noncondensable-gas mass flow into the NK-NZBCM level mesh cell.
ARLCK Net liquid mass flow into the NK-NZBCM level mesh cell.
ARVCK Net gas mass flow into the NK-NZBCM level mesh cell.
S2A
S2B

S2C Vectorization mask factor for defining the gas volume fraction equal to 0.0.
S2D Vectorization mask factor for defining the vapor pressure equal to the saturation pressure based on the gas temperature.
S3A Vectorization mask factor for defining the gas energy equation.
S3B Vectorization mask factor for defining the liquid temperature equal to the gas temperature.
S3C Vectorization mask factor for defining the liquid temperature equal to the saturation temperature based on the vapor pressure.
S3D Vectorization mask factor for defining the gas temperature equal to the saturation temperature based on the vapor pressure.
S5A Vectorization mask factor for defining the noncondensable-gas mass equation.
STDER Derivative of the saturation temperature with respect to the total pressure based on the saturation temperature and saturation pressure.
STPRS Saturation pressure based on the liquid temperature.
XVOLL Fluid volume (NSTAB=0) or fluid volume minus liquid volume outflow during the timestep (NSTAB=1) in the NK-NZBCM level mesh cell.
XVOLV Fluid volume (NSTAB=0) or fluid volume minus gas volume outflow during the timestep (NSTAB=1) in the NK-NZBCM level mesh cell.

LOGICAL VARIABLE:
LIFEQ Fluid-phase flag that is false when two-phase fluid may become single phase. If this flag is false on the second pass through the linearization, the cell will be relinearized.

D.88. TOTALS.H

COMMON/TOTALS/ TLEN, TVOL REAL*8 VARIABLES:

TLEN Total length of a component.
TVOL Total fluid volume of a component.

D.89. TSATCN.H
 DIMENSION CEOSLP(40)
 COMMON/TSATCN/ AEOS14,CEOS1,CEOS2,CEOS3,CEOSLP
 COMMON/TSATCN/ IGAS,ILIQ REAL*8 VARIABLES:

AEOS14 Constant in expression for saturation-temperature calculation at intermediate pressures (defined in subroutine THERMO).
CEOS1 First constant in expression for saturation-temperature calculation at intermediate pressures (defined in subroutine THERMO).
CEOS2 Second constant in expression for saturation-temperature calculation at intermediate pressures (defined in subroutine THERMO).
CEOS3 Third constant in expression for saturation-temperature calculation at intermediate pressures (defined in subroutine THERMO).
CEOSLP Equation-of-state array for low pressures (defined in subroutine SETEOS).
INTEGER VARIABLES:
IGAS Noncondensable-gas type option (Namelist variable).
1 = air;
2 = hydrogen;
3 = helium (ideal gas);
$4=$ helium (nonideal gas).
ILIQ Condensable-fluid type option (variable not used).
D.90. TST3D.H

COMMON/TST3D/ CCIF
COMMON/TST3D/ I1D, NIFHT, NIFSH, NOBOIL, NOIMP, NWSH, IMOML REAL*8 VARIABLE:

CCIF Constant value for the interfacial-drag coefficient when NIFSH = 1 (Namelist variable).
INTEGER VARIABLES:
I1D Flag to convert mean-mass and gas-mass equations to gas-mass and liquid-mass equations for evaluation by subroutine TF3DS.
NIFHT Flag for defining a constant 10.0 value to the ALVE, CHTI, ALV, and CHTIA evaporation and condensation coefficients.
NIFSH Interfacial-shear (drag) option flag (Namelist variable).
NOBOIL Flag for not evaluating evaporation and condensation when IEOS $=0$.
NOIMP Flag for not evaluating the gas volume fraction time-derivative term in the motion equation.
$0=$ evaluate the gas volume fraction time-derivative term;
1 = do not evaluate the gas volume fraction time-derivative term (default).
NWSH Flag for defining the gas FRIC by its gas-field value rather than by the liquid-field value.
IMOML Option to improve momentum conservation where the gas volume fraction gradient is large.
$0=$ no (default);
$1=$ yes.

D.91. TWOSTEP.H

COMMON/TWOSTP/ NPSFE, NPSME, NTSPRN
INTEGER VARIABLES:
NPSFE Pause in FEMOM and CIF3 if the timestep number NSTEP = NPSFE. The cell number is NPSJ or the level number is NPSIZ and the component number is NPICMP.
NPSME Pause in STBME and STBMPL if the timestep number NSTEP = NPSME. The cell number is NPSJ and the component number is NPICMP.
NTSPRN Flag for printing extra thermal-hydraulic parameter information to file TRCOUT.
D.92. VCKDAT.H

COMMON/VCKDAT/ DONTOL

DONTOL Tolerance for density difference requiring redonor celling in the VESSEL.
INTEGER VARIABLES:
IPRVCK Flag to print information about redonor celling in the VESSEL (normally set to 0 for no print).
ISKIP Flag to skip redonor-cell logic in the VESSEL component (normally set to 0 for no skip).
ITVKMX Maximum iteration count to check for need to redonor cell in the VESSEL.

D.93. VDVMOD.H

COMMON/VDVMOD/ IVDVS1, IVDVS2
INTEGER VARIABLES:
IVDVSI Flag for scaling the $\mathrm{V} \cdot \nabla \mathrm{V}$ terms.
0 = no;
1 = yes.
IVDVS2 Flag for scaling the $\beta \mathrm{V} \cdot \nabla \mathrm{V}$ terms.
$0=$ no;
$1=$ yes.

D.94. VELLIM.H

COMMON/VELLIM/ VVUB, VVLB, VLUB, VLLB, DFVUB, DFVLB, DFLUB, DFLLB
COMMON/VELLIM/ JVLIM
REAL*8 VARIABLES:
VVUB Pump-impeller interface gas velocity upper-limit value.
VVLB Pump-impeller interface gas velocity lower-limit value.
VLUB Pump-impeller interface liquid velocity upper-limit value.
VLLB Pump-impeller interface liquid velocity lower-limit value.
DFVUB Derivative of the pump-impeller interface gas velocity (at its upper limit) with respect to total pressure.
DFVLB Derivative of the pump-impeller interface gas velocity (at its lower limit) with respect to total pressure.

DFLUB Derivative of the pump-impeller interface liquid velocity (at its upper limit) with respect to total pressure.
DFLLB Derivative of the pump-impeller interface liquid velocity (at its lower limit) with respect to total pressure.
INTEGER VARIABLE:
JVLIM: For PUMP type IPMPTY $=0$, the pump-impeller interface number (JVLIM $=2$) when the PUMP component-action table defines the fluid velocity.

D.95. WEBNUM.H

COMMON/WEBNUM/ ALVFCP, ALVFCS, BMIN, CHTFCP; CHTFCS, CHTIBC, CHTIBH, CNDFC, DMIN, PENTL, PENTU, VLSPR, VVLOW, VVUP, WEB, WED, WEDU
COMMON/WEBNUM/ ICHVOL
REAL*8 VARIABLES:
ALVFCP Multiplier on ALV for low-velocity vertical components.
ALVFCS Multiplier on ALV under spray conditions.
BMIN Minimum allowed bubble size.
CHTFCP Multiplier on CHTI for low-velocity vertical components.
CHTFCS Multiplier on CHTI under spray conditions.
CHTIBC Vapor-bubble interfacial HTC when TV > TSAT.
CHTIBH Vapor-bubble interfacial HTC when TV $<$ TSAT.
CNDFC Condensation-rate scaling factor.
DMIN Minimum allowed drop size.
PENTL Lower bound on entrained gas volume fraction α.
PENTU Upper bound on entrained gas volume fraction α.
VLSPR Lower limit on the quantity $(1-\alpha) \mathrm{V}_{\ell}$ at the top of the cell above which the spray condition is assumed to exist.
VVLOW Lower limit on gas velocity for special condensation model for low-velocity vertical components.
VVUP Upper limit on gas velocity for special condensation model for low-velocity vertical components. Note: For liquid velocity greater than VLUP, the regular condensation model is used. For liquid velocity less than VLLOW, the special condensation model is used. For liquid velocity between VLLOW and VLUP, a linear interpolation between the two models is used.

WEB Bubble Weber number.
WED Droplet Weber number.
WEDU Droplet Weber number during core-region upflow (not implemented).
INTEGER VARIABLE:
ICHVOL: Flag that invokes a minimum value on the interfacial HTC. $0=$ no effect (default);
$1=$ sets the minimum value to the cell volume times 1.0×10^{7}.

D.96. XTVCOM1.H

INTEGER

PARAMETER

NVNAME1, NVNAME3, NVNAMEH, NVNAMEP
(NVNAME1=26, NVNAME3=35, NVNAMEH=12, NVNAMEP=10)
COMMON/XTVCOMC/VNAME1(NVNAME1), VNAME3(NVNAME3), VNAMEH(NVNAMEH), VNAMEP(NVNAMEP)
LOGICAL VARIABLES:VNAME1 XTV-graphics CHARACTER*30 variable names for 1D hydrauliccomponents.

VNAME3 XTV-graphics CHARACTER*30 variable names for 3D VESSEL components.
VNAMEH XTV-graphics CHARACTER*30 variable names for heat-structure ROD or SLAB components.
VNAMEP XTV-graphics CHARACTER*30 variable names for PLENUM components.

D.97. XVOL.H

COMMON/XVOL/ BGSS, DAWL, DAXVL, DAXVU, DGSS, FREV	
COMMON/XVOL/ IFVT, IFVTU, LDAX	
REAL*8 VARIABLES:	
BGSS	Limits on special gas volume fraction prediction logic.
DAWL	Weighting factors in special TF1DS flux logic.
DAXVL	Lower-velocity limit on special TF1DS flux logic.
DAXVU	Upper-velocity limit on special TF1DS flux logic.
DGSS	Limits on special gas volume fraction prediction logic.
FREV	Sensitivity level for reiteration on flow reversal.
INTEGER VARIABLES:	

IFVT Flag for setting velocities passed to TF1DS for special flux logic.

IFVTU

LDAX

Time-of-velocity controller.
$0=$ XVSET logic uses the old-time velocity; $1=$ XVSET logic uses the new-time velocity. Bypass switches on special TF1DS flux logic.

APPENDIXE
 EXAMPLE OF MAKING CHANGES TO TRAC-M

E.1. INTRODUCTION

Programming changes are made to TRAC-M under the RCS supervised by the CVS. CVS is the front end of the RCS, which extends the notion of revision control from a collection of files in a single directory to a hierarchical collection of directories consisting of revision controlled files. These directories and files can be combined together to form a software release. CVS provides the functions necessary to manage these software releases and to control the concurrent editing of source files among multiple software developers. CVS keeps a single copy of the master sources. This copy is called the source repository. It contains all the information to permit extracting previous software releases based on either a symbolic revision tag or a date in the past.

Three commands under CVS enable a developer to make changes to TRAC-M.

- The developer uses the checkout (CO) command to create a copy of include and routine files from the CVS source-file repository. Then the developer makes programming changes to these files in a subdirectory of his working directory.
- The developer uses the commit (CI) command to save his programming changes to the include and routine files back into the CVS source-file repository after his programming changes have been tested, reviewed; and accepted.
- The developer uses the update command to merge his programming changes with the concurrent programming changes of other developers who have already committed their changes to the CVS source-file repository. Each developer is responsible to test his changes after the merge with the concurrent changes committed to the repository by the other developers.
This appendix discusses the following example of making changes to TRAC-M under the programming-change-label UP1DPTR. We, will be programming five new variable arrays DNEW, DNEWN, HYNEW, HTNEW, and INEW in TRAC-M for all 1D hydraulic components. These arrays are stored in the A array of blank common with integer pointer variables defining the element number of the A array where the first element of each of the new arrays is stored. Each pointer variable name
begins with the letter L followed by its array name and is stored in COMMON /PTAB/. The UP1DPTR changes reprogram portions of COMMON/PTAB/ in the include files DUALPT.H, HYDROPT.H, HEATPT.H, and INTPT.H where LDNEW and LDNEWN, LHYNEW, LHTNEW, and LINEW are stored, respectively. Space for the number of elements in each of the new arrays is reserved in subroutine S1DPTR of file S1DPTR.H. Arrays DNEW, DNEWN, HTNEW, and INEW have NCELLS elements for their cell-centered parameters, whereas array HYNEW has NFACES = NCELLS +1 elements for its cell-edged parameter. These number of elements are reserved between the LDNEW, LDNEWN, LHYNEW, LHTNEW, and LINEW pointer values, and the values of the pointers of the arrays that follow them when the UP1DPTR changes to subroutine S1DPTR reserve their space in the A array.

Arrays DNEW, DNEWN, and HYNEW are assumed to be evaluated in subroutine FEMOM, whereas arrays HTNEW and INEW are assumed to be evaluated in subroutine CYLHT. Actual working equations for their evaluation will not be programmed by the UP1DPTR changes. They are defined by arbitrary REAL*8 constant values in this example as a substitute for their evaluation. These new arrays are passed to subroutines FEMOM and CYLHT through their argument list. The UP1DPTR changes program them in the argument lists of subroutines FEMOM and CYLHT as well as in the CALL FEMOM argument list in subroutine PREPER and in the CALL CYLHT argument list in subroutine POSTER.

DNEW and DNEWN are assumed to be the old-time and new-time derivative of density with respect to pressure, HYNEW is assumed to be reciprocal pressure, and HTNEW is assumed to be thermal conductivity. For real-valued variables that are input and/or output, TRAC-M needs to know their units internally for inputting/outputting their values in SI or English units. Units information on real-valued variables is programmed in TRAC-M by include file LABELV.H and subroutine file BLKDAT2.F. Files LABLEV.H and BLKDAT2.F are output by FORTRAN 77 program LABPRG.F based on current-version units information in file LABIN and new-update units information in file LABNEW that are input. File LABNEW input data for LABPRG.F, required by the UP1DPTR changes to TRAC-M, is listed in Section E.2. Program LABPRG.F, and its input/output files are described in Appendix F.

The DNEWN, HYNEW, HTNEW, and INEW results by the UP1DPTR changes are programmed in subroutines DCOMP, RECOMP, ECOMP, and SVSET1. For the restart capability of TRAC-M, subroutines DCOMP and RECOMP are programmed to write and read DNEWN, HYNEW, HTNEW, and INEW array data
to the TRCDMP and from the TRCRST files, respectively. Subroutine ECOMP is programmed to output DNEWN, HYNEW, and HTNEW values to the TRCOUT file for each large edit. Subroutine SVSET1 is programmed to output a signalvariable parameter value from array DNEWN for the control procedure of TRACM. TRAC-M does this for all 1D hydraulic components.

Section E. 3 shows a listing of a portion of the include and subroutine files with UP1DPTR changes to be programmed in TRAC-M. Changes to the TRAC-M manuals because of these programming changes are commented on initially. Note that in the programming changes to subroutine ECOMP, subroutine UNCNVT is called to convert a parameter's TRAC-internal SI-units values (stored temporarily in array TMP) to English units if IOOUT $=1$ before the array values are output to the TRCOUT file with the parameter's units symbol LUNCB(IOOUT+1, ITLS(IOLD)).

E.2. INPUT-DATA FILE LABNEW FOR LABPRG.F

1	2	3	4	5	6

E.3. UP1DPTR CHANGES TO TRAC-M

The output of new array variables DNEWN, HYNEW, HTNEW, and INEW to files TRCDMP and TRCOUT does not require documentation in the TRAC-M manuals. Appendix C of the TRAC-M Programmers Guide needs to have the five new pointervariable names and their descriptions added to include files DUALPT.H, HYDROPT.H, HEATPT.H, and INTPT.H.

Section C.1.1. DUALPT.H

Name	Array	Dimension	Description
LDNEW	DNEW	NCELLS	Old-time derivative of density with respect to pressure.
LDNEWN	DNEWN	NCELLS	New-time derivative of density

Section C.1.2. HYDROPT.H

Name	Array	Dimension	Description
LHYNEW	HYNEW	NCELLS+1	Reciprocal of the pressure.

Section C.1.4. HEATPT.H

| Name Array | Dimension | Description |
| :--- | :--- | :--- | :--- |
| LHTNEW HTNEW | NCELLS | Thermal conductivity. |

Section C.1.3. INTPT.H

Name	Array	Dimension	Description
LINEW INEW	NCELLS	Boundary-layer form index having	
			a REAL*8 value.

The following programming changes, shown in bold type, need to be made to files DUALPT.H, HYDROPT.H, HEATPT.H, INPTP.H, LABELV.H, BLKDAT2.F, S1DPTR.F, DCOMP.F, RECOMP.F, ECOMP.F, SVSET1.F, FEMOM.F, PREPER.F, CYLHT.F, and POSTER.F. These files need to be (1) checked out of the CVS repository with the CVS CO "list of file names" command, (2) modified with the bold-type changes shown, and (3) committed back to (checked in to) the CVS repository with the CVS CI "list of file names" command.

Include file DUALPT.H changes
Add new old-time LDNEW and new new-time LDNEWN pointers
1
2
3
4
5
6
7

123456789012345678901234567890123456789012345678901234567890123456789012345

```
2 INTEGER lalp,lalpn,lalpd,lalpdn,lalv,lalvn,lalve,lalven, &
3 & lara,laran,larel,lareln,larev,larevn,larl,larln,larv,larvn,lbit, &
```

\& lbitn,lchti,lchtin,lchtia,lchtan,lcif,lcifn,lconc,lconcn,ld,ldn, \&
\& ldnew, ldnewn,lea, lean,lel,leln,lev,levn,lgam,lgamn,lhig,1higo, \&
\& lhil,lhilo,lhiv,lhivo,lp,Ipn,lpa,lpan,lqppc,lqppco,lroa,lroan, \&
\& lrol,lroln, lrov,lrovn,ls,lsn,ltce, ltcen,ltd,ltdn,ltl,ltln,ltv, \&
\& ltvn,ltw, ltwn, ltwa, ltwan, ltwe, ltwen, lvl,lvln,lvlt,lvlto,lvm, \&
\& lvmn, lvv, lvvn, lvvt, lvvto

COMMON /ptab/lalp,lalpn,lalpd,lalpdn,lalv,lalvn,lalve,lalven, \&
\& lara,laran, larel, lareln, larev,larevn,larl,larln,larv,larvn,lbit, \&
\& lbitn,lchti,lchtin,lchtia,lchtan,lcif,lcifn,lconc,lconcn,ld,ldn, \&
\& Idnew, ldnewn, lea,lean,lel,leln,lev,levn,lgam,lgamn,lhig,lhigo, \&
\& lhil,lhilo,lhiv,lhivo,lp,lpn,lpa,lpan,lqppc,lqppco,lroa,lroan, \&
\& lrol,lroln,lrov,lrovn,ls,lsn,ltce,ltcen,ltd,ltdn,ltl,ltln,ltv, \&
\& ltvn, ltw, ltwn, ltwa, ltwan, Itwe, ltwen, lvl, lvln,lvlt, lvlto, lvm, \&
\& lvmn, lvv, lvvn, lvvt, Ivvto

Include file HYDROPT.H changes

Add new hydrodynamic-calculation LHYNEW pointer

1	2	3	4	5	6	7
123456789012345678901234567890123456789012345678901234567890123456789012345						

INTEGER lalpmn,lalpmx, lalpo,lam,larc,lcfz,lcl,lcpl,lcpv,lcv, \& \& ldalva,ldfldp,ldfvdp,ldriv, \&
\& $1 d t s d p, 1 d e l d p, 1 d e v d p, 1 d e l d t, 1 d e v d t, 1 d r o l p, 1 d r o v p, 1 d r o l t, 1 d r o v t, \quad \&$
\& lhvst,1hlst,ldhvsp,ldhlsp,ldtssp,ldevat,ldevap,ldrvap,ldrvat, \&
\& ldx,lelev,lfa,lfavol,lfinan,lfric, \&

\& Ihvatw, lhynew, lqrl, lqrv, lqp3f,lqppp,lregnm, lrhs, lrmem, lrmvm, \&
\& lrarl, lrarv, lxsm, lysm, lzsm, lrsm,lr0sm,lnfvsm,lnflsm,luvsm, \&
$\& \operatorname{lnfcvsm}, \operatorname{lnfclsm}, 1 \mathrm{vvsm}, 1 \mathrm{vlsm}, \operatorname{lnf} 1 \mathrm{sm}, \operatorname{lnf} 2 \mathrm{sm}, \operatorname{lnf} 3 \mathrm{sm}, \operatorname{lnfv} 4 \mathrm{sm}, \operatorname{lnfl} 4 \mathrm{sm}, \&$
\& lrom, lrvmf, lsig,ltrid,ltsat,ltssn,lvisl,lvisv,lvlalp,lvlvc, \&
\& lvlvol, lvlx, lvol, lvr, lvrv, lvvvol, lvvx, lwa, lwat, lwfl, lwfv, lwfmfl, \&
\& lwfmfv

COMMON /ptab/lalpmn,lalpmx,lalpo,lam,larc,lcfz,lcl,lcpl,lcpv,lcv, \&
\& ldalva, ldfldp, ldfvdp,ldriv,
\&
\& ldtsdp, ldeldp, ldevdp,ldeldt,ldevdt,ldrolp,ldrovp,ldrolt,ldrovt, \&
\& lhvst, lhlst, ldhvsp,ldhlsp, ldtssp, ldevat, ldevap,ldrvap,ldrvat, \&
\& ldx,lelev,lfa,lfavol,lfinan,lfric, \&
\& lfsmlt, lgrav, lgrvol, lh, lhd, lhdht, lhfg, lhgam,lhla,lhlatw,lhva, \&
\& lhvatw, Ihynew, lqrl, lqrv, lqp3f,lqppp,lregnm, lrhs, lrmem, lrmvm, \&
\& lrarl,lrarv,lxsm, lysm,lzsm, lrsm, lr0sm, lnfvsm, lnflsm, luvsm, \&
\& $\operatorname{lnfcvsm,~} \operatorname{lnfclsm,lvvsm,lvlsm,~} \operatorname{lnf} 1 s m, \operatorname{lnf} 2 s m, \operatorname{lnf} 3 s m, \operatorname{lnfv} 4 s m, \operatorname{lnf} 14 s m, \&$
\& lrom, lrvmf,lsig,ltrid,ltsat,ltssn,lvisl,lvisv,lvlalp,lvlvc, \&
\& lvlvol, lvlx, lvol,lvr, lvrv, lvvvol, lvvx, lwa, lwat, lwfl, lwfv,lwfmfl, \&
\& lwfmfv
\& lhvatw, lqrl, lqrv,lqp3f,lqppp,lregnm, lrhs, Irmem, lrmvm, lrarl, \&
\& lrarv,lxsm,lysm,lzsm,lrsm, lr0sm, lnfvsm, lnflsm, luvsm, lnfcvsm, \&
\& lnfclsm, lvvsm, lvlsm, lnf1sm, lnf2sm, lnf3sm, lnfv4sm, lnfl4sm,lrom, \&
\& lrvmf,lsig,ltrid,ltsat,ltssn,lvisl,lvisv,lvlalp,lvlvc,lvlvol, \&
\& lvlx, lvol, lvr, lvrv,lvvvol, lvvx, lwa, lwat, lwfl,lwfv,lwfmfl,lwfmfv

Include file HEATPT.H changes
Add new heat-calculation LHTNEW pointer

1	2	3	4	6

\& lrow, ltchf, ltol,ltov

Include file INTPT.H changes
Add new integer LINEW pointer

5
6
7

Include file LABELV.H changes
See the include file LABELV.H listing in App. F, Sec. F. 6 for the full listing of common block LABELV generated by program LABPRG.F.

Subroutine file BLKDAT2.F changes
See the subroutine file BLKDAT2.F listing in App. F, Sec. F. 7 for the full listing of subroutine BLOCK DATA BLKDAT2 generated by program LABPRG.F.

Subroutine file S1DPTR.F changes
Initialize the newly added pointers in subroutine S1DPTR. Increment LENPTR by one for each pointer added in the appropriate section of SIDPTR. Adjust the length of the pointer initialized directly after each of the new pointers is added to reflect correct lengths.

$3 \quad 4$
5
6
7
123456789012345678901234567890123456789012345678901234567890123456789012345

```
set time update pointers
lregnm=lwat+ncells
lhynew=lregnm+nfaces
    lxsm=lhynew+nfaces
lysm=lxsm+ncells
lnxt=lvlsm+3*nfaces
    lenptr=lenptr+82 before
lenptr=lenptr+83
add pointers for radiation phasic heat fluxes.
    llccfl=lnff+nfaces
    linew=llccfl+nfaces
        lnxt=linew+ncells
        lenptr=lenptr+4 before
    lenptr=lenptr+5
            ltov=ltol+ncells
            Ihtnew=1tov+ncells
            lnxt=lhtnew+ncells
        ENDIF
            lenptr=lenptr+12 before
        lenptr=lenptr+13
    ENDIF
```

Subroutine file DCOMP.F changes
Output the new variables to be dumped to the dump/restart file. Increment LVCNTR and LVEDGE by the number of cell-center and cell-edge variables being dumped, respectively.

1
2
3
4
5
6
7
123456789012345678901234567890123456789012345678901234567890123456789012345

26 ! lventr is the number of pointers for cell-center variables.
27 ! lvedge is the number of pointers for cell-edge variables.

```
    Ivcntr=25 before
lventr=28
    Ivedge=15 before
lvedge=16
IF (isolut.NE.0) lventr=lventr+2
```

CALL bfout (a(ltcen), 1,ictrld)
CALL bfout (a(ldnewn), ncellt,ictrld)
CALL bfout (a(lhynew), ncellt+1,ictrld)
CALL bfout (a(lhtnew), ncellt, ictrld)
CALL bfout(a(linew), ncellt,ictrld)
IF (isolut.NE.0) THEN

Subroutine file RECOMP.F changes
Input the new variables from the dump/restart file in the same order that they were output.

```
    1 2
123456789012345678901234567890123456789012345678901234567890123456789012345
```

```
CALL bfin(a(ltcen),1,ictrlr)
```

CALL bfin(a(ltcen),1,ictrlr)
CALL bfin(a(bump+ldnewn),ncells,ictrlr)
CALL bfin(a(bump+ldnewn),ncells,ictrlr)
CALL, bfin(a(bump+1hynew), ncells+1,ictrlr)
CALL, bfin(a(bump+1hynew), ncells+1,ictrlr)
CALL bfin(a(bump+lhtnew),ncells,ictrlr)
CALL bfin(a(bump+lhtnew),ncells,ictrlr)
CALL bfin(a(bump+linew),ncells,ictrlr)
CALL bfin(a(bump+linew),ncells,ictrlr)
IF (isolut.NE.0) THEN

```
    IF (isolut.NE.0) THEN
```

Subroutine file ECOMP.F changes
Output the new variables to the TRCOUT file.

1	2	3	4	5	6	7

123456789012345678901234567890123456789012345678901234567890123456789012345

APPENDIX E
print out hydraulic parameters dnewn and hynew
$j n=0$
DO $n=1, n n$
j1=jstrt+(n-1)*10
j2=min0 (j1+9, jstop)
j0=j1-1
j3=j2-j0
DO $\mathbf{j = j} 1, j 2$
jj=j-j0
jm1=j-1
$\operatorname{tmp}(j j, 1)=a(1 d n e w n+j m 1)$
$\operatorname{tmp}(j j, 2)=a(1$ hynew+jm1)
ENDDO
CALI uncnvt('dnewn', tmp (1, 1),j3,1,-ioout)
i1=iold
CALL uncnvt('hynew', tmp (1, 2),j3,1,-ioout)
IF ($\mathrm{n} . \mathrm{EQ} .1$) THEN
IF (iunout.EQ.0) THEN
WRITE (iout,450)
ELSE
WRITE (iout, 450) luncb(ioout+1,itls(iI)),
$\&$
ENDIF
FORMAT (/9x,'ddendp',6x,'hynew'/' cell ',2a)
ENDIF
j1=j1-j0
j2=j2-j0
WRITE (iout, 455) (jn+j,(tmp(j,k),k=1,2),j=j1,j2)
FORMAT (1x,i3,1x,1p,2e11.3)
$j n=j n+10$
ENDDO
$\operatorname{tmp}(1,2)=a(1$ hynew $+j$ stop $)$
CALL uncnvt('hynew', tmp (1, 2), 1, 1,-ioout)
jn=jstop-jstrt+2
WRITE (iout, 460) jn,tmp(1, 2)

FORMAT (1x, i.3,12x,1p,e11.3)
print out heat-transfer parameter htnew

IF (nodes.NE. 0) THEN

$$
j n=0
$$

DO $n=1, n n$ j1=jstrt+(n-1)*10
j2=min0 (j1+9,jstop)
j0=j1-1
j3=j2-j0
Do $\mathbf{j}=\mathbf{j} 1, \mathbf{j} 2$
ji=j-j0
jm1=j-1 $\operatorname{tmp}(j j, 1)=a(1 h t n e w+j m 1)$
ENDDO
CALL uncnvt('htnew', $\operatorname{tmp}(1,1), j 3,1$, -ioout)
IF ($\mathrm{n} . \mathrm{EQ} .1$) THEN
IF (iunout.EQ.0) THEN
WRITE (iout, 470)
ELSE
WRITE (iout, 470) luncb(ioout+1,itls(iold))
ENDIF
FORMAT (/9x, ihtnew'/' cell ', a)
ENDIF
j1=j1-j0 $\mathrm{j} 2=\mathbf{j} 2-\mathbf{j} 0$

WRITE (iout, 475) (jn+j,tmp(j,1),j=j1,j2)
FORMAT ($1 \mathrm{x}, \mathrm{i} 3,1 \mathrm{x}, 1 \mathrm{p}, \mathrm{e} 11.3$) $j n=j n+10$
ENDDO
ENDIF
RETURN
END

Subroutine file SVSET1.F changes
Define DNEWN to be signal-variable parameter number 105.

```
            1 2 <rrrrl
    123456789012345678901234567890123456789012345678901234567890123456789012345
    137
    ELSEIF (nsvn.EQ.7) THEN
    138 !
    139 ! isvn=103 : slab outer-surface heat loss (w)
    140 : from the wall outside surface
    141!
    142 act(kpt+7)=htlsco
    143
    144
    145 !
    146 ! isvn=104 : cell mixture temperature (k)
    147 !
    148 IF (nstep.EQ.0) THEN
    171 !
```

159

```
170 !
```

170 !
isvn=105 : cell d(density)/d(pressure) (kg/m**3/pa)

```

ENDIF
l=lvv-1
DO i=1, ncellt

ENDDO
GOTO 880
ELSEIF (nsvn.EQ.9) THEN

171 !
172

1=1 dnewn-1
GOTO 880
ENDIF
ELSEIF (nsvn.EQ.1) THEN
\(\operatorname{act}(\mathrm{kpt}+7)=\mathrm{htl} \mathrm{sco}\)
GOTO 980
ELSEIF (nsvn.EQ.8) THEN
145 !
146 ! isvn=104 : cell mixture temperature (k) 147 !

148 (a) IF (nstep.EQ.0) THEN

Subroutine file FEMOM.F changes
Assuming that DNEW, DNEWN, and HYNEW are all evaluated in FEMOM, add them
to the argument list of FEMOM, add dimension statements in FEMOM, and perform their evaluation by assigning constants.
\begin{tabular}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7
\end{tabular}

123456789012345678901234567890123456789012345678901234567890123456789012345
define some values to dnew, dnewn, and hynew

186 ! loop to set up the tridiagonal systems for the two

Subroutine file PREPER.F changes
Change the CALL FEMOM statement to include DNEW, DNEWN, and HYNEW in the argument list.


Subroutine file CYLHT.F changes
Similarly, assuming that HTNEW and INEW are evaluated in subroutine CYLHT, add them to the argument list of CYLHT, add dimension statements in CYLHT, and perform their evaluation by assigning constants.

1
2
3
4
5
6
7
123456789012345678901234567890123456789012345678901234567890123456789012345
\begin{tabular}{|c|c|}
\hline 1 & SUBROUTINE cylht(t,tn,rn,rn2,dr,hil,hiv,til,tiv,hol,hov,tol,tov, \\
\hline 2 & \& row, cpw, cw, qppp, a, b, nodes, ndm1, ncells, dt, istdy, qp 3f, htnew, inew) \\
\hline 3 & IMPLICIT REAL*8 ( \(\mathrm{a}-\mathrm{h}, \mathrm{o}-\mathrm{z}\) ) \\
\hline 4 ! & \\
\hline \(5!\) & cylht calculates temperature fields in the radial direction \\
\hline 6 ! & for cylindrical geometries \\
\hline
\end{tabular}
```

 7 ! istdy=1 - implicit boundary conditions
 8 ! istdy=0 - explicit boundary conditions
 9!
 10 !
11 INCLUDE 'constant.h'
12!
13
14
1 5
1 6
1 7
18 DIMENSION a(nodes,3),b(nodes)
19
REAL*8 inew
20!
21 ! define some values to htnew and inew
22!
23 DO j=1,ncells
24 htnew(j) = 4.0do
25 inew(j)=5.0do
26
27 fts=zero
28 fss=one
DIMENSION t(nodes,ncells),tn(nodes,ncells),rn(nodes),rn2(ndm1),dr \&
\& (ndml),hil(ncells),hiv(ncells),til(ncells),tiv(ncells),hol \&
\& (ncells),hov(ncells),tol(ncells),tov(ncells),row(ndm1,ncells), \&
\& cpw(ndm1,ncells), cw(ndm1,ncells), qppp(nodes,ncells), qp3f(ncells), \&
\& htnew(ncells), inew(ncells)
ENDDO

```

Subroutine file POSTER.F changes
Change the CALL CYLHT statement to include HTNEW and INEW in the argument list.


162 ! readjust prizer hiv back to its original value.

\section*{APPENDIX F \\ LABPRG FOR UPDATING UNITS LABELS IN TRAC-M}

\section*{F.1. INTRODUCTION}

FORTRAN 77 (F77) program LABPRG.F reads information from input-data files LABIN and LABNEW on current and new real-valued variables and their associated SI/English units for TRAC-M I/O. LABPRG.F writes the combined current and new real-valued variables and their units information to a new inputdata file LABINN and writes replacement coding in file LABELV.H for INCLUDE LABELV.H and in file BLKDAT2.F for subroutine BLOCK DATA BLKDAT2.

\section*{F.2. LABPRG.F INPUT DATA}

The real-valued variables and their SI/English units information for the current version of TRAC-M are input to LABPRG.F by file LABIN. A listing of file LABIN for Version \(1.10+\) of TRAC-M is provided in Section F.5. New real-valued variables and their SI/English units information required by new I/O statements in TRAC-M are input to LABPRG.F by input-data file LABNEW. The file-LABNEW input-data format for the new real-valued variables for TRAC-M I/O follows.

Card Number 1. (313, 2X, A37) NNUL, NNSV, NNVN, Message Columns Variable Description

1-3 NNUL Number of new units-label names that need their SI and English units symbols, SI-to-English factor, and SI-toEnglish shift offset values defined.

4-6 NNSV Number of new signal variables that need their descriptive labels having SI- and English-unit symbols and their units-label names defined.

7-9 NNVN Number of new real-valued FORTRAN variable names involved in TRAC I/O and their units-label names that need to be defined.

12-48 Message "labnew data required by uuuuuu"

The message "labnew data required by uuuuuu" after the three values identifies this block of LABNEW data as being required by programming changes labeled by the name uuuuuu.

Input Card Number 2 for \(I=1,2, \ldots\), NNUL (Omit Card Number 2 if NNUL \(=0\) ).

Card Number 2. (A8, 1X, A13, 1X, A13, 1X, E15.8, 1X, E15.8) LABC(I), \(\operatorname{LUPCB}(1, \mathrm{I})\), LUPCB(2,I), FACTOR(I), OFFSET(I)

\section*{Columns Variable Description}

1-8 LABC(I) New units-label name with the form LUxxxxxx that is not already defined in Table 6-2 of the TRAC-M Users Guide. This units-label name is required by the update to define the SI/English units of a new signal-variable parameter or real-valued variable name required for TRAC I/O. (The first two letters of the name must be LU, and the last one-to-six letters are the update developer's choice but must be different from the letters already used by units-label names in Table 6-2.)

10-22 \(\operatorname{LUPCB}(1, \mathrm{I}) \quad\) SI-units symbol within parentheses and right justified.

24-36 LUPCB(2,I) English-units symbol within parentheses and right justified.

38-52 FACTOR(I) Factor value applied to the SI-units value to convert it to its English-units value (before the translational shift).

54-68 OFFSET(I) Translational-shift offset value applied to the FACTOR(I) times SI-units value to convert it to its English-units value.

Input Card Number 3 for \(I=1,2, \ldots\), NNSV (Omit Card Number 3 if NNSV \(=0\) ).

Card Number 3. (A14, 1X, A14, 1X, A8) SV(1,I), SV(2,I), LABS(I)
Columns Variable Description

1-14 SV(1,I) Signal-variable parameter descriptive label with its SIunits symbol in parentheses and left justified.

16-29 SV(2,I) Signal-variable parameter descriptive label with its English-units symbol in parentheses and left justified.

31-38 LABS(I) Units-label name with form LUxxxxxx defining the units of the signal-variable parameter.

Input Card Number 4 for \(I=1,2, \ldots\), NNVN (Omit Card Number 4 if NNVN=0).

Card Number 4. (A8, 1X, A8, 1X, I1) LABELS(I), TLABELS(I), IDEL
Columns Variable Description

1-8 LABELS(I) Real-valued variable name involved in TRAC-M I/O that needs to have its SI and English units defined in TRAC-M for the coding changes of the update (real-valued variable names presently not involved in TRAC-M I/O but having units that need to be documented to better understand the coding in TRAC-M should be defined as well).

10-17 TLABELS(I) Units-label name with form LUxxxxxx defining the units of the real-valued variable name LABELS(I).

19 IDEL Option parameter for deleting a real-valued variable name from the variable names already defined in file LABIN [when IDEL \(=1\), define LABELS(I) and TLABELS(I) the same as they are defined in file LABIN in order to delete the variable name from file LABINN; when IDEL \(=0,0\) doesn't need to be input specified because LABPRG will read a blank field in column 19 as a 0].
\[
\begin{aligned}
& 0=\text { no } \\
& 1=\text { yes }
\end{aligned}
\]

Card Numbers 1 to 4 define a block of variable-units information for each set of programming changes made to the current version of TRAC-M. The following Last Card is defined after zero or more of such data blocks.

Last Card (3I3, 2X, A15) IZ, IZ, IZ, labnew data end where \(I Z=0\) with message "labnew data end".

The following listing is an example of file LABNEW data for programming changes made in App. E with the labeled name UP1DPTR. One new units-label name, one new signal-variable parameter, and 4 new real-valued variable names are defined. LABPRG.F adds this information to file LABIN to create file LABINN.
\begin{tabular}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{tabular}

12345678901234567890123456789012345678901234567890123456789012345678901234567890
```

1 1 1 4 labnew data required by up1dptr
2 luddendp (kg/m3/pa) (lbm/ft3/psi) 4.30425636D+02 0.00000000D+00
3 d/p (kg/m3/pa) d/p (lb/ft3/p) luddendp
4 dnew luddendp
5 dnewn luddendp
6 hynew lurpress
7 htnew luthcond
800 0 labnew data end

```

\section*{F.3. LABPRG.F OUTPUT DATA}

F77 program LABPRG.F begins by reading file LABIN to obtain all currently defined variable-units information for the current version of TRAC-M. LABPRG.F then reads file LABNEW and incorporates its new variable-units information from programming changes into the data from file LABIN. The LABNEW data are checked for appropriateness, and warning messages are written to file LABELV.H if errors are detected. If one or more LABNEW input-data errors are detected, the execution of LABPRG.F ends. If no LABNEW input-data errors are detected, LABPRG.F continues and writes replacement coding in file LABELV.H for INCLUDE LABELV.H and in file BLKDAT2.F for subroutine BLOCK DATA

BLKDAT2. Listings of files LABELV.H and BLKDAT2.F, based on file LABIN data from Version 1.10+ of TRAC-M and file LABNEW data from UP1DPTR, are provided in Sections F. 6 and F.7, respectively.

LABPRG.F writes the combined variable-units information from files LABIN and LABNEW to file LABINN (LABIN New). File LABINN is the pending replacement input-data file for file LABIN for input to LABPRG.F for the next version of TRAC-M based on UP1DPTR programming changes. The listing of file LABINN is similar to the listing for file LABIN in Section F. 5 except for:
```

file-LABNEW line 2 is inserted after file-LABIN line 50,
file-LABNEW line 3 is inserted after file-LABIN line 156,
file-LABNEW line 4 and 5 are inserted after file-LABIN line 301,
file-LABNEW line 6 is inserted after file-LABIN line 460, and
file-LABNEW line 7 is inserted after file-LABIN line 452.

```

LABPRG.F keeps the real-valued variable names in alphabetical order for output to files LABINN and BLKDAT2.F.

\section*{F.4. ARCHIVE FILES}

The current files LABPRG.F, LABPRG.XCRAY (LABPRG executable on a Cray computer), LABPRG.XSUN (LABPRG executable on a SUN workstation), LABIN, LABNEW, LABELV.H, and BLKDAT2.F are stored in archive file ARLAB77 in the Los Alamos Common File System (CFS). Blocks of LABNEW data from each developer's programming changes are added successively to the LABNEW file. For version control and quality assurance of this TRAC-M support software and data when a release version of TRAC-M is generated, the TRAC-code custodian replaces file LABIN with file LABINN renamed LABIN, archives the release version's LABNEW file, replaces the LABNEW file with a file named LABNEW having the single record \(0 \quad 0 \quad 0\) LABNEW DATA END, and resaves files LABIN and LABNEW to archive file ARLAB77.

The current TRAC-M source files are stored in their own subdirectory at this CFS location by a an RCS supervised by a CVS. Each developer needs to do the following to program-changed SI/English units information in TRAC-M when making programming changes to the TRAC-M source files. The LABELV.H and BLKDAT2.F files in the CVS-repository subdirectory are removed by the CO
command, these files in your local directory are replaced by the LABELV.H and BLKDAT2.F files output by LABPRG.F, and then these revised files are saved in the CVS-repository subdirectory using the CI command.

\section*{F.5. LISTING OF FILE LABIN}

1
23
4
5
6
7
8

12345678901234567890123456789012345678901234567890123456789012345678901234567890
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & Iunounit & \((-)\) & \((-)\) & \(1.00000000 \mathrm{D}+00\) & \(0.00000000 \mathrm{D}+00\) \\
\hline 2 & lutime & (s) & (s) & \(1.00000000 \mathrm{D}+00\) & \(0.00000000 \mathrm{D}+00\) \\
\hline 3 & lutemp & (k) & (f) & \(1.80000000 \mathrm{D}+00\) & -4.59670000D+02 \\
\hline 4 & lutempd & (k) & (f) & \(1.80000000 \mathrm{D}+00\) & \(0.00000000 \mathrm{D}+00\) \\
\hline 5 & lulength & (m) & (ft) & \(3.28083990 \mathrm{D}+00\) & \(0.00000000 \mathrm{D}+00\) \\
\hline 6 & Iuarea & (m2) & (ft2) & \(1.07639104 \mathrm{D}+01\) & \(0.00000000 \mathrm{D}+00\) \\
\hline 7 & luvolume & (m3) & (ft3) & \(3.53146667 \mathrm{D}+01\) & \(0.00000000 \mathrm{D}+00\) \\
\hline 8 & luvel & (m/s) & (ft/s) & \(3.28083990 \mathrm{D}+00\) & \(0.00000000 \mathrm{D}+00\) \\
\hline 9 & luacc & (m/s2) & (ft/s2) & \(3.28083990 \mathrm{D}+00\) & \(0.00000000 \mathrm{D}+00\) \\
\hline 10 & lupumphd & (m2/s2) & ( \(1 \mathrm{bf*}\) ¢t/ \(/ 1 \mathrm{bm}\) ) & 3.34552563D-01 & \(0.00000000 \mathrm{D}+00\) \\
\hline 11 & luvolflw & (m3/s) & (gpm) & 1.58503222D+04 & \(0.00000000 \mathrm{D}+00\) \\
\hline 12 & luspvol & (m3/kg) & (ft3/1bm) & \(1.60184634 \mathrm{D}+01\) & \(0.00000000 \mathrm{D}+00\) \\
\hline 13 & lumass & ( kg ) & (lbm) & \(2.20462262 \mathrm{D}+00\) & \(0.00000000 \mathrm{D}+00\) \\
\hline 14 & lumassfw & ( \(\mathrm{kg} / \mathrm{s}\) ) & ( \(1 \mathrm{bm} / \mathrm{hr}\) ) & \(7.93664144 \mathrm{D}+03\) & \(0.00000000 \mathrm{D}+00\) \\
\hline 15 & lumfwrat & (kg/s2) & (1bm/s2) & \(2.20462262 \mathrm{D}+00\) & \(0.00000000 \mathrm{D}+00\) \\
\hline 16 & lumassfx & ( \(\mathrm{kg} / \mathrm{m} 2 / \mathrm{s}\) ) & (lbm/ft2/hr) & \(7.37338117 \mathrm{D}+02\) & \(0.00000000 \mathrm{D}+00\) \\
\hline 17 & luvapgen & ( \(\mathrm{kg} / \mathrm{m} 3 / \mathrm{s}\) ) & (lbm/ft3/hr) & \(2.24740658 \mathrm{D}+02\) & \(0.00000000 \mathrm{D}+00\) \\
\hline 18 & luden & ( \(\mathrm{kg} / \mathrm{m} 3\) ) & ( \(1 \mathrm{bm} / \mathrm{ft} 3\) ) & \(6.24279606 \mathrm{D}-02\) & \(0.00000000 \mathrm{D}+00\) \\
\hline 19 & luddendt & ( \(\mathrm{kg} / \mathrm{m} 3 / \mathrm{k}\) ) & ( \(1 \mathrm{bm} / \mathrm{ft3} / \mathrm{f}\) ) & \(3.46822003 \mathrm{D}-02\) & \(0.00000000 \mathrm{D}+00\) \\
\hline 20 & luidrag & ( \(\mathrm{kg} / \mathrm{m} 4\) ) & (lbm/ft4) & 1.90280424D-02 & \(0.00000000 \mathrm{D}+00\) \\
\hline 21 & lupressa & (pa) & (psia) & \(1.45037738 \mathrm{D}-04\) & \(0.00000000 \mathrm{D}+00\) \\
\hline 22 & lupressd & (pa) & (psid) & \(1.45037738 \mathrm{D}-04\) & \(0.00000000 \mathrm{D}+00\) \\
\hline 23 & luprsrat & (pa/s) & (psi/s) & \(1.45037738 \mathrm{D}-04\) & \(0.00000000 \mathrm{D}+00\) \\
\hline 24 & luminert & ( \(\left.\mathrm{kg}{ }^{\text {* }} \mathrm{m} 2\right)\) & (1bm*ft2) & \(2.37303604 \mathrm{D}+01\) & \(0.00000000 \mathrm{D}+00\) \\
\hline 25 & lutorque & (pa*m3) & (lbf*ft) & \(7.37562149 \mathrm{D}-01\) & \(0.00000000 \mathrm{D}+00\) \\
\hline 26 & lubtork & (pa*m3*s/rad) & (lbf*ft/rpm) & \(7.72373277 \mathrm{D}-02\) & \(0.00000000 \mathrm{D}+00\) \\
\hline 27 & luctork & (pa*m3*s2/r2) & (lbf*ft/rpm2) & \(8.08827404 \mathrm{D}-03\) & \(0.00000000 \mathrm{D}+00\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 28 & lupower & (w) & (btu/hr) & \(3.41214163 \mathrm{D}+00\) & \(0.00000000 \mathrm{D}+00\) \\
\hline 29 & lupowrat & (w/s) & (btu/hr/s) & \(3.41214163 \mathrm{D}+00\) & \(0.00000000 \mathrm{D}+00\) \\
\hline 30 & lulinhts & (w/m) & (btu/ft/hr) & \(1.04002077 \mathrm{D}+00\) & \(0.00000000 \mathrm{D}+00\) \\
\hline 31 & luheatfx & ( \(\mathrm{w} / \mathrm{m} 2\) ) & (btu/ft2/hr) & 3.16998331D-01 & \(0.00000000 \mathrm{D}+00\) \\
\hline 32 & luvolhts & (w/m3) & (btu/ft3/hr) & \(9.66210912 \mathrm{D}-02\) & \(0.00000000 \mathrm{D}+00\) \\
\hline 33 & luthcond & ( \(\mathrm{w} / \mathrm{m} / \mathrm{k}\) ) & (btu/ft/f/hr) & \(5.77789317 \mathrm{D}-01\) & \(0.00000000 \mathrm{D}+00\) \\
\hline 34 & Iuhtc & (w/m2/k) & (btu/ft2/f/h) & \(1.76110184 \mathrm{D}-01\) & \(0.00000000 \mathrm{D}+00\) \\
\hline 35 & luihttf & (w/k) & (btu/f/hr) & \(1.89563424 \mathrm{D}+00\) & \(0.00000000 \mathrm{D}+00\) \\
\hline 36 & luenergy & ( \(w^{*}\) s) & (btu) & 9.47817120D-04 & \(0.00000000 \mathrm{D}+00\) \\
\hline 37 & luspener & ( \(\mathrm{w}^{*} \mathrm{~s} / \mathrm{kg}\) ) & (btu/lbm) & 4.29922614D-04 & \(0.00000000 \mathrm{D}+00\) \\
\hline 38 & luspheat & ( \(\mathrm{w}^{*} \mathrm{~s} / \mathrm{kg} / \mathrm{k}\) ) & (btu/lbm/f) & 2.38845897D-04 & \(0.00000000 \mathrm{D}+00\) \\
\hline 39 & lurtime & (1/s) & (1/s) & \(1.00000000 \mathrm{D}+00\) & \(0.00000000 \mathrm{D}+00\) \\
\hline 40 & lurtemp & (1/k) & (1/E) & 5.55555556D-01 & \(0.00000000 \mathrm{D}+00\) \\
\hline 41 & Iurmass & (1/kg) & (1/llbm) & 4.53592370D-01 & \(0.00000000 \mathrm{D}+00\) \\
\hline 42 & Iurpress & (1/pa) & (1/psi) & \(6.89475729 \mathrm{D}+03\) & \(0.00000000 \mathrm{D}+00\) \\
\hline 43 & luspeed & (rad/s) & (rpm) & 9.54929659D+00 & \(0.00000000 \mathrm{D}+00\) \\
\hline 44 & luradacc & (rad/s2) & (rpm/s) & 9.54929659D+00 & \(0.00000000 \mathrm{D}+00\) \\
\hline 45 & luangle & (rad) & (deg) & \(5.72957795 \mathrm{D}+01\) & \(0.00000000 \mathrm{D}+00\) \\
\hline 46 & luburnup & (mwd/mtu) & (mwd/mtu) & \(1.00000000 \mathrm{D}+00\) & \(0.00000000 \mathrm{D}+00\) \\
\hline 47 & luenfiss & (mev/fiss) & (mev/fiss) & \(1.00000000 \mathrm{D}+00\) & \(0.00000000 \mathrm{D}+00\) \\
\hline 48 & lugapgas & (g-moles) & (g-moles) & \(1.00000000 \mathrm{D}+00\) & \(0.00000000 \mathrm{D}+00\) \\
\hline 49 & lurtmsq & (1/k2) & (1/f2) & 3.08641975D-01 & \(0.00000000 \mathrm{D}+00\) \\
\hline 50 & lunitnam & (*) & (*) & \(1.00000000 \mathrm{D}+00\) & \(0.00000000 \mathrm{D}+00\) \\
\hline 51 & luserdef & (*) & (*) & \(1.00000000 \mathrm{D}+00\) & \(0.00000000 \mathrm{D}+00\) \\
\hline 52 & time (s) & time (s) & lutime & & \\
\hline 53 & core powe & ) power & (hr) lupowe & & \\
\hline 54 & pri pres & ) p pres & (psia) lupres & & \\
\hline 55 & pzr press & a) pz pre & (psia) lupres & & \\
\hline 56 & prizr tem & k) prizr t & mp (f) lutemp & & \\
\hline 57 & pz liq lev & ( \()^{\text {pz lq }} 1\) & v (ft) luleng & & \\
\hline 58 & tk liq lev & m) \(t k l q l\) & (ft) luleng & & \\
\hline 59 & hot-1 tem & k) hot-l t & mp (f) lutemp & & \\
\hline 60 & cld-1 tem & k) cld-l t & mp (f) lutemp & & \\
\hline & p mflow & s) mflow & bm/hr) lumass & & \\
\hline & ecc mfw & s) eccmf & bm/hr) lumass & & \\
\hline 63 & sec press & a) sc pres & (psia) lupres & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 64 st mflw ( \(\mathrm{kg} / \mathrm{s}\) ) st mf ( \(1 \mathrm{lbm} / \mathrm{hr}\) ) & lumassfw \\
\hline 65 fw mflw ( \(\mathrm{kg} / \mathrm{s}\) ) fw mf ( \(\mathrm{lbm} / \mathrm{hr}\) ) & lumassfw \\
\hline \(66 \mathrm{afw} \mathrm{mfw} \mathrm{( } \mathrm{~kg} / \mathrm{s}\) ) af mf ( \(\mathrm{mbm} / \mathrm{hr}\) ) & lumassfw \\
\hline 67 sc liq lev (m) sc lq lev (ft) & lulength \\
\hline 68 user defined user defined & lunounit \\
\hline 69 user defined user defined & lunounit \\
\hline 70 core power ( w ) power ( \(\mathrm{btu} / \mathrm{hr}\) ) & lupower \\
\hline 71 pwr period (s) pwr period (s) & lutime \\
\hline 72 liq level (m) liq level (ft) & lulength \\
\hline 73 pressure (pa) press (psia) & lupressa \\
\hline 74 gas temp (k) gas temp (f) & lutemp \\
\hline 75 liq temp (k) liq temp (f) & lutemp \\
\hline 76 in sf temp (k) in sf temp (f) & Iutemp \\
\hline 77 surf temp (k) surf temp (f) & lutemp \\
\hline 78 htstr temp (k) htstr temp (f) & lutemp \\
\hline 79 void fraction void fraction & lunounit \\
\hline \(80 \mathrm{yt} v \mathrm{mf}\) ( \(\mathrm{kg} / \mathrm{s}) \mathrm{y} \mathrm{vmf}\) ( \(\mathrm{lbm} / \mathrm{hr}\) ) & lumassfw \\
\hline \(81 \mathrm{z} \mathrm{vp} \mathrm{mf} \mathrm{( } \mathrm{~kg} / \mathrm{s}\) ) z vmf ( \(1 \mathrm{bm} / \mathrm{hr}\) ) & lumassfw \\
\hline 82 xr vmf ( \(\mathrm{kg} / \mathrm{s}) \mathrm{x} \mathrm{vmf}\) ( \(\mathrm{lbm} / \mathrm{hr}\) ) & lumassfw \\
\hline \(83 \mathrm{yt} 1 \mathrm{mf}(\mathrm{kg} / \mathrm{s}) \mathrm{y} 1 \mathrm{mf}\) ( \(1 \mathrm{lbm} / \mathrm{hr}\) ) & lumassfw \\
\hline 84 z lq mf ( \(\mathrm{kg} / \mathrm{s}\) ) z l mf ( \(1 \mathrm{lbm} / \mathrm{hr}\) ) & lumassfw \\
\hline \(85 \mathrm{xr} 1 \mathrm{mf}(\mathrm{kg} / \mathrm{s}) \mathrm{x} \operatorname{lmf}(1 \mathrm{bm} / \mathrm{hr})\) & lumassfw \\
\hline \(86 \mathrm{yt} \mathrm{g} \mathrm{vel} \mathrm{(m/s)} \mathrm{y} \mathrm{g} \mathrm{vel} \mathrm{(ft/s)}\) & Iuvel \\
\hline 87 z gs vel (m/s) z g vel (ft/s) & luvel \\
\hline 88 xr g vel ( \(\mathrm{m} / \mathrm{s}\) ) x g vel ( \(\mathrm{ft} / \mathrm{s}\) ) & luvel \\
\hline \(89 \mathrm{yt} \mathrm{l} \mathrm{vel} \mathrm{(m/s)} \mathrm{y} \mathrm{l}\) vel ( \(\mathrm{ft} / \mathrm{s}\) ) & luvel \\
\hline \(90 \mathrm{z} \mathrm{lq} \mathrm{vel} \mathrm{( } \mathrm{~m} / \mathrm{s}\) ) z l l vel (ft/s) & luvel \\
\hline 91 xr 1 vel (m/s) x l ( vel (ft/s) & luvel \\
\hline 92 dis solute/liq dis solute/liq & lunounit \\
\hline 93 pm spd (rad/s) pm speed (rpm) & luspeed \\
\hline 94 valve farea fr valve farea fr & lunounit \\
\hline 95 valve stem pos valve stem pos & lunounit \\
\hline 96 mult cnst keff mult cnst keff & lunounit \\
\hline 97 prog reac prog reac & lunounit \\
\hline 98 tot fdbk reac tot fdbk reac & lunounit \\
\hline 99 fuel temp reac fuel temp reac & Iunounit \\
\hline
\end{tabular}


\begin{tabular}{|c|c|}
\hline 172 amh2 & lumass \\
\hline 173 amncss & luserdef \\
\hline 174 amxcss & luserdef \\
\hline 175 angl & luangle \\
\hline 176 apowr & lulinhts \\
\hline 177 area & Iuarea \\
\hline 178 arln & Iuden \\
\hline 179 arvn & luden \\
\hline 180 atork & Iutorque \\
\hline 181 atw & lulength \\
\hline 182 avent & Iuarea \\
\hline 183 avlve & luarea \\
\hline 184 aw & lulength \\
\hline 185 ber0 & Iuden \\
\hline 186 bcr1 & luden \\
\hline 187 beffmi & luminert \\
\hline 188 belv & lulength \\
\hline 189 beta & lunounit \\
\hline 190 bppo & Iuden \\
\hline 191 bpp1 & luddendt \\
\hline 192 bsa & lumass \\
\hline 193 bsmass & lumass \\
\hline 194 btork & lubtork \\
\hline 195 burn & luburnup \\
\hline 196 bxa & lumassfw \\
\hline 197 bxmass & lumassfw \\
\hline 198 bxsm & lulength \\
\hline 199 bysm & Iulength \\
\hline 200 bzsm & lulength \\
\hline 201 cb & luserdef \\
\hline 202 cbcon1 & luserdef \\
\hline 203 cbcon2 & luserdef \\
\hline 204 cbdt & lutime \\
\hline 205 cbeta & lunounit \\
\hline 206 cbftab & luserdef \\
\hline 207 cbgain & luserdef \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 208 cbtau & lutime \\
\hline 209 cbwt & lunounit \\
\hline 210 cbxmax & luserdef \\
\hline 211 cbxmin & luserdef \\
\hline 212 ccflc & lunounit \\
\hline 213 ccflm & lunounit \\
\hline 214 ccif & luidrag \\
\hline 215 cdgn & lupower \\
\hline 216 cdhn & lupower \\
\hline 217 ceffmi & luminert \\
\hline 218 cemfr & lumassfw \\
\hline 219 cener & luenergy \\
\hline 220 cepwn & lupower \\
\hline 221 cfmass & lumass \\
\hline 222 cfrlxr & lunounit \\
\hline 223 cfrlyt & lunounit \\
\hline 224 cfrlz & lunounit \\
\hline 225 cfrvxr & lunounit \\
\hline 226 cfrvyt & lunounit \\
\hline 227 cfrvz & lunounit \\
\hline 228 cfz & lunounit \\
\hline 229 cfz3 & lunounit \\
\hline 230 cfzlxr & lunounit \\
\hline 231 cfzlyt & lunounit \\
\hline 232 cfzlz & lunounit \\
\hline 233 cfzvxr & lunounit \\
\hline 234 cfzvyt & lunounit \\
\hline 235 cfzvz & lunounit \\
\hline 236 chm12 & lunounit \\
\hline 237 chm13 & Iunounit \\
\hline 238 chm14 & lunounit \\
\hline 239 chm15 & lunounit \\
\hline 240 chm 22 & lunounit \\
\hline 241 chm23 & lunounit \\
\hline 242 chm 24 & lunounit \\
\hline 243 chm25 & lunounit \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 280 & cpow & lupower \\
\hline 281 & cpowr & lunounit \\
\hline 282 & cpowrabs & lunounit \\
\hline 283 & cputot & lutime \\
\hline 284 & cpvint & lutime \\
\hline 285 & crliqfr & lunounit \\
\hline 286 & crpress & lupressa \\
\hline 287 & ctork & luctork \\
\hline 288 & ctrans & lunounit \\
\hline 289 & dbreac & lunounit \\
\hline 290 & dcflow & lumassfw \\
\hline 291 & dclqvol & lunounit \\
\hline 292 & dds & lulength \\
\hline 293 & delt & lutime \\
\hline 294 & deltap & lupressd \\
\hline 295 & delt 1 & lutempd \\
\hline 296 & deltv & lutempd \\
\hline 297 & dh & lulength \\
\hline 298 & dia & lulength \\
\hline 299 & diah & lulength \\
\hline 300 & dmass & lumass \\
\hline 301 & dmpint & lutime \\
\hline 302 & dpcvn & lupressd \\
\hline 303 & dpmax & lupressd \\
\hline 304 & dpovn & lupressd \\
\hline 305 & dprmax & lunounit \\
\hline 306 & \(d r\) & lulength \\
\hline 307 & \(d t\) & luangle \\
\hline 308 & dtend & lutime \\
\hline 309 & dt Imax & lutempd \\
\hline 310 & dtmax & lutime \\
\hline 311 & dtmin & lutime \\
\hline 312 & dtrmax & lutempd \\
\hline 313 & dtsm & lutime \\
\hline 314 & dtsmax & lutempd \\
\hline 315 & 5 dtsofs & lunounit \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 316 dtsoft & lutime \\
\hline 317 dtsp & lutime \\
\hline 318 dtstrt & Iutime \\
\hline 319 dtvmax & Iutempd \\
\hline 320 dtxht & lutempd \\
\hline 321 dx & lulength \\
\hline 322 dxin & lulength \\
\hline 323 dy & lulength \\
\hline 324 dz & lulength \\
\hline 325 dznht & lulength \\
\hline 326 edh & lunounit \\
\hline 327 edint & lutime \\
\hline 328 effdsn & lunounit \\
\hline 329 effld & lunounit \\
\hline 330 effmi & luminert \\
\hline 331 effmil & Iuminert \\
\hline 332 effstg & lunounit \\
\hline 333 efgen & lunounit \\
\hline 334 elev & lulength \\
\hline 335 emcifl & lunounit \\
\hline 336 emcif2 & lurtemp \\
\hline 337 emcif3 & lurtmsq \\
\hline 338 emcofl & lunounit \\
\hline 339 emcof2 & lurtemp \\
\hline 340 emcof 3 & Iurtmsq \\
\hline 341 enin1 & luenergy \\
\hline 342 enin2 & luenergy \\
\hline 343 eninp & luenergy \\
\hline 344 enth & luspener \\
\hline 345 epso & lunounit \\
\hline 346 epss & lunounit \\
\hline 347 epsw & lulength \\
\hline 348 errsm & lunounit \\
\hline 349 extsou & lupower \\
\hline 350 fa & luarea \\
\hline 351 favlve & lunounit \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 352 & faxr & luarea \\
\hline 353 & fayt & luarea \\
\hline 354 & faz & luarea \\
\hline 355 & fdfhl & lunounit \\
\hline 356 & felv & lulength \\
\hline 357 & ff & Iunounit \\
\hline 358 & fisphi & lunounit \\
\hline 359 & flow & lumassfw \\
\hline 360 & flowarea & luarea \\
\hline 361 & flowin & lumassfw \\
\hline 362 & flwin & lumassfw \\
\hline 363 & flwoff & lumassfw \\
\hline 364 & flwou & lumassfw \\
\hline 365 & fmaxov & lunounit \\
\hline 366 & fminov & lunounit \\
\hline 367 & fp235 & lunounit \\
\hline 368 & fp238 & lunounit \\
\hline 369 & fp239 & lunounit \\
\hline 370 & fpuo2 & Iunounit \\
\hline 371 & frcvn & lunounit \\
\hline 372 & frfaxr & lunounit \\
\hline 373 & frfayt & lunounit \\
\hline 374 & frfaz & lunounit \\
\hline 375 & fric & Iunounit \\
\hline 376 & fricr & lunounit \\
\hline 377 & frovn & lunounit \\
\hline 378 & frvol & lunounit \\
\hline 379 & fsi & lunounit \\
\hline 380 & fsmass & lumass \\
\hline 381 & fso & lunounit \\
\hline 382 & ftd & lunounit \\
\hline 383 & ftx & luserdef \\
\hline 384 & fty & lunounit \\
\hline 385 & fucrac & lunounit \\
\hline 386 & 6 funh & lunounit \\
\hline 387 & 7 fxmass & lumassfw \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 388 & fxsm & lulength \\
\hline 389 & fysm & lulength \\
\hline 390 & fzsm & lulength \\
\hline 391 & gam & luvapgen \\
\hline 392 & gamma & lunounit \\
\hline 393 & gc & luacc \\
\hline 394 & gfint & lutime \\
\hline 395 & gmix & Iunounit \\
\hline 396 & gmles & lugapgas \\
\hline 397 & grav & lunounit \\
\hline 398 & gravxr & luace \\
\hline 399 & gravyt & luacc \\
\hline 400 & gravz & luacc \\
\hline 401 & \(g \mathrm{ff}\) & lunounit \\
\hline 402 & gxrc & lunounit \\
\hline 403 & gytc & lunounit \\
\hline 404 & gzc & lunounit \\
\hline 405 & hbs & lulength \\
\hline 406 & hd & lulength \\
\hline 407 & hd-ht & lulength \\
\hline 408 & hd3 & lulength \\
\hline 409 & hdm & lunounit \\
\hline 410 & hdri & lulength \\
\hline 411 & hdro & lulength \\
\hline 412 & hdxr & lulength \\
\hline 413 & hdyt & lulength \\
\hline 414 & hdz & lulength \\
\hline 415 & head & lupumphd \\
\hline 416 & height & lulength \\
\hline 417 & hgam & luheatfx \\
\hline 418 & hgap & luhtc \\
\hline 419 & hgapo & luhtc \\
\hline 420 & hil & luhtc \\
\hline 421 & hilg & luhtc \\
\hline 422 & hiv & luhtc \\
\hline 423 & hivg & luhtc \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 424 hl & luhtc \\
\hline 425 hli & luhtc \\
\hline 426 hlo & luhtc \\
\hline 427 holg & luhtc \\
\hline 428 houtl & Iuhtc \\
\hline 429 houtl1 & luhtc \\
\hline 430 hout 12 & luhtc \\
\hline 431 houtv & luhtc \\
\hline 432 houtv1 & luhtc \\
\hline 433 houtv2 & luhtc \\
\hline 434 hovg & luhtc \\
\hline 435 hs & lunounit \\
\hline 436 hsabs & lunounit \\
\hline 437 hsk & lulength \\
\hline 438 hsp 1 & lunounit \\
\hline 439 hsp2 & lunounit \\
\hline 440 hsp 3 & lunounit \\
\hline 441 hsp 4 & lunounit \\
\hline 442 hstn & lutemp \\
\hline 443 htcwl & luhtc \\
\hline 444 htcwv & luhtc \\
\hline 445 htlsci & lupower \\
\hline 446 htlsco & lupower \\
\hline 447 htlsgi & lupower \\
\hline 448 htlsgo & lupower \\
\hline 449 htmli & lunounit \\
\hline 450 htmlo & lunounit \\
\hline 451 htmvi & lunounit \\
\hline 452 htmvo & lunounit \\
\hline 453 htp1 & lunounit \\
\hline 454 htp2 & lunounit \\
\hline 455 htp3 & lunounit \\
\hline 456 htp4 & lunounit \\
\hline 457 hv & luhtc \\
\hline 458 hvi & luhtc \\
\hline 459 hvlve & lulength \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline 496 pain & lupressa \\
\hline 497 pan & lupressa \\
\hline 498 paoff & lupressa \\
\hline 499 paq & lupressa \\
\hline 500 pascl & lunounit \\
\hline 501 patb & lupressa \\
\hline 502 patbabs & lupressa \\
\hline 503 pdc & lupressa \\
\hline 504 pdrat & lunounit \\
\hline 505 pflow & lumassfw \\
\hline 506 pgapt & lupressa \\
\hline 507 pgreac & lunounit \\
\hline 508 phist & lupower \\
\hline 509 pin & lupressa \\
\hline 510 pinteg & luenergy \\
\hline 511 pldr & lulength \\
\hline 512 plen & lulength \\
\hline 513 plp & lupressa \\
\hline 514 plvol & luvolume \\
\hline 515 pmass & lumass \\
\hline 516 pmprf & lunounit \\
\hline 517 pmprfabs & lunounit \\
\hline 518 pmptb & Iuspeed \\
\hline 519 pmptbabs & luspeed \\
\hline 520 pmvl & lumassfw \\
\hline 521 pmvv & lumassfw \\
\hline 522 pn & lupressa \\
\hline 523 poff & lupressa \\
\hline 524 poffs & lupressa \\
\hline 525 popoff & lupower \\
\hline 526 popscl & lunounit \\
\hline 527 powd & lupower \\
\hline 528 power & lupower \\
\hline 529 powerc & lupower \\
\hline 530 powexp & lunounit \\
\hline 531 powin & lupower \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 532 powli & lupower \\
\hline 533 powlo & lupower \\
\hline 534 powoff & lupower \\
\hline 535 powop & lupower \\
\hline 536 powou & lupower \\
\hline 537 powr1 & lupower \\
\hline 538 powr2 & lupower \\
\hline 539 powrf & Iunounit \\
\hline 540 powrf1 & lunounit \\
\hline 541 powrf2 & Iunounit \\
\hline 542 powscl & lunounit \\
\hline 543 powstg & lupower \\
\hline 544 powtb & Iupower \\
\hline 545 powtb1 & lupower \\
\hline 546 powtb2 & lupower \\
\hline 547 powtbabs & lupower \\
\hline 548 powvi & lupower \\
\hline 549 powvo & lupower \\
\hline 550 pp & lupressa \\
\hline 551 ppa & lupressa \\
\hline 552 ppower & lupower \\
\hline 553 pq & lupressa \\
\hline 554 pres1 & lupressa \\
\hline 555 pres2 & lupressa \\
\hline 556 pscl & lunounit \\
\hline 557 pset & lupressa \\
\hline 558 pslen & lulength \\
\hline 559 ptb & lupressa \\
\hline 560 ptbabs & lupressa \\
\hline 561 ptl & lutemp \\
\hline 562 ptv & lutemp \\
\hline 563 pup & lupressa \\
\hline 564 pwin1 & lupower \\
\hline 565 pwin2 & lupower \\
\hline 566 pwoff 1 & lupower \\
\hline 567 pwoff2 & lupower \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 568 & pwscl1 & Iunounit \\
\hline 569 & pwscl2 & Iunounit \\
\hline 570 & pwtblabs & lupower \\
\hline 571 & pwtb2abs & lupower \\
\hline 572 & q235 & 1uenfiss \\
\hline 573 & q238 & luenfiss \\
\hline 574 & q239 & luenfiss \\
\hline 575 & qavg & 1uenfiss \\
\hline 576 & qchf & luheatfx \\
\hline 577 & qheat & lupower \\
\hline 578 & qhstot & lupower \\
\hline 579 & qhstr & lupower \\
\hline 580 & qin & lupower \\
\hline 581 & qout & Iuvolume \\
\hline 582 & qp3in & lupower \\
\hline 583 & qp3off & lupower \\
\hline 584 & qp3rf & Iunounit \\
\hline 585 & qp3rf1 & lunounit \\
\hline 586 & qp3rf2 & lunounit \\
\hline 587 & qp3rfabs & lunounit \\
\hline 588 & qp 3 scl & Iunounit \\
\hline 589 & qp3tb & lupower \\
\hline 590 & qp3tb1 & lupower \\
\hline 591 & qp3tb2 & 1upower \\
\hline 592 & qp3tbabs & lupower \\
\hline 593 & qpin1 & lupower \\
\hline 594 & qpin2 & lupower \\
\hline 595 & qpoff 1 & lupower \\
\hline 596 & qpoff 2 & lupower \\
\hline 597 & qppg & luvolhts \\
\hline 598 & qppl & luheat fx \\
\hline 599 & qppp & lunounit \\
\hline 600 & qpppq & lunounit \\
\hline 601 & qppps & luvolhts \\
\hline 602 & qppv & luheatfx \\
\hline 603 & qpscl1 & lunounit \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 640 & rmass & lumass \\
\hline 641 & rmatsm & lunounit \\
\hline 642 & rmckn & lunounit \\
\hline 643 & rmvm & lumassfw \\
\hline 644 & roan & luden \\
\hline 645 & roln & luden \\
\hline 646 & romega & Iuspeed \\
\hline 647 & romgmx & luradacc \\
\hline 648 & rovn & Iuden \\
\hline 649 & rpkf & Iunounit \\
\hline 650 & rpopmx & lupowrat \\
\hline 651 & rpower & lupower \\
\hline 652 & rpowmx & lupowrat \\
\hline 653 & rpowri & lupower \\
\hline 654 & rpowrn & lupower \\
\hline 655 & rpwnx 1 & lupowrat \\
\hline 656 & rpwmx 2 & lupowrat \\
\hline 657 & rpwoffp & lupower \\
\hline 658 & rpwoffr & Iunounit \\
\hline 659 & rpwrf & lunounit \\
\hline 660 & rpwrt & lulength \\
\hline 661 & rpwscl & lunounit \\
\hline 662 & rpwtbabp & lupower \\
\hline 663 & rpwtbabr & lunounit \\
\hline 664 & rpwtbp & lupower \\
\hline 665 & rpwtbr & Iunounit \\
\hline 666 & rqp 3 mx & lupowrat \\
\hline 667 & rqpmx 1 & lupowrat \\
\hline 668 & rqpmx 2 & lupowrat \\
\hline 669 & rrho & luden \\
\hline 670 & rrpwnxp & lupowrat \\
\hline 671 & rrpwmxr & lurtime \\
\hline 672 & rrs & lulength \\
\hline 673 & rs & lunounit \\
\hline 674 & rsabs & lunounit \\
\hline 675 & rsm & lulength \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 676 rtork & lutorque \\
\hline 677 rtwfp & lunounit \\
\hline 678 rvmf & lumassfw \\
\hline 679 rvmx & lurtime \\
\hline 680 rvov & lurtime \\
\hline 681 rws & lulength \\
\hline 682 rzht & lulength \\
\hline 683 rzpwmx & lurtime \\
\hline 684 s & luden \\
\hline 685 sa & luarea \\
\hline 686 saf & Iunounit \\
\hline \(687 \operatorname{scn} 1\) & luserdef \\
\hline 688 scn 2 & luserdef \\
\hline 689 scn 3 & luserdef \\
\hline \(690 \operatorname{scn} 4\) & luserdef \\
\hline 691 scn 5 & luserdef \\
\hline 692 sedint & lutime \\
\hline 693 setp & luserdef \\
\hline 694 setpnt & luserdef \\
\hline 695 shelv & lulength \\
\hline 696 shtd & lunounit \\
\hline 697 smom & lupumphd \\
\hline 698 sn & luden \\
\hline 699 solid & Iuden \\
\hline 700 stnui & lunounit \\
\hline 701 stnuo & lunounit \\
\hline 702 strtmp & lutemp \\
\hline 703 stype & lunounit \\
\hline 704 suprht & lutemp \\
\hline 705 sv & luserdef \\
\hline 706 t & luangle \\
\hline 707 t0sm & luangle \\
\hline 708 tai & luarea \\
\hline 709 tan & luarea \\
\hline 710 tcefn & luenergy \\
\hline 711 tcen & luenergy \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 712 & tchf & lutemp \\
\hline 713 & tcilmf & lumass \\
\hline 714 & tcivmf & lumass \\
\hline 715 & tcolmf & lumass \\
\hline 716 & tcore & lutemp \\
\hline 717 & tcovmf & lumass \\
\hline 718 & tcreac & lunounit \\
\hline 719 & tdc & lutemp \\
\hline 720 & tdm & lunounit \\
\hline 721 & tdragxr & lunounit \\
\hline 722 & tdragyt & lunounit \\
\hline 723 & tdragz & Iunounit \\
\hline 724 & tend & lutime \\
\hline 725 & tener & luenergy \\
\hline 726 & tfmass & lumass \\
\hline 727 & tfro & lutorque \\
\hline 728 & tfrl & lutorque \\
\hline 729 & tfr2 & lutorque \\
\hline 730 & tfr3 & lutorque \\
\hline 731 & tfrb & Iuspeed \\
\hline 732 & tfreac & lunounit \\
\hline 733 & tfrlo & lutorque \\
\hline 734 & tfrll & lutorque \\
\hline 735 & tfrl2 & lutorque \\
\hline 736 & tfrl3 & lutorque \\
\hline 737 & th & lulength \\
\hline 738 & th1 & lulength \\
\hline 739 & th2 & lulength \\
\hline 740 & thg & lulength \\
\hline 741 & tilg & lutemp \\
\hline 742 & timdl & lutime \\
\hline 743 & timdu & lutime \\
\hline 744 & timet & lutime \\
\hline 745 & tin & lutemp \\
\hline 746 & tivg & lutemp \\
\hline 747 & tk & luthcond \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 748 & tl & lutemp \\
\hline 749 & tldi & Iutemp \\
\hline 750 & tldo & lutemp \\
\hline 751 & tlen & lulength \\
\hline 752 & tli & lutemp \\
\hline 753 & tlin & Iutemp \\
\hline 754 & tln & Iutemp \\
\hline 755 & tlo & Iutemp \\
\hline 756 & tloff & lutemp \\
\hline 757 & tlp & Iutemp \\
\hline 758 & tlpliq & luvolume \\
\hline 759 & tlq & lutemp \\
\hline 760 & tlscl & Iunounit \\
\hline 761 & tltb & lutemp \\
\hline 762 & tltbabs & lutemp \\
\hline 763 & tneut & lutime \\
\hline 764 & tnstep & Iunounit \\
\hline 765 & tolg & lutemp \\
\hline 766 & torque & lutorque \\
\hline 767 & toutl & lutemp \\
\hline 768 & toutl1 & lutemp \\
\hline 769 & toutl2 & lutemp \\
\hline 770 & toutv & lutemp \\
\hline 771 & toutv1 & Iutemp \\
\hline 772 & toutv2 & lutemp \\
\hline 773 & tovg & lutemp \\
\hline 774 & tp & lulength \\
\hline 775 & tpow & lupower \\
\hline 776 & tpowr & lutime \\
\hline 777 & tramax & Iutemp \\
\hline 778 & trbrf & Iunounit \\
\hline 779 & trbsig & lunounit \\
\hline 780 & trbtb & lupower \\
\hline 781 & trbtbabs & lupower \\
\hline 782 & trh & lulength \\
\hline 783 & trhmax & lutemp \\
\hline
\end{tabular}
APPENDIX F ..... F-27
\begin{tabular}{|c|c|c|}
\hline 784 & trpsig & luserdef \\
\hline 785 & trrl & lulength \\
\hline 786 & ts & luserdef \\
\hline 787 & tsat & lutemp \\
\hline 788 & tscore & lutemp \\
\hline 789 & tsdc & lutemp \\
\hline 790 & tsdlt & lutime \\
\hline 791 & tsdut & lutime \\
\hline 792 & tslp & lutemp \\
\hline 793 & tsp1 & lunounit \\
\hline 794 & tsp2 & lunounit \\
\hline 795 & tsp 3 & lunounit \\
\hline 796 & tsp4 & lunounit \\
\hline 797 & tssn & lutemp \\
\hline 798 & tsup & lutemp \\
\hline 799 & ttheta & luangle \\
\hline 800 & ttpl & lunounit \\
\hline 801 & ttp2 & lunounit \\
\hline 802 & \(\operatorname{ttp} 3\) & lunounit \\
\hline 803 & ttp4 & lunounit \\
\hline 804 & tup & lutemp \\
\hline 805 & tv & lutemp \\
\hline 806 & tvi & lutemp \\
\hline 807 & tvin & lutemp \\
\hline 808 & tvn & lutemp \\
\hline 809 & tvo & lutemp \\
\hline 810 & tvoff & lutemp \\
\hline 811 & tvol & luvolume \\
\hline 812 & tvq & Iutemp \\
\hline 813 & tvscl & lunounit \\
\hline 814 & 4 tvtb & lutemp \\
\hline 815 & 5 tvtbabs & Iutemp \\
\hline 816 & 6 tw & lutemp \\
\hline 817 & 7 twaen & Iuenergy \\
\hline 818 & 8 twan & luenergy \\
\hline 819 & 9 tween & luenergy \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 820 & twen & luenergy \\
\hline 821 & twgi & lutemp \\
\hline 822 & twgn & lutemp \\
\hline 823 & twq & lutemp \\
\hline 824 & twtold & lunounit \\
\hline 825 & tx0vsm & luangle \\
\hline 826 & ty0vsm & luangle \\
\hline 827 & tzovsm & luangle \\
\hline 828 & uvsm & lunounit \\
\hline 829 & vbmass & lumass \\
\hline 830 & vcore & lumass \\
\hline 831 & vdclq & lumass \\
\hline 832 & vflow & luvolflw \\
\hline 833 & vflowp & luvolflw \\
\hline 834 & vl & luvel \\
\hline 835 & vlin & luvel \\
\hline 836 & vln & luvel \\
\hline 837 & vintxr & luvel \\
\hline 838 & vintyt & luvel \\
\hline 839 & vlntz & luvel \\
\hline 840 & vlnxr & luvel \\
\hline 841 & vlnyt & luvel \\
\hline 842 & vlnz & luvel \\
\hline 843 & vloff & luvel \\
\hline 844 & vloss & luvolume \\
\hline 845 & vlpliq & lunounit \\
\hline 846 & vlplm & lumass \\
\hline 847 & vlq & luvel \\
\hline 848 & vltn & luvel \\
\hline 849 & vmass & lumass \\
\hline 850 & vmfr & lumassfw \\
\hline 851 & vmscl & lunounit \\
\hline 852 & vmtbabsm & lumassfw \\
\hline 853 & vmtbabsv & luvel. \\
\hline 854 & vmtbm & lumassfw \\
\hline 855 & vmtbv & luvel \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 856 & vol & luvolume \\
\hline 857 & volin & luvolume \\
\hline 858 & vrf & lunounit \\
\hline 859 & vsflow & lumassfw \\
\hline 860 & vtb1 & Iunounit \\
\hline 861 & vtb2 & lunounit \\
\hline 862 & vupliq & Iunounit \\
\hline 863 & vuplm & lumass \\
\hline 864 & vv & luvel \\
\hline 865 & vvin & luvel \\
\hline 866 & vvn & luvel \\
\hline 867 & vvntxr & Iuvel \\
\hline 868 & vvntyt & luvel \\
\hline 869 & vvntz & luvel \\
\hline 870 & vvnxr & luvel \\
\hline 871 & vonyt & luvel \\
\hline 872 & vvnz & luvel \\
\hline 873 & vroff & luvel \\
\hline 874 & vvq & luvel \\
\hline 875 & vvscl & Iunounit \\
\hline 876 & vvtab & Iunounit \\
\hline 877 & vvtb & luvel \\
\hline 878 & vvtbabs & luvel \\
\hline 879 & vvtn & luvel \\
\hline 880 & vwfmlx & Iunounit \\
\hline 881 & vwfmly & Iunounit \\
\hline 882 & vwfmlz & Iunounit \\
\hline 883 & vwfmvx & Iunounit \\
\hline 884 & vwfmvy & Iunounit \\
\hline 885 & vwfmvz & lunounit \\
\hline 886 & waig & luarea \\
\hline 887 & waog & Iuarea \\
\hline 888 & wap & luarea \\
\hline 889 & was & Iuarea \\
\hline 890 & wdsasm & luangle \\
\hline 891 & 1 wdsm & luangle \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 892 & wflxr & lunounit \\
\hline 893 & wflyt & lunounit \\
\hline 894 & wflz & lunounit \\
\hline 895 & wfmfl & lunounit \\
\hline 896 & wfmfv & Iunounit \\
\hline 897 & wfvxr & lunounit \\
\hline 898 & wfvyt & lunounit \\
\hline 899 & wfvz & lunounit \\
\hline 900 & width & lulength \\
\hline 901 & wsasm & luangle \\
\hline 902 & wsm & luangle \\
\hline 903 & x & lulength \\
\hline 904 & x 0 sm & lulength \\
\hline 905 & x0vsm & lulength \\
\hline 906 & xco & lunounit \\
\hline 907 & xcu & lunounit \\
\hline 908 & xpos & lunounit \\
\hline 909 & xsm & lulength \\
\hline 910 & xvset & Iunounit \\
\hline 911 & \(y\) & lulength \\
\hline 912 & y 0 sm & lulength \\
\hline 913 & y0vsm & lulength \\
\hline 914 & \(y s m\) & lulength \\
\hline 915 & \(z\) & lulength \\
\hline 916 & 20 sm & lulength \\
\hline 917 & z0vsm & lulength \\
\hline 918 & zht & lulength \\
\hline 919 & zhtr & lulength \\
\hline 920 & zlpbot & lulength \\
\hline 921 & zlptop & lulength \\
\hline 922 & zpwin & luserdef \\
\hline 923 & zpwoff & luserdef \\
\hline 924 & zpwrf & lunounit \\
\hline 925 & zpwtb & lunounit \\
\hline 926 & zpwtbabs & lunounit \\
\hline 927 & zpwzt & lulength \\
\hline
\end{tabular}
\begin{tabular}{ll}
928 zs & lunounit \\
929 zsabs & lunounit \\
930 zsgrid & lulength \\
931 zsm & lulength \\
932 zupbot & lulength \\
933 zuptop & lulength \\
934 & zzzzzzzz lunitnam \\
935 & zlastone lunounit
\end{tabular}

\section*{F.6. LISTING OF FILE LABELV.H}

1
2
3
4
5
6
7
8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

CHARACTER*2 lud,lutp, lus
CHARACTER*3 lut,luz
CHARACTER*4 luar, lue, lum, luvo
CHARACTER*5 lup,lupd,luv,luvf
CHARACTER*6 luis
CHARACTER*7 luen, lumf, lupt, lupw
CHARACTER*8 labels, labun, luid, lur,lusp,lusz,lutm
CHARACTER*9 luha
CHARACTER*10 lucp
CHARACTER*11 luph
CHARACTER*12 luhx, lutc, runcb
CHARACTER*13 luh, luncb, lupcb
CHARACTER*14 labsv
CHARACTER*19 ludh
CHARACTER*26 alpbet
COMMON /labelv1/labun(150)
COMMON /labelv2/luncb \((2,150)\)
COMMON /labelv3/lupcb \((2,150)\)
COMMON /labelv4/runcb \((2,150)\)
COMMON /labelv5/labsv \((2,105)\)
COMMON /labelv/factor(150), offset(150)
COMMON /labelv/ih(26),itls(777),itsv(105),ils,ilu,ilun,iold

\section*{F.7. LISTING OF FILE BLKDAT2.F}
\begin{tabular}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{tabular}

12345678901234567890123456789012345678901234567890123456789012345678901234567890

COMMON /labelv/labels(777)
COMMON /labelv/alpbet,luar,lucp, lud,ludh,lue, luen, luh,luha,luhx, \&
\& luid,luis,lum,lumf,lup,lupd,luph,lupt,lupw,lur,lus,lusp,lusz, \& \& lut, lutc, lutm, lutp, luv,luvf,luvo,luz
! subroutine block data blkdat2 initializes the



\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& 'cbtau & ', 'cbwt & ', 'cbxmax & ', 'cbxmin & ', 'ccflc & ', & \& \\
\hline \& 'ccflm & ', 'ccif & ', 'cdgn & ', 'cdhn & ', 'ceffmi & ', & \& \\
\hline \& 'cemfr & ', 'cener & ', 'cepwn & ', 'cfmass & ', 'cfrlxr & ', & \& \\
\hline \& 'cfrlyt & ', 'cfrlz & ', 'cfrvxr & ', 'cfrvyt & ', cfrvz & ', & \& \\
\hline \& 'cfz & ', 'cfz3 & ','cfzlxr & ', 'cfzlyt & ', 'cfzlz & ' / & \\
\hline DATA (label & ls(i), i= 7 & 76.150)/ & & & & \& \\
\hline \& 'cfzvxr & ', 'cfzvyt & ', 'cfzvz & ', 'chm12 & ', 'chm13 & ', & \& \\
\hline \& ' chm14 & ', 'chm 15 & ', 'chm22 & ', 'chm23 & ', 'chm24 & , & \& \\
\hline \& ' chm 25 & ', 'chti & ', 'chtia & ', 'chtin & ', 'cif & , & \& \\
\hline \& 'cifn & ', 'cifxr & ', 'cifyt & ', 'cifz & ', 'cimfrl & ', & \& \\
\hline \& 'cimfrv & ', 'cks & ', 'ckw & ', 'clenn & ', 'cmass & ', & \& \\
\hline \& 'cmflow & ', 'cnmax & ', 'cnmin & ', 'cntlmn & ', 'cntlmx & ', & \& \\
\hline \& 'coefl & ', 'coef2 & ', 'cof 3 sq & ', 'comfrl & - ' comfrv & ', & \& \\
\hline \& ' conc & ', 'concin & ', 'conctb & ', 'conctbab & ', 'cond & ', & \& \\
\hline \& 'conoff & ', 'conscl & ', 'cosangl & ' . 'cosp & ', 'coss & \(\cdot\) ' & \& \\
\hline \& ' cost & ', 'cp & ', 'cpow & ', 'cpowr & ', 'cpowrab & & \& \\
\hline \& ' cputot & ', 'cpvint & ', 'crligfr & ', 'crpress & ', 'ctork & ', & \& \\
\hline \& 'ctrans & ', 'dbreac & ', 'dcflow & ', 'dclqvol & ', 'dds & ', & \& \\
\hline \& 'delt & ', 'deltap & ', 'deltl & ', 'deltv & ', 'dh & ', & \& \\
\hline \& 'dia & ', 'diah & ', 'dmass & ' , 'dmpint & ', 'dnew & ', & \& \\
\hline \& 'dnewn & ', 'dpevn & ', 'dpmax & ', 'dpovn & ', 'dprmax & '/ & \\
\hline DATA (labe & ls(i), i=15 & 1,225)/ & & & & \& \\
\hline \& 'dr & ', 'dt & ', ' atend & ', 'dtlmax & ', 'dtmax & ', & \& \\
\hline \& 'dtmin & ', 'dtrmax & ', 'dtsm & ' , 'dtsmax & ', 'dtsofs & ', & \& \\
\hline \& 'dtsoft & ', 'dtsp & ', 'dtstrt & ' . 'dtvmax & ', 'dtxht & ', & \& \\
\hline \& ' dx & ', 'dxin & ', 'dy & ' ' \({ }^{\text {dz }}\) & ', 'dznht & ', & \& \\
\hline \& 'edh & ', 'edint & ', 'effdsn & ', 'effld & ', 'effmi & ', & \& \\
\hline \& 'effmil & ', 'effstg & ', 'efgen & ', 'elev & ', 'emcifi & ', & \& \\
\hline \& 'emcif2 & ', 'emcif3 & ', 'emcofl & ', 'emcof2 & ', 'emcof3 & ', & \& \\
\hline \& 'enind & ', 'enin2 & ', 'eninp & ', 'enth & ', 'epso & ', & \& \\
\hline \& 'epss & ', 'epsw & ', 'errsm & ', 'extsou & ', 'fa & ', & \& \\
\hline \& 'favlve & ', 'faxr & ', 'fayt & ', 'faz & ', 'fdfhl & ', & \& \\
\hline \& 'felv & ', 'ff & ', 'fisphi & ', 'flow & ', 'flowarea & ', & \& \\
\hline \& 'flowin & ', 'flwin & ', 'flwoff & ', 'flwou & ', 'fmaxov & ', & \& \\
\hline \& 'fminov & ', 'fp235 & ', 'fp238 & ', 'fp239 & ', 'fpuo2 & ', & \& \\
\hline \& ' frcvn & ', 'frfaxr & ', frfayt & ', 'frfaz & ', 'fric & ', & \& \\
\hline
\end{tabular}
\& 'fricr ','frovn ','frvol ','fsi ','fsmass '/
\begin{tabular}{|c|c|c|c|c|c|}
\hline \& 'fso & ', 'ftd & ', 'ftx & ', 'fty & ', 'fucrac & ', \\
\hline \& 'funh & -, fxmass & ', 'fxsm & ', 'fysm & ', 'fzsm & ', \\
\hline \& 'gam & ', 'gamma & - ' 'gc & ', 'gfint & ', 'gmix & ', \\
\hline \& 'gmles & ', 'grav & ', 'gravxr & ', 'gravyt & ', 'gravz & \(\cdot\), \\
\hline \& 'gvf & ', 'gxrc & ', 'gytc & ', 'gzc & ', 'hbs & ', \\
\hline \& 'hd & ', 'hd-ht & ', 'hd3 & ', 'hdm & ', 'hdri & ', \\
\hline \& 'hdro & ', 'hdxr & ', 'hdyt & ', 'hdz & ', 'head & ', \\
\hline \& 'height & ', 'hgam & ', 'hgap & ', 'hgapo & ', 'hil & ', \\
\hline \& 'hilg & ','hiv & ', 'hivg & ', 'hl & ', 'hli & ', \\
\hline \& 'hlo & ', 'holg & ', 'houtl & ', 'houtl1 & ', 'hout12 & ', \\
\hline \& 'houtv & ', 'houtv1 & ', 'houtv2 & ', 'hovg & ', 'hs & \(\cdots\) \\
\hline \& 'hsabs & ', 'hsk & ', 'hsp1 & ', 'hsp2 & ', 'hsp3 & , \\
\hline \& 'hsp4 & ', 'hstn & ', 'htewl & ', 'htcwv & ', 'htlsci & ', \\
\hline \& 'htlsco & - 'htlsgi & ', 'htlsgo & ', 'htmli & ', 'htmlo & ' \\
\hline \& 'htmvi & ', 'htmvo & ', 'htnew & ', 'htpl & ', 'htp2 & '/ \\
\hline
\end{tabular}
DATA (labels(i),i=301,375)/
\& 'htp3 ','htp4 ','hv \(\quad\) ','hvi \(\quad\) ', hvlve \(\quad\) ',
\begin{tabular}{lllllll}
\(\&\) & 'hvo & ','hynew & ','imflow & ','inrta & ','lamda & ',
\end{tabular}
\& 'mfrlz ','mfrv ','mfrvr ','mfrvt ','mfrvz ', \&
\& 'ml \(\quad\) ', \(\mathrm{mv} \quad\) ','nf1sm \(\quad\) ', \(\mathrm{nf} 2 \mathrm{sm} \quad\) ','nf3sm ', \&
\& 'nfclsm ','nfcvsm ','nfl4sm ','nflsm ','nfv4sm ', \&
\begin{tabular}{llllll}
\(\&\) & 'nfvsm & ','omega & ','omegan & ','omegd & ','omegop \\
\& 'omgoff & ','omgscl & ','omsasm & ','omsm & ','omtest & ',
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\&\) & 'p & ', 'pa & ', 'pain & ', 'pan & ', 'paoff & ', & \& \\
\hline \& & 'paq & ', 'pascl & ', 'patb & ', 'patbabs & ', 'pdc & ', & \& \\
\hline \& & 'pdrat & ', 'pflow & ', 'pgapt & ', 'pgreac & ', 'phist & ', & \& \\
\hline \& & 'pin & ', 'pinteg & ', 'pldr & ', 'plen & ', 'plp & ' & \& \\
\hline \& & 'plvol & ', 'pmass & ', 'pmprf & ', 'pmprfabs & ', 'pmptb & ', & \& \\
\hline \& & 'pmptba & ' ، 'pmv1 & ', 'pmvv & - 'pn & ', 'poff & ', & \& \\
\hline \& & 'poffs & ', 'popoff & ', 'popscl & ', 'powd & ', 'power & \(\cdot /\) & \\
\hline
\end{tabular}
DATA (labels(i), \(i=376,450) /\) ..... \&
\begin{tabular}{llllll}
\(\&\) & 'powerc & ', 'powexp & ','powin & ', 'powli & ', 'powlo \\
\& 'powoff & ', 'powop & ', 'powou & ','powr1 & ','powr2 & ',
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& 'powrf & ', 'powrfi & ' , 'powrf2 & ', 'powscl & , 'powstg & ', & \& \\
\hline \& 'powtb & ', 'powtb1 & ' , 'powtb2 & ', 'powtbab & ', 'powvi & ', & \& \\
\hline \& 'powvo & ', 'pp & ', 'ppa & ', 'ppower & ', 'pq & ', & \& \\
\hline \& 'pres 1 & ', 'pres2 & ', 'pscl & ', 'pset & ', 'pslen & ', & \& \\
\hline \& 'ptb & ', 'ptbabs & ', 'ptl & ', 'ptv & ', 'pup & \('\), & \& \\
\hline \& 'pwin1 & ', 'pwin2 & ', 'pwoff1 & ', 'pwoff 2 & ', 'pwscl1 & ', & \& \\
\hline \& 'pwscl2 & ', 'pwtblabs & ', 'pwtb2abs & ' , 'q235 & ', 'q238 & ', & \& \\
\hline \& 'q239 & ', 'qavg & ', 'qchf & ', 'qheat & ', 'qhstot & ', & \& \\
\hline \& 'qhistr & ', 'qin & ', 'gout & ' , 'qp3in & ' , 'qp3off & ', & \& \\
\hline \& 'qp 3 rf & ', 'gp3rf1 & ', 'qp3rf2 & - 'qp3rfab & ', 'qp3scl & ', & \& \\
\hline \& 'qp 3tb & ', 'qp3tb1 & - ' qp3tb2 & ', 'qp3tbab & ' , 'qpin1 & ', & \(\&\) \\
\hline \& ' qpin2 & ', 'qpoff1 & ', 'gpoff 2 & ', ' Cppg & ', 'qppl & ', & \& \\
\hline \& 'qppp & ', 'qpppq & ', 'qppps & ', ' qppr & ', 'qpscl1 & '/ & \\
\hline \multicolumn{6}{|l|}{DATA (labels (i), i=451,525)/} & \& \\
\hline \& ' qpscl2 & \multicolumn{3}{|l|}{, 'qptblabs', 'qptb2abs', 'qualty} & ', r & ', & \& \\
\hline \& 'r239pf & ', 'radg & ', 'radig & ', 'radin & ', 'radin1 & ', & \& \\
\hline \& 'radin2 & ', 'radrd & ', 'radt & ', 'rans & ' , rbmx & ', & \& \\
\hline \& 'rcal & ', 'rcbm & ', 'retc & ', 'retf & ' , 'rdiam & ', & \& \\
\hline \& 'rdpwr & \multicolumn{2}{|l|}{', 'rdpwrabs', 'rdx} & ', 'react & ', 'reactn & ', & \& \\
\hline \& 'regnm & ', 'rflow & ', 'rfmxm & ', 'rfmxv & ', 'rftb & ', & \& \\
\hline \& 'rftn & ', 'rhead & ', 'rhol & ', 'rhom & ', 'rhop & ', & \& \\
\hline \& 'rhov & ','rmass & ', 'rmatsm & ', 'rmckn & ', 'rmvm & ', & \& \\
\hline \& 'roan & ', 'roln & ', 'romega & - , romgmx & ', 'rovn & ', & \& \\
\hline \& 'rpkf & ', 'rpopmx & ', 'rpower & ', 'rpowmx & ', 'rpowri & & \& \\
\hline \& 'rpowrn & ', 'rpwmx1 & ', 'rpwnx2 & ', 'rpwoffp & ', 'rpwoffr & ' & \& \\
\hline \& 'rpwrf & ', 'rpwrt & ', 'rpwscl & ', 'rpwtbab & p', 'rpwtbab & & \& \\
\hline \& 'rpwtbp & ', 'rpwtbr & ', 'rqp 3 mx & ' , 'rgpmx1 & ', 'rqpmx2 & ' & \& \\
\hline \& 'rrho & ', 'rrpwmxp & ', 'rrpwmxr & ', 'rrs & ', 'rs & ', & \& \\
\hline \& 'rsabs & ', 'rsm & ', 'rtork & -'rtwfp & ': r rvmf & ' / & \\
\hline \multicolumn{6}{|l|}{DATA (labels (i), i=526,600)/} & \& \\
\hline \& 'rvmx & ', 'rvov & ' , 'rws & ', 'rzht & ' , 'rzpwmx & ' & \& \\
\hline \& 's & ','sa & ', 'saf & ', 'scn 1 & ', 'scn2 & ', & \& \\
\hline \& ' \(\operatorname{scn} 3\) & -, 'scn4 & ', 'scn5 & ' ' 'sedint & ', ' setp & ', & \& \\
\hline \& 'setpnt & ', 'shelv & ', 'shtd & ', 'smom & ', 'sn & ', & \& \\
\hline \& 'solid & ', 'stnui & ', 'stnuo & ', 'strtmp & ', 'stype & , & \(\varepsilon\) \\
\hline \& 'suprht & ', 'sv & ', 't & ', 't0sm & ', 'tai & ', & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& 'tan & ', 'tcefn & ', 'tcen & ', 'tchf & ', 'tcilmf & ', & \& \\
\hline \(\&\) 'tcivmf & ', 'tcolmf & ', 'tcore & ', 'tcovmf & ', 'tcreac & ', & \& \\
\hline \& 'tdc & ', 'tdm & ', 'tdragxr & ', 'tdragyt & ', 'tdragz & ', & \& \\
\hline \& 'tend & ', 'tener & ', 'tfmass & ', 'tfr0 & ', 'tfrl & ', & \& \\
\hline \& 'tfr2 & ', 'tfr3 & ', 'tfrb & ', 'tfreac & ', 'tfrlo & ', & \& \\
\hline \& 'tfrl1 & ', 'tfrl2 & ', 'tfrl3 & ', 'th & ', 'th1 & ', & \& \\
\hline \& 'th2 & ', 'thg & ', 'tilg & ', 'timdl & ', 'timdu & ', & \& \\
\hline \& 'timet & ', 'tin & ', 'tivg & ', 'tk & ', 'tl & \(\cdots\) & \& \\
\hline \& 'tldi & ', 'tldo & ','tlen & ', 'tli & ', 'tlin & '/ & \\
\hline
\end{tabular}
DATA (labels(i),i=601,675)/ \&
\(\& \cdot t \ln \quad\) ',tlo ','tloff ','tlp \(\quad\) ',tlpliq ', \&
\& 'tlq ','tlscl ','tltb ','tltbabs ','tneut ', \&
\& 'tnstep ','tolg ','torque ','toutl ','toutll ', \&
\begin{tabular}{llllll}
\(\&\) & 'tout12 & ','toutv & ','toutv1 & ','toutv2 & ','tovg \\
\(\&\) & 'tp & ','tpow & ','tpowr & ','tramax & ', 'trbrf \\
', & \(\&\) & \(\&\)
\end{tabular}
\& 'trbsig ','trbtb ','trbtbabs','trh ','trhmax ', \&
\& 'trpsig ','trri ','ts ','tsat ','tscore ', \&
\& 'tsdc ','tsalt ','tsdut ','tslp ','tsp1 ', \&
\begin{tabular}{lllllll}
\(\&\) & 'tsp2 & ','tsp3 & ','tsp4 & ','tssn & ','tsup & ', \\
\& 'ttheta & ','ttp1 & ','ttp2 & ','ttp3 & ','ttp4 & ', & \(\&\)
\end{tabular}
\& 'tup ','tv ','tvi ','tvin ','tvn ', \&
\& 'tvo ','tvoff ','tvol ','tvq ','tvscl ', \&
\& 'tvtb ','tvtbabs ','tw ','twaen ','twan ', \&
\& 'tween ','twen ','twgi ','twgn ','twq ', \&
\& 'twtold ','tx0vsm ','ty0vsm ','tz0vsm ','uvsm '/
DATA (labels(i),i=676,750)/ \&
\& 'vbmass ','vcore ','vdclq ','vflow ','vflowp ', \&
\& 'vl ','vlin ','vln ','vlntxr ','vlntyt ', \&
\& 'vlntz ','vlnxr ','vlnyt ','vlnz ','vloff ', \&
\& 'vloss ','vlpliq ','vlplm ','vlq ','vltn '. \&
\& 'vmass ','vmfr ','vmscl ','vmtbabsm','vmtbabsv', \&
\& 'vmtbm ','vmtbv ','vol ','volin ','vrf ', \&
\& 'vsflow ','vtb1 ','vtb2 ','vupliq ','vuplm ', \&
\& 'vv ','vvin ','vvn ','vuntxr ','vuntyt ', \&
\& 'vvntz ','vvnxr ','vvnyt ','vvnz ','vvoff ', \&
\& 'vvq ','vvscl ','vvtab ','vvtb ','vvtbabs ', \&
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\&\) & 'vvtn & ', 'vwfmlx & ', 'vwfmly & ', 'vwfmlz & ', 'vwfmvx & ', & 8 \\
\hline \& & ' vwfmvy & ', 'vwfmvz & ', 'waig & ', 'waog & ', 'wap & ', & \& \\
\hline \(\varepsilon\) & 'was & ', 'wdsasm & ', 'wdsm & ', 'wflxr & ', 'wflyt & ', & \& \\
\hline \(\varepsilon\) & 'wflz & ', 'wfmfl & ', 'wfmfv & ', 'wfvxr & ', 'wfvyt & ', & \& \\
\hline \& & 'wfvz & ', 'width & ', 'wsasm & ' . 'wsm & ', 'x & ' 1 & \\
\hline \multicolumn{7}{|c|}{DATA (labels(i), i=751,781)/} & \& \\
\hline \& & 'x0sm & ', 'x0vsm & ', 'xco & ', 'xcu & ', 'xpos & \({ }^{\prime}\) & \& \\
\hline \& & 'xsm & ', 'xvset & ', 'Y & ', 'y0sm & ', 'y0vsm & ', & \& \\
\hline \& & 'ysm & ', 'z & ', 'z0sm & ', 'z0vsm & ', 'zht & ', & \& \\
\hline \& & 'zhtr & ', 'zlpbot & ', 'zlptop & ','zpwin & ', zpwoff & ', & \& \\
\hline \& & 'zpwrf & ', 'zpwtb & ', 'zpwtbab & s', zpwzt & ', 'zs & ' & \(\&\) \\
\hline \& & 'zsabs & ', 'zsgrid & ', 'zsm & ', 'zupbot & ', 'zuptop & ', & \& \\
\hline \multicolumn{8}{|l|}{\& 'zzzzzzzz'/} \\
\hline \multicolumn{7}{|c|}{DATA ( 1 labsv(i,j), i=1,2), \(\mathbf{j}=1,15) /\)} & \& \\
\hline \multicolumn{7}{|l|}{\& 'time (s) ','time (s) ',} & \& \\
\hline \multicolumn{7}{|l|}{\& 'core power (w)', 'power (btu/hr)',} & \& \\
\hline \multicolumn{7}{|l|}{\& 'pri press (pa)','p press (psia)',} & \& \\
\hline \multicolumn{7}{|l|}{\& 'pzr press (pa)','pz pres (psia)',} & \& \\
\hline \multicolumn{7}{|l|}{\& 'prizr temp (k)','prizr temp (f)',} & \& \\
\hline \multicolumn{7}{|l|}{\& 'pz liq lev (m)', 'pz lq lev (ft)',} & \& \\
\hline \multicolumn{7}{|l|}{\& 'tk liq lev (m)', 'tk lq lev (ft)',} & \& \\
\hline \multicolumn{7}{|l|}{\& 'hot-1 temp (k)', 'hot-1 temp (f)',} & \& \\
\hline \multicolumn{7}{|l|}{\& 'cld-1 temp ( \(k\) )', 'cld-1 temp (f)',} & \& \\
\hline \multicolumn{7}{|l|}{\& 'p mflow (kg/s)', 'mflow (lom/hr)',} & \& \\
\hline \multicolumn{7}{|l|}{\& 'ecc mfw (kg/s)', 'eccmf (libm/hr)',} & \& \\
\hline \multicolumn{7}{|l|}{\& 'sec press (pa)','sc pres (psia)',} & \& \\
\hline \multicolumn{7}{|l|}{\& 'st mflw (kg/s)','st mf (lbm/hr)',} & \& \\
\hline \multicolumn{7}{|l|}{\& 'fw mflw (kg/s)', 'fw mf (lbm/hr)',} & \& \\
\hline \multicolumn{8}{|l|}{\& 'afw mfw (kg/s)', 'af mf ( \(1 \mathrm{bm} / \mathrm{hr}\) )'/} \\
\hline \multicolumn{7}{|c|}{DATA ( 1 labsv(i, j) , i=1,2), j= 16, 30)/} & \& \\
\hline \multicolumn{7}{|l|}{\& 'sc liq lev (m)', 'sc lq lev (ft)',} & \& \\
\hline \multicolumn{7}{|c|}{\& 'user defined ', 'user defined ',} & \& \\
\hline \multicolumn{7}{|c|}{\& 'user defined ','user defined ',} & \& \\
\hline \multicolumn{7}{|c|}{\& 'core power (w)', 'power (btu/hr)',} & \& \\
\hline \multicolumn{7}{|l|}{\& 'pwr period (s)', 'pwr period (s)',} & \& \\
\hline & \& 'liq lev & vel (m) ',' & iq level ( & ft)' & & & \& \\
\hline
\end{tabular}
\& 'pressure (pa) ','press (psia) ..... \&
\& 'gas temp (k) ','gas temp (f) ..... \(\&\)
\& 'liq temp (k) ','liq temp (f) ', ..... \&
\& 'in sf temp (k)', 'in sf temp (f)', ..... \&
\& 'surf temp (k) ','surf temp (f) ', ..... \&
\& 'htstr temp (k)','htstr temp (f)', ..... \&
\& 'void fraction ', 'void fraction ', ..... \&
\& ' \(\mathrm{y} t \mathrm{~V} \operatorname{mf}(\mathrm{~kg} / \mathrm{s})\) ', 'y \(\operatorname{vmf}(\mathrm{lbm} / \mathrm{hr})\) ', ..... \(\&\)
\& 'z vp mf (kg/s)','z vmf (lbm/hr)'/
DATA ((labsv(i,j),i=1,2),j=31, 45)/ ..... \&
\& ' \(x x \vee \operatorname{mf}(\mathrm{~kg} / \mathrm{s})\) ', ' \(\mathrm{x} \operatorname{vmf}(l \mathrm{lbm} / \mathrm{hr})\) ', ..... \(\&\)
\& 'yt \(1 \mathrm{mf}(\mathrm{kg} / \mathrm{s})\) ', 'y \(\operatorname{lmf}(1 \mathrm{bm} / \mathrm{hr})\) ', ..... \(\&\)
\& 'z lq \(\mathrm{mf}(\mathrm{kg} / \mathrm{s})\) ','z \(\operatorname{lmf}(\mathrm{lbm} / \mathrm{hr})\) ', ..... \&
\& 'xr \(1 \mathrm{mf}(\mathrm{kg} / \mathrm{s})\) ', 'x \(\operatorname{lmf}(\mathrm{lbm} / \mathrm{hr})\) ', ..... \&
\& 'yt g vel (m/s)','y g vel (ft/s)', ..... \&
\& 'z gs vel (m/s)','z g vel (ft/s)', ..... \&
\& ' xr g vel (m/s)','x g vel (ft/s)', ..... \&
\& 'yt 1 vel ( \(\mathrm{m} / \mathrm{s}\) )','y 1 vel (ft/s)', ..... \(\&\)
\& 'z lq vel ( \(\mathrm{m} / \mathrm{s}\) )','z 1 vel (ft/s)', ..... \&
\& ' \(\mathrm{xr} 1 \mathrm{vel}(\mathrm{m} / \mathrm{s}\) )','x 1 vel ( \(\mathrm{ft} / \mathrm{s}\) )', ..... \&
\& 'dis solute/liq','dis solute/liq', ..... \&
\& 'pm spd (rad/s)', 'pm speed (rpm)', ..... \&
\& 'valve farea \(f r ', ' v a l v e ~ f a r e a ~ f r ', ~\) ..... \(\&\)
\& 'valve stem pos', 'valve stem pos', ..... \(\&\)
\& 'mult cnst keff','mult cnst keff'/
DATA ((labsv(i,j),i=1,2),j=46, 60)/ ..... \&
\& 'prog reac ','prog reac ', ..... \(\&\)
\& 'tot fdbk reac ', tot fdbk reac ', ..... \(\&\)
\& 'fuel temp reac','fuel temp reac', ..... \&
\& 'cool temp reac', cool temp reac', ..... \&
\& 'void frac reac', 'void frac reac', ..... \&
\& 'solute reac ','solute reac ..... \&
\& 'av fl temp (k)', 'av fl temp (f)', ..... \&
\& 'av cl temp (k)','av cl temp (f)'. ..... \&
\& 'avg void fr ', 'avg void fr ..... \&
\& 'avg sol (ppm) ','avg sol (ppm)', ..... \&
\& 'trp signal (*)','trp signal (*)', ..... \(\&\)
\& 'trp set status','trp set status', ..... \(\&\)
\& 'prompt pwr (w)', 'pt pw (btu/hr)', ..... \(\&\)
\& 'decayh pwr (w)', 'dh pw (btu/hr)', ..... \&
\& 'a \(m x \operatorname{sf} \operatorname{tp}(k)\) ','a mx sf tp (f)'/
DATA ((labsv(i,j), \(i=1,2), j=61,75) /\) ..... \&
\& 's mx sf tp (k)','s mx sf tp (f)', ..... \&
\& 'pmp hd (m2/s2)', 'ph(lbf*ft/lbm)', ..... \&
\& 'torque (pa*m3)', torq (lbf*ft) ', ..... \&
\& ' p msou ( \(\mathrm{m} 2 / \mathrm{s} 2\) )', 'ms(lbf*ft/lbm)', ..... \(\&\)
\& 'vlve \(h\) dia (m)', 'vlv h dia (ft)', ..... \&
\& 'yt hyd dia (m)', 'y hyd dia (ft)', ..... \&
\& ' \(z\) hyd diam ( \(m\) )','z hyd dia (ft)', ..... \(\&\)
\& 'xr hyd dia (m)', 'x hyd dia (ft)', ..... \(\&\)
\& 'yt \(m \mathrm{mf}(\mathrm{kg} / \mathrm{s})\) ', 'Y mmf ( \(\mathrm{lbm} / \mathrm{hr}\) )', ..... \(\&\)
\& ' \(z \mathrm{mmfw}(\mathrm{kg} / \mathrm{s}\) )','z mmf (lbm/hr)', ..... \&
\& 'xr \(m \operatorname{mf}(\mathrm{~kg} / \mathrm{s})\) ', \(\mathrm{x} \mathrm{mmf}(\mathrm{lbm} / \mathrm{hr})\) ', ..... \(\&\)
\& 'yt \(m\) vel ( \(\mathrm{m} / \mathrm{s}\) )','y m vel (ft/s)', ..... \(\&\)
\& 'z mx vel (m/s)','z m vel (ft/s)', ..... \&
\& 'xr m vel (m/s)','x m vel (ft/s)', ..... \(\&\)
\& 'vp den (kg/m3)','v dn (lbm/ft3)'/
DATA ((labsv(i,j),i=1,2),j=76, 90)/ ..... \&
\& 'lq den (kg/m3)','l dn (lbm/ft3)', ..... \&
\& 'mi den (kg/m3)','m dn (1bm/ft3)', ..... \&
\& 'ng den (kg/m3)','ng \(d(l b m / f t 3) '\), ..... \(\&\)
\& 'ngas mass (kg)','ng mass (lbm) '. ..... \(\&\)
\& 'ng press (pa) ','ng pres (psia)', ..... \(\&\)
\& 'ng ie ( \(\mathrm{w}^{*} \mathrm{~s} / \mathrm{kg}\) )', 'ng e (btu/lbm)', ..... \&
\& 'vp ie ( \(w^{*} s / k g\) )', 'v ie (btu/lbm)'. ..... \(\&\)
\& 'lq ie ( \(w^{*} s / k g\) )', 'l ie (btu/lbm)', ..... \(\&\)
\& 'sat temp \(s(k)\) ', 'sat temp \(s(f) '\), ..... \&
\& 'sat temp \(t(k)\) ', 'sat temp \(t\) (f)', ..... \&
\& 'vcv (w*s/kg/k)', 'vc (btu/lbm/f)', ..... \&
\& 'lcv ( \(w^{*} s / k g / k\) )', llc (btu/lbm/f)', ..... \&
\& 'ht vp ( \(w^{*} s / k g\) )','htvp (btu/lbm)', ..... \(\&\)
\& 'shloss vap (w)','shlsv (btu/hr)', ..... \(\&\)
\& 'shloss liq (w)','shlsl (btu/hr)'/
    DATA ( 1 labsv( \(i, j\) ), \(i=1,2\) ), \(j=91,105) /\) \&
    \& 'inf ht flw (w)','ihtfw (btu/hr)', \&
    \& 'v htc ( \(\mathrm{w} / \mathrm{m} 2 / \mathrm{k}\) )','(btu/ft2/f/hr)', \&
    \& 'l htc ( \(w / \mathrm{m} 2 / \mathrm{k}\) )','(btu/ft2/f/hr)'. . \&
    \& 'v htc (w/m2/k)','(btu/ft2/f/hr)', \&
    \& 'l htc (w/m2/k)','(btu/ft2/f/hr)'. \&
    \& 'ia*vhtc (w/k) ','avh (btu/f/hr)', \&
    \& 'ia*lhtc (w/k) ','alh (btu/f/hr)', \&
    \& 'yt idc (kg/m4)','yidc (lbm/ft4)', \&
    \& 'z idc ( \(\mathrm{kg} / \mathrm{m} 4\) ) ','zidc ( \(1 \mathrm{bm} / \mathrm{ft} 4\) )', \&
    \& 'xr idc ( \(\mathrm{kg} / \mathrm{m} 4\) )', 'xidc (lbm/ft4)', \&
    \& 'ps den \((\mathrm{kg} / \mathrm{m} 3\) )', 'ps d ( \(1 \mathrm{bm} / \mathrm{ft} 3\) )', , \&
    \& 'vgen ( \(\mathrm{kg} / \mathrm{m} 3 / \mathrm{s}\) )', 'vg(lbm/ft3/hr)', \&
    \& 'is ht loss (w)','is hl (btu/hr)', \&
    \& 'os ht loss (w)','os h1 (btu/hr)', \&
    \& 'c mix temp ( \(k\) )','c mix temp (f)'/
    DATA ((labsv(i,j),i=1,2),j=106,106)/ \&
    \& 'd/p (kg/m3/pa)','d/p (lb/ft3/p)'/
    DATA (labun(i),i= 1,151)/
    \&
    \& 'lunounit','lutime ','lutemp ','lutempd ','lulength'. \&
    \& 'luarea ','luvolume','luvel ','luacc ','lupumphd', \&
    \& 'luvolflw','luspvol ','lumass ','lumassfw','lumfwrat', \&
    \& 'lumassfx','luvapgen','luden ','luddendt','luidrag ', \&
    \& 'lupressa','lupressd','luprsrat','luminert','lutorque', \&
    \& 'lubtork ','luctork ','lupower ','lupowrat','lulinhts', \&
    \& 'luheatfx','luvolhts','luthcond','luhtc ','luihttf ', \&
    \& 'luenergy','luspener','luspheat','lurtime ','lurtemp ', \&
    \& 'lurmass ','lurpress','luspeed ','luradacc','luangle ', \&
    \& 'luburnup','luenfiss','lugapgas','lurtmsq ','lunitnam', \&
    \& 'luddendp',100*'luserdef'/
    DATA ((luncb(i,j), \(i=1,2), j=1,15) / \&\)
    \& ' ' ' ' ', \&
    \& ' \(s \quad\) ', \(s \quad\) ', \&
    \& k ', f ', \&
    \& ' k ',' f ', \&

\begin{tabular}{|c|c|c|c|}
\hline \& 1 \(1 / s\) & ', 1/s & ', & \& \\
\hline \& \(\cdot 1 / k\) & ', 1/f & ', & \& \\
\hline \& ' \(1 / \mathrm{kg}\) & ', ' 1/1bm & ', & \& \\
\hline \& 1 1/pa & ', ' 1/psi & ', & \& \\
\hline \& ' rad/s & ',' rpm & ', & \& \\
\hline \& ' rad/s2 & ', ' rpm/s & ', & \& \\
\hline \& ' rad & ',' deg & '/ & \\
\hline
\end{tabular}
DATA ((luncb(i,j), \(i=1,2), j=46,151) / \quad \&\)
\& ' mwd/mtu ','mwd/mtu ', \&
\& ' mev/fiss ',' mev/fiss ', \&
\& ' g-moles ',' g-moles ', \&
\& ' \(1 / \mathrm{k} 2\) ', \(1 / \mathrm{f} 2 \quad\) ', \&
\& ' ', ' * ', \&
\& ' \(\mathrm{kg} / \mathrm{m} 3 / \mathrm{pa}\) ',' lbm/ft3/psi ', \& \& 200*' * 1/
DATA ((lupcb(i,j),i=1,2),j=1,15)/ \&
\& '(-) ','(-) ', \&
\& '(s) ','(s) ', \&
\& ' (k) ','(f) ', \&
\& ' (k) ','(f) ', \&
\& \(\cdot(\mathrm{m}) \quad\) ', \('(\mathrm{ft}) \quad\) ', \&
\& ' \((\mathrm{m} 2) \quad\) ','(ft2) ', \&
\& ' (m3) ', '(ft3) ', \&
\(\& \cdot(\mathrm{~m} / \mathrm{s}) \quad\) ', \((\mathrm{ft} / \mathrm{s}) \quad\) ', \&
\(\& \cdot(\mathrm{~m} / \mathrm{s} 2) \quad\) ','(ft/s2) \(\quad\), \&
\(\& \cdot(\mathrm{~m} 2 / \mathrm{s} 2) \quad\) ','(lbf*ft/lbm) ', \&
\(\& '(\mathrm{~m} 3 / \mathrm{s}) \quad\) ', \((\mathrm{gpm}) \quad\) ', \&
\(\& \cdot(\mathrm{~m} 3 / \mathrm{kg}) \quad\) ','(ft3/lbm) ', \&
\& ' \((\mathrm{kg}) \quad\) ','(lbm) \(\quad\), \&
\(\& \cdot(\mathrm{~kg} / \mathrm{s}) \quad\) ','(1bm/hr) ', \&
\& ' \((\mathrm{kg} / \mathrm{s} 2) \quad\) ','( \(1 \mathrm{bm} / \mathrm{s} 2) \quad\) '/
```

 DATA ((lupcb(i,j),i=1,2),j= 16, 30)/ &
 \& '(kg/m2/s) ','(lbm/ft2/hr) ', \&
\& '(kg/m3/s) ','(lbm/ft3/hr) ', \&
\& '(kg/m3) ','(lbm/ft3) ', \&
\&'(kg/m3/k) ','(lbm/ft3/f) ', \&

```


\&

\title{
APPENDIX G TRAC-M Control-Logic BIT Definitions
}

\section*{G.1. INTRODUCTION}

For each TRAC-M hydraulic component, the container A array stores a REAL*8 old-time (beginning-of-timestep) BIT array and new-time (end-of-timestep) BITN array with elements for each mesh-cell center or face. BIT and BITN are single dimensioned for 1D hydraulic components and triple dimensioned for the 3D VESSEL component. Bit information is stored in array elements BIT(J) and BITN(J) for the center or negative face of cell \(J\) of a \(1 D\) hydraulic component and stored in array elements \(B I T(I, J, K)\) and \(B I T N(I, J, K)\) for the center or positive faces of cell \(I, J, K\) of a 3D VESSEL component.

Each bit is an off (0) or on (1) indicator for a thermal-hydraulic state condition at the mesh-cell center or face. Currently, 30 bit indicators are defined: bit identification (id) numbers 1 to 17 are for cell-center conditions, and bit id numbers 20 to 32 are for cell-face conditions. The bit id number is the right-to-left bit number in the REAL*8 BIT or BITN word storage format. Section G. 2 provides a detailed description of those 30 bits and defines their parameter-constant name ( PCN ) id numbers.

Five C-language functions and subroutines are used to obtain (access) or define the bit-indicator 0 or 1 values. Integer function BTESTC(BIT(J), PCN) obtains the bit-indicator 0 or 1 value of BIT(J) for bit id number integer PCN. An example of PCN is integer satLineCrossVap=1 for bit id number 1 (see Sec. G.2). REAL*8 function \(\operatorname{IBCLRC}(\operatorname{BIT}(J), \operatorname{PCN})\) or \(\operatorname{IBSETC}(B I T(J), \mathrm{PCN})\) defines the bit-indicator 0 or 1 value, respectively, to bit id number integer PCN of BIT(J). Subroutine ON1123C(BIT(J), NCF) defines all bits to be 0 except bit id numbers \(2,11,12,13,30\), and 32 for cell centers and cell faces \(J\) to \(J+N C F-1\) of array BIT. Subroutine OF1123C(BIT(J), NCF) defines bit id numbers 11, 12, and 13 to be 0 for cell centers and cell faces J to \(\mathrm{J}+\mathrm{NCF}-1\) of array BIT. BITN(J), BIT( \(\mathrm{I}, \mathrm{J}, \mathrm{K}\) ), and BITN( \(\mathrm{I}, \mathrm{J}, \mathrm{K}\) ) can be used in place of \(\operatorname{BIT}(\mathrm{J})\) in the above usage.

\section*{G.2. LISTING OF FILE BITFLAGS.H}

The following is a modified listing of header file bitflags.h. The comments differ slightly from the header file bitflags.h in TRAC-M Version \(1.10+\) because of editing changes made here for correction and further clarity. This documents the purpose and usage of each of the defined 30 bits of arrays BIT and BITN.
```

! *** header file bitflags.h ***
!
! The array fbit, which holds unchanging geometric information
! for the 3D hydro, is not discussed in this file.
!
! Note that TRAC now uses a bit-numbering convention from "right
! to left", starting with bit 1. The F90 intrinsic bit manipula-
! tion routines (ibset, btest, etc.) also go from "right to left",
! but start with bit number 0.
!
! Note that the bitn arrays are cleared with 0.0 (floating point
! zero). The Cray and the supported IEEE platforms all represent
! 0.0 as all-zeros.
!
! This version of header file bitflags.h re-maps the original bit
! identification (id) numbers (i.e., as used in the pre-branch
! code -- TRAC-P Version 5.4.25) into the range 1 - 32; it also
! groups all the id numbers according to whether the bit is
! defined for a mesh-cell center or face.
!
! The bit current id numbers, original id numbers, and mesh-cell
! center or face defined form are as follows:
!
! *************** ***************** *****************
! ************** *************** ****************
!

$!$	1	42	C
$!$	2	43	C
$!$	3	3	C
$!$	4	4	C
$!$	5	5	C
$!$	6	6	C
$!$	7	20	C
$!$	8	21	C
$!$	9	24	C
$!$	10	34	C

```

! Set in: htif (outer stage - 1D, 3D, and plenum) -- bitn also
allel with that for bit 1. This does not appear to cause an actual error in the calculation, but it should be further investigated and at least cleaned up.
```

! cleared
!
! Used in: htif (outer stage - 1D, 3D, and plenum)

```
!
    INTEGER satLineCrossLiq
    PARAMETER (satLineCrossLiq=2)
\(!\)
! *************
*** Bit 3
    Purpose: Used in reiteration logic when the gas volume fraction
        is out of bounds in basic (outer) step. If the gas
        volume fraction exceeds tolerance of 10(-12) (i.e., if
        . le. \(-1.0 e-12\) or .ge. (1.0+1.0e-12)), bit 3 is set on
        and the logical reiteration flag is set to .true.. If
        bit 3 has been set on a previous iteration, this test
        on the gas volume fraction is bypassed.
        Usage identical in 1D, 3D, and plenum hydro.
!
! Set in: tflds3 (outer stage - 1D)
    tf3ds3 (outer stage - 3D)
    tfplbk (outer stage - plenum)
!
! Used in: tflds3 (outer stage - 1D)
    tf3ds3 (outer stage - 3D)
    tfplbk (outer stage - plenum)
    INTEGER oneVoidFrReit
    PARAMETER (oneVoidFrReit=3)
!
! *************
! *** Bit 4 *** is set to indicate that internally-used FRICs have been calculated from user-input \(K\) factors (this logic is part of the input-error checking for consistency at component junctions). During the calculation, bit 4 is set to indicate the mean mass equation will be solved rather than the gas and liquid mass equations (flow is single phase or nearly single phase).

The input-checking-use of bit 4 is for 1D components. The hydro-use of bit 4 is similar in 1D, 3D, and plenum.

The parameter meanEqnSet is only meant to be used for the hydro calculation, for \(1 \mathrm{D}, 3 \mathrm{D}\), and plenum.

INTEGER meanEqnset
PARAMETER (meanEqnSet=4) fer in basic (outer) step. Bit 5 is set on in a hydro cell for condensation conditions (negative gamma and gas volume fraction greater than zero; see following
```

 note on plenum).
 Use is very similar in 1D, 3D, and plenum. Plenum
 logic for setting does not have test on the gas volume
 fraction.
 Set in: tflds (outer stage - 1D)
 tf3ds (outer stage - 3D)
 tfpln (outer stage - plenum)
 !
! Used in: tflds (outer stage - 1D)
tf3ds (outer stage - 3D)
tfpln (outer stage - plenum)
INTEGER condensing
PARAMETER (condensing=5)
!
! *************
*** Bit }
Purpose: Evaporation/flashing analog of bit 5. Bit 6 is set on
if gamma is positive and the gas volume fraction is
less than one.
Use is very similar in 1D, 3D, and plenum. Plenum
logic for setting does have test on the gas volume
fraction.
! Set in: tflds (outer stage - 1D)
! tf3ds (outer stage - 3D)
! tfpln (outer stage - plenum)
!
! Used in: tflds (outer stage - 1D)
! tf3ds (outer stage - 3D)
! tfpln (outer stage - plenum)
!
INTEGER evapOrFlashing
PARAMETER (evapOrFlashing=6)

```
! *************
*** Bit 7 ***
```

Purpose: When bit 7 is on, the old-time/new-time weighting
factor for donor-cell quantities used in the 1D and
plenum mass and energy equations is set to 1.0. This forces the fluxes to 100% new-time weighting. The explicit/implicit weighting factor is local variable xvset, which is also local array dalp, which is array rhs in the 1D and plenum data.

Bit 7 is used in similar fashion by 1D and plenum; it is not used by 3D for any purpose, including the 3D xvset logic. Bit 7 is cleared in subroutine htif for all components, but this has no effect on 3D. htif is only called on the first Newton iteration (oitno=1); once bit 7 is set for a given series of iterations, it remains set.

Set in: htif (outer stage - 1D, 3D, and plenum) -- bitn cleared tfids (outer stage - 1D)
tfpln (outer stage - plenum)
tfpln (outer stage - plenum)

INTEGER freezeXvset
PARAMETER (freezeXvset=7)
! Set in: tflds3 (outer stage - 1D)
tf3ds3 (outer stage - 3D)
tfplbk (outer stage - plenum)
! Used in: tflds (outer stage - 1D)

```
    tf3ds (outer stage - 3D)
```

 tfpln (outer stage - plenum)
 INTEGER tinyBubbles
PARAMETER (tinyBubbles=8)
*** Bit 9 ***

Purpose: Set in basic (outer) step when special logic is used to change the current guess for the new-time value of the gas volume fraction before linearization. If bit 9 is set (from a previous iteration), the special gas volume fraction logic is bypassed (i.e., the bit is used to allow only one use of this logic in a given series of of Newton iterations).

1D, 3D, and plenum logic the same (1D and plenum use old and new time bits 20 and 21 for velocity-reversal

APPENDIX G

```
! information; 3D uses old/new time donor-cell factor
! arrays (owlz, wlz, etc.) for same purpose.
!
! Set in: tf1ds (outer stage - 1D)
! tf3ds (outer stage - 3D)
! tfpln (outer stage - plenum)
!
! Used in: tflds (outer stage - 1D)
    tf3ds (outer stage - 3D)
    tfpln (outer stage - plenum)
    INTEGER triedVoidFrReset
    PARAMETER (triedVoidFrReset=9)
!
! ***************
*** Bit 10 ***
! Purpose: Used in 3D hydro only (there is identical logic in the
1D that does not use a bit flag). Bit 10 is set on for
a mesh cell when the net noncondensable-gas flow into
the cell is .gt. 1.0e-20 kg for the current timestep.
Bit 10 is subsequently used in the same step in the
logic to set an initial guess for the noncondensable-
gas partial pressure. If bit 10 is not on, the initial
guess is bypassed (there are other tests that also can
bypass the noncondensable-gas logic). The initial
noncondensable-gas partial pressure guess is the total
pressure minus the saturation pressure corresponding to
the current liquid temperature.
The 1-D logic that corresponds to that for bit 10 is
in subroutine tflds3, at statement label 1337 in the
pre-branch code (Version 5.4.25); the noncondensable-
gas flow is in array dr.
!
! Set in: tf3ds (outer stage - 3D)
!
! Used in: tf3ds3 (outer stage - 3D)
```

INTEGER netAirFlow
PARAMETER (netAirFlow=10)
*** Bit 11
! Purpose: Used with bits 12 and 13 in 1D water packing/stretch logic. Used with bit 13 in 3D water pack/stretch logic. Not used by plenum.

Water packing and stretching are checked for in each 1D and 3D cell at the start of the back-substitution routines of the outer stage (tflds3 and tf3ds3 for 1D and 3D, respectively). If water packing is detected the back substitution is skipped and backup to the start of outer is forced. In the 1D bit 11 is set on for packing or stretching at a cell's left face (bit 12 is used for the right face); in the case of a stretch bit 13 is also set on. In the 3D bit 11 indicates packing and bit 13 indicates stretch for the cell (the stretch information is passed to the bd array by routine j3d).

Note that subroutine inner calls subroutine on1123c to clear all 1D-component bits except 2, 11, 12, 13, 30 , and 32 (see additional notes on bit 2). Subroutine poster calls subroutine of1123c to clear 1D-component bits 11, 12, and 13 if water packing flag ipakon .ne. 0 (bit and bitn arrays). j3d (vessel source junction boundary array routine) also calls of1123c for bd(53).
! Parameter packAtLeftFace is intended for 1D use.
! Parameter pack3D is intended for 3D use.
!
! Set in: j3d -- bd(53) only
! tf1ds3 (outer stage - 1D)
! tf3ds3 (outer stage - 3D)
! poster (post stage - 1D) -- bitn and bit cleared if

```
! ipakon .ne. 0
!
! Used in: tf1ds (outer stage - 1D)
! tflds1 (outer stage - 1D)
! tflds3 (outer stage - 1D)
! tf3ds1 (outer stage - 3D) -- bit 13 not used
! tf3ds3 (outer stage - 3D) -- bit 13 not used
!
    INTEGER packAtLeftFace
    INTEGER pack3D
    PARAMETER (packAtLeftFace=11)
    PARAMETER (pack3D=11)
!
!
*** Bit 12 ***
!
! Purpose: Used with bits 11 and 13 in 1D water packing/stretch
! logic. Not used by 3D or plenum. Indicates pack or
! stretch detected at 1D cell's right face. See addi-
! tional notes under bit 11.
!
! See bit 11 on use of subroutines on1123c and of1123c.
!
! Set in: j3d -- bod(53) only
    tf1ds3 (outer stage - 1D)
    poster (post stage - 1D) -- bitn and bit cleared if
                                    ipakon .ne. 0
! Used in: tflds (outer stage - 1D)
! tflds1 (outer stage - 1D)
! tf1ds3 (outer stage - 1D)
!
    INTEGER packAtRightFace
    PARAMETER (packAtRightFace=12)
!
! ***************
*** Bit 13 ***
!
G-12
```

! Purpose: Used with bits 11 and 12 in 1D water packing/stretch
logic. Used with bit 11 in 3D water pack/stretch
logic. Not used by plenum.
See bit 11 on use of subroutines on1123c and of1123c.
Parameter stretch is intended for 1D use.
Parameter stretch3D is intended for 3D use (this is
passed to the bd array by routine j3d).
!
! Set in: j3d -- bd(53) only
! tflds3 (outer stage - 1D)
! tf3ds3 (outer stage - 3D)
!
!
!
! Used in: tf1ds1 (outer stage - 1D)
! tflds3 (outer stage - 1D)
!
INTEGER stretch
INTEGER stretch3D
PARAMETER (stretch=13)
PARAMETER (stretch3D=13)
!
! **************
*** Bit 14 ***
!
! Purpose: Used in timestep-size control logic, in conjunction with bit 15．Bits 14 and 15，used with the gas volume fraction arrays alpn，alp，and alpo，save the gas－ volume－fraction change behavior looking back over three timesteps．Bits 14 and 15 control calculation of var－ iables oau and oal（in common block chgalp），which are used in subroutine newdlt to determine the timestep size at the start of the next timestep．oau is the largest increase in the gas volume fraction in the system immediately after a decrease，which in turn had followed an increase（all for a given hydro cell）．oal

```
! bkstb3 (post stage - 3D)
```

! plen3 (post stage - plenum)
!
! Used in: poster (post stage - 1D)

INTEGER newVoidFrUp
PARAMETER (newVoidFrUp=14)

```
! **************
```

! Purpose: Used in conjunction with bit 14 for oscillating-gas-
measures the analogous situation for a decrease in the gas volume fraction. Bit 14 is set on in the bitn array for a hydro cell when the gas volume fraction has increased in that cell with respect to the previous timestep.

Use of bit 14 is identical in 1D, 3D, and plenum.

Note that blkdat now sets variables xoau and xoal (common block chgalp) to 1.0 , which effectively turns off the oscillating-gas-volume-fraction (oau or oal) timestep-size control. Gas-volume-fraction-change timestep-size control now only uses variables dau and dal, which only look back to the previous timestep. The dau/dal logic only needs arrays alpn and alp, and not bits 14 and 15.

```
! bkstb3 (post stage - 3D)
    plen3 (post stage - plenum)
```

```
!
```

!
! Set in: poster (post stage - 1D)
! bkstb3 (post stage - 3D)
plen3 (post stage - plenum)
!
! Used in: poster (post stage - 1D)
! bkstb3 (post stage - 3D)
! plen3 (post stage - plenum)
!
INTEGER oldVoidFrup
PARAMETER (oldVoidFrUp=15)
$!$
! **************
! *** Bit 16 ***
$!$
! Purpose: Set on for a cell when the net mass flow into the cell
! is negative. When bit 16 is on, the water pack/stretch
! logic in the back-substitution routines is bypassed.
!
! Use is same in 1D, 3D, and plenum.
!
! Set in: tflds (outer stage - 1D) -- always cleared before logic
!
$!\quad t f 3 d s$ (outer stage - 3D)
! \quad tfpln (outer stage - plenum)
!
! Used in: tflds3 (outer stage - 1D)
tf3ds3 (outer stage - 3D)
tfplbk (outer stage - plenum)
!
INTEGER netMassOut
PARAMETER (netMassOut=16)
!

```
!
! *** Bit 17
!
! Purpose: Used in equation-set logic. The back-substitution
! routines have logic to force the gas volume fraction to
! 1.0 or 0.0 if bit 4 (for one of the single-phase mass
! equation sets) is on. If bit }17\mathrm{ is also on, forcing
! the gas volume fraction to 0.0 is bypassed. Instead,
!
!
!
!
! Use is same in 1D, 3D, and plenum.
!
! Set in: tflds (outer stage - 1D)
! tf3ds (outer stage - 3D)
! tfpln (outer stage - plenum)
!
! Used in: tflds3 (outer stage - 1D)
! tf3ds3 (outer stage - 3D)
! tfplbk (outer stage - plenum)
!
    INTEGER specEqnSteamP
    PARAMETER (specEqnSteamP=17)
!
! **************
! *** Bit 18 *** not used
!
! **************
! *** Bit 19 *** not used
!
! **************
! *** Bit 20 ***
!
! Purpose: For 1D and plenum hydro only (including break and fill
! components). Cell-face flag to indicate gas-velocity
! direction; used in logic for gas donor-cell weighting
! factors and gas-velocity reversal. The gas-velocity
! Set in: tflds1 (outer stage - 1D)
tf1ds3 (outer stage - 1D)
! Used in: break1 (prep stage) -- bd(38) only
\(!\quad\) filll (prep stage) -- bd(38) only
! flux (prep stage - 1D)
auxpln (outer stage - plenum) - bd(53) only
tflds (outer stage - 1D)
tflds1 (outer stage - 1D) -- bd(53) only
tflds3 (outer stage - 1D)
tfpln (outer stage - plenum) -- bd(38) and bd(53) only
poster (post stage - 1D) -- bit 21 not used
stbme (post stage - 1D)
tee3 (post stage - 1D)

INTEGER negVapVel
PARAMETER (negVapVel=20)
! Purpose: Liquid analog of bit 20. For 1D and plenum hydro only (including break and fill components). Cell-face flag to indicate liquid-velocity direction; used in logic for liquid donor-cell weighting factors and liquidvelocity reversal. The liquid-velocity reversal information is used with corresponding gas information in the reiteration logic (see bits 22 and 23); there is no corresponding use in the gas-direction interfacial
```

shear logic (see bit 26). Liquid-velocity reversal
information also is used in the logic for the special
gas-volume-fraction guess (see bit 9).
Bit 21 is set on when the liquid velocity is negative.
! Set in: tf1ds1 (outer stage - 1D)
tf1ds3 (outer stage - 1D)
Used in: break1 (prep stage) -- bd(38) only
filll (prep stage) -- bd(38) only
flux (prep stage - 1D)
auxpln (outer stage - plenum) - bd(53) only
tf1ds (outer stage - 1D)
tf1ds1 (outer stage - 1D) -- bd(53) only
tf1ds3 (outer stage - 1D)
tfpln (outer stage - plenum) -- bd(38) and bd(53) only
stbme (post stage - 1D)
tee3 (post stage - 1D)
INTEGER negLiqVel
PARAMETER (negLiqVel=21)
*** Bit 22 ***
Purpose: Used in logic that determines if a reiteration is forced by a flow reversal. Bit 22 is set on if the gas mass-flow threshold for a flow reversal reiteration is exceeded. This threshold is set by variable frev (common block xvol).
Used in similar fashion for 1D and 3D; not used by plenum. In 3D, bit 22 is for radial (or x) face (bits 24 and 25 are used for same purpose for axial and theta (or y) faces). For 1D, new-time bit 20 is first used to check for a gas flow reversal; then bit 22 is used to see if the gas mass flow sensitivity level has been

```
    exceeded.
    Parameter significantVapFlow is intended for 1D use.
    Parameter significantVapFlowxr is intended for 3D use.
! Set in: tflds (outer stage - 1D)
    tf3ds (outer stage - 3D)
Used in: tflds3 (outer stage - 1D)
    tf3ds3 (outer stage - 3D)
    INTEGER significantVapFlow
    INTEGER significantVapFlowxr
    PARAMETER (significantVapFlow=22)
    PARAMETER (significantVapFlowxr=22)
!
! ***************
! *** Bit 23 ***
! Purpose: Liquid analog of bit 22 (similar 3D use for bits 28 and
    31). Used in logic that determines if a reiteration is
    forced by a flow reversal. Bit 23 is set on if the
    liquid mass-flow threshold for a flow reversal reiter-
    ation is exceeded. This threshold is set by variable
    frev (common block xvol).
    Used in similar fashion for 1D and 3D; not used by
    plenum. In 3D, bit 23 is for radial (or x) face (bits
    28 and 31 are used for same purpose for theta (or y)
        and axial faces). For 1D, new-time bit 21 is first
        used to check for a liquid flow reversal; then bit 23
        is used to see if the liquid mass-flow sensitivity
        level has been exceeded.
        Parameter significantLiqFlow is intended for 1D use.
        Parameter significantLiqFlowxr is intended for 3D use.
!
! Set in: tflds (outer stage - 1D)
```

 tf3ds (outer stage - 3D)
 !
! Used in: tf1ds3 (outer stage - 1D)
! tf3ds3 (outer stage - 3D)
!
INTEGER significantLiqFIOW
INTEGER significantLiqFlowxr
PARAMETER (significantLiqFlow=23)
PARAMETER (significantLiqFlowxr=23)
!
! **************
*** Bit }2
•
! Purpose: 3D hydro only; same use as bit 22, but for axial face.
! Uses variable frev for gas-flow threshold.
!
! Set in: tf3ds (outer stage - 3D)
!
! Used in: tf3ds3 (outer stage - 3D)
!
INTEGER significantVapFlowz
PARAMETER (significantVapFlowz=24)
!
! **************
Bit 25 ***
Purpose: 3D hydro only; same use as bit 22, but for theta (or y)
face. Uses variable frev for gas-flow threshold.
Set in: tf3ds (outer stage - 3D)
Used in: tf3ds3 (outer stage - 3D)
INTEGER significantVapFlowyt
PARAMETER (significantVapFlowyt=25)
!
! **************
*** Bit 26 ***

```
G-20
\(!\)
! Purpose: Set in post stage to indicate the gas velocity has changed direction during the timestep being completed. Used in prep stage of subsequent timestep in calculation of interfacial shear coefficients. If bit is on, relaxation-limiter logic for interfacial shear coefficient (used in transient calculation) is turned off.

Used in similar fashion for 1 D and 3 D ; not used by plenum. In 3D, bit 26 is for the theta (or \(y\) ) face (bits 27 and 29 are used for the same purpose for the axial and radial (or \(x\) ) faces) . 1D hydro sets new-time bit 26 according to the status of old-time bit 20 and the new-time gas velocity; 3D hydro sets bit 26 according to the status of old-time and new-time donor-cell factors for gas at the theta (or y) face (arrays owvyt and wvyt).

Parameter changeVapVel is intended for 1D use. Parameter changeVapVelyt is intended for 3D use.

Set in: poster (post stage - 1D) ff3d (post stage - 3D)
\(!\)
! Used in: femom (prep stage - 1D)
    cif3 (prep stage - 3D)
        INTEGER changeVapVel
        INTEGER changeVapVelyt
        PARAMETER (changeVapVel=26)
        PARAMETER (changeVapVelyt=26)
\(!\)
! \(* * * * * * * * * * * * * * ~\)
! *** Bit 27 ***
!
! Purpose: 3D hydro only; same use as bit 26 , but for axial face.
! Set according to status of arrays owvz and wvz.
!
```

! Set in: ff3d (post stage - 3D)
!
! Used in: cif3 (prep stage - 3D)
!
INTEGER changeVapVelz
PARAMETER (changeVapVelz=27)
!
! **************
! *** Bit 28 ***
!
! Purpose: 3D hydro only; same use as bit 23, but for theta (or y)
! face. Uses variable frev for liquid-flow threshold.
!
! Set in: tf3ds (outer stage - 3D)
!
! Used in: tf3ds3 (outer stage - 3D)
!
INTEGER significantLiqFlowyt
PARAMETER (significantLiqFlowyt=28)
!
! **************
! *** Bit 29 ***
!
! Purpose: 3D hydro only; same use as bit 26, but for radial
! (or x) face. Set according to status of arrays owvxr
! and wVXr .
!
! Set in: ff3d (post stage - 3D)
!
! Used in: cif3 (prep stage - 3D)
!
INTEGER changeVapVelxr
PARAMETER (changeVapVelxr=29)
!
! **************
! *** Bit 30 ***
!
! Purpose: Flag for the choked-flow model. Bit 30 is set on for
G-22

```
    a cell edge if subroutine choke determines choked flow exists at the cell edge (the evaluation of the chokedflow model at a cell edge is invoked by user input). 1D only.
Subroutine choke is called by subroutine femom.
Subroutines femom and tflds1 use bit 30 to apply the choked-flow velocity. The choked-flow velocity is not applied by subroutine tfldsl if flow is into a waterpacked cell.
Bit 30 is one of the bits "protected" by subroutine on1123c (see notes on bit 11).
If bit 30 is on, subroutine ecomp prints \(-1.111 e-11\) for the liquid wall friction for 1 D components. This value is also written to the xtv graphics file.
! Set in: femom (prep stage - 1D) -- calls choke
! Used in: ecomp (large edits for 1D)
! graf (edits to xtv graphics file)
! femom (prep stage - 1D)
tflds1 (outer stage - 1D)
tflds3 (outer stage - 1D)
INTEGER chokedFlowOn
PARAMETER (chokedFlowOn=30)
!
! **************
! *** Bit 31 ***
!
! Purpose: 3D hydro only; same use as bit 23, but for axial face. Uses variable frev for liquid-flow threshold.
!
! Set in: tf3ds (outer stage - 3D)
!
! Used in: tf3ds3 (outer stage - 3D)
```

!

```
```

 INTEGER significantLiqFlowz
    ```
    INTEGER significantLiqFlowz
    PARAMETER (significantLiqFlowz=31)
    PARAMETER (significantLiqFlowz=31)
!
! **************
*** Bit 32
!
! Purpose: Used to control the choked-flow model when namelist
tfids1 (outer stage - ..... 1D)
INTEGER userChokeControl
PARAMETER (userChokeControl=32)
!
! **************************
! *** bits 33 and higher *** not used
!
!
! *** end header file bitflags.h ***```


[^0]:    

[^1]:    

[^2]:    APPENDIX D
    D-1

