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Abstract

This report describes the design of PICO, a C++ framework for implementing general
parallel branch-and-bound algorithms. The PICO framework provides a mechanism for the
efficient implementation of a wide range of branch-and-bound methods on an equally wide
range of parallel computing platforms. We first discuss the basic architecture of PICO, in-
cluding the application class hierarchy and the package’s serial and parallel layers. We next
describe the design of the serial layer, and its central notion of manipulating subproblem
states. Then, we discuss the design of the parallel layer, which includes flexible processor clus-
tering and communication rates, various load balancing mechanisms, and a non-preemptive
task scheduler running on each processor. We describe the application of the package to
a branch-and-bound method for mixed integer programming, along with computational re-
sults on the ASCI Red massively parallel computer. Finally we describe the application of
the branch-and-bound mixed-integer programming code to a resourc~constrained project
scheduling problem for Pantex.
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Preface

This document summarizes the research conducted under the “Parallel Combinatorial Op-
timization for Scheduling Problems” LDRD, which was fimdedfor ficalyears 1998 through
2000. Apotiion ofthisresearch tillappear intheconference procee&n~entitled inherently
Parallel Algorithms in Feasibility and Optimization and Their Applications.
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1. Introduction

This report describes PICO (Parallel Integer and Combinatorial Optimizer), an object-
oriented framework for parallel implementation of branch-and-bound algorithms. Parts of
PICO are based on CMMIP [7–10], a parallel branch-and-bound code for solving mixed
integer programming problems on the CM-5 parallel computer. Although CMMIP exhibited
excellent scalability to large numbers of processors; its design had a number of limitations:
first, it implemented only one specific branch-and-bound algorithm for a single (if fairly
general) class of problems; adapting it to more specialized classes of problems or to use more
advanced algorithmic techniques, such as branch and cut, proved awkward. Second, CMMIP
was designed to showcase certain properties of the CM-5, whose communication network was
fast relative to is processors, with specialized hardware and operating system support for
particular kinds of interprocessor communication. To run efficiently on systems with less
specialized communication capabilities, it had to be significantly restructured, as in [9].

By contrast, PICO is meant to be a very general parallel branch-and-bound environment.
Using object-oriented techniques, the parallel search “engine” is cleanly separated from the
details of the application and computing platform. This approach allows the same under-
lying parallel search code to be used on a wide variety of branch-and-bound applications,
ranging from those not requiring linear programming bounds to branch-and-cut methods.
The basic search engine also has a large number of run-time parameters that allow the user
to control the quantity and pattern of interprocessor communication. On systems with rela-
tively slow, unsophisticated communication abilities, such as networks of workstations, these
parameters can be “tuned” so that the code attempts a relatively low level of interprocessor
communication. For “MPP” supercomputers with efficient hardware and software commu-
nication support, the code can be adjusted to make full use of the available communication
bandwidth. A key design goal is that, in such MPP environments, PICO retain and extend
the level of scalability exhibited by CMMIP.

FIexible software environments, sometimes called “shells; for constructing branch-and-
bound algorithms are not a new idea. Broadly, prior research in this area divides into
two main categories. On the one hand, there are a number of packages aimed at serial
implementation of sophisticated liiear-programming-based branch-and-bound methods, like
branch and cut or branch and price. Perhaps the most popular of these environments is
MINTO [29], and another noteworthy contribution is the ABACUS object-oriented branch-
and-cut environment [18]. PICO bases some of its basic class hierarchy structure on ABA-
Cus.

On the other h~dj there have also been a number of tools for parallel implementation of
general branch-and-bound algorithms, such as PUBB [35,36], BoB [4], and PPBB-Lib [39].
These efforts stem primarily from the computer science community, and emphasize parallel
implementation, but appear to be designed primarily for applications with simple bounding
procedures not based on linear programming.

More recently, there have been efforts at parallel implementation of advanced linear-
programming-based branching methods. Some recent contributions and works in progress
include PARINO [24], SYMPHONY [32], and BCP [1]. SYMPHONY and BCP, which are
similar to one another, are broadly extensible libraries, but their design does not emphasize
scalability to large numbers of processors.

J
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The primary goal of PICO is to eventually combine capabilities similar to all of these
tools with thescalability and flexibility of the work-distribution scheme of CMMIP, with
additional adjustments to accommodatea large variety of hardware platforms. PICO allows a
wide range of branch-and-bound methods, linear-programming-based and otherwise, to use
the same basic parallel search engine. This sharing occurs at the link level, without requiring
recompilation. While branch-and-cut capabilities are not yet present, PICO’S design should
allow them to be added cleanly, without major changes to the components already developed.

The literature of parallel branch and bound is vast, and it is not possible to give a corn- .
prehensive review here. Two fairly comprehensive but not particularly recent surveys may
be found in [14] and [23, Chapter 8]; [5] is more recent but less comprehensive survey.

The remainder of this paper describes the design of current components of PICO. Section 2
describes the overall design of PICO, including its class hierarchy and the separation of the
package into serial and parallel layers. Section 3 discusses the design of the serial layer,
which contains a number of novel features not present in earlier branch-and-bound “shells?
including the ability to use variable search “protocols? and the key notion of subproblem
state. Section 4 describes the parallel layer, and how to migrate an application fkom the
serial to the parallel layer. The parallel layer implements a compound work distribution
scheme that generalizes CMMIP’S, but can run on general hardware platforms. We also
discuss the parallel layer’s use of multiple threads of control arbitrated by a non-preemptive
“stride” scheduler, and the issue of terminating the computation. Section 5 describes a
sample application of PICO to mixed integer programming, without cutting planes, and
gives preliminary computational results on the “Janus” massively parallel computer, which

. consists of thousands of Pentium-11 processors. Section 6 describes the application of the
mixed-integer-programming code to a resource-constrained project scheduling problem for
Pantex. We describe how to exploit probIem-specific structure to @prove the efficiency and
useability of the basic search engine. Section 7 describes tools and techniques for debugging
and insuring correctness. Section 8 gives conclusions and outlines future development plans
for PICO.

2. The general design of PICO

PICO is currently structured as a C++ class library. It provides a hierarchically-organized
set of capabilities which users may combine and extend to form their own applications. As
with ABACUS, extending the core capabilities of PICO requires the development of derived
classes that incorporate the additional required functionality. This design is in some sense
more demanding than interfaces like MINTO, which simply require the user provide auxilary
functions that are linked into the executable. However, we believe that the class library
approach is more powerful” and flexible, allowing the use of multiple inheritance, which is
critical to PICO’S design.

Figure 1 shows a simplified conceptual design, or inheritance tree of the library; elements
with solid boundaries have been completed or are in an advanced state of development,
while those with dashed boundaries are in the planning or early development stages. At
the root of the inheritance tree is the F’lCO cm-e, which provides basic capabilities for
describing and parallelizing branch-and-bound algorithms. Branch-and-bound methods that
have specialized bounding procedures not requiring direct use of linear programming can be

9
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Figure 1. The current conceptual inheritance tree for PICO, in simplified form. Dashed lines
indicate components in the planning or early development stages.

The PICO MIP package extends the PICO core by providing generic capabilities for solving
mixed integer programs, using commercial LP solvers to solve their linear programming re-
laxations, as will be described in Section 5. For specialized’MIP applications, the PICO MIP
can itself be extended and refined by, for example, employing application-specific branch-
ing files, fathoming rules, and heuristic methods for generating incumbent solutions. For
example, it is straightforward to extend the PICO MIP to include LP-based approximation
algorithms for scheduling problems, using the LP relaxation available at each node. We
have exploited thk flexibility for applications like the PANT13X production planning prob-
lem, which addresses a difficult scheduling problem within the U.S. Department of Energy.
This application will be discussed in a separate paper.

We plan to extend the PICO hierarchy by creating a generic branch-and-cut capability
that extends PICO MIP. This generic branch-and-cut could then be extended and refined as
needed to handle specific applications such as the traveling salesman problem (TSP).

PICO consists of two “layers: the serial layer and the parallel layer. The serial layer pro-
vides an object-oriented means of describing branch-and-bound algorithms, with essentially
no reference to parallel implementation. The serial layer’s design, described in Section 3,
has some novel features, and we expect it to be useful in its own right. For users uninter-
ested in parallelism, or simply in the early stages of algorithm development, the serial layer

10
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SerialApplication
(binaryKnapsack) PICOParallelLayer

ParallelApplication
(parallelBinazyKnapsack) I

Figure2. The conceptual relationships of PICO’s serial layer, the parallel layer, a serial
application (in this case, bineryKnapsack), and the corresponding parallel application (in
this case, parallelBinaryKnapsack).

allows branch-and-bound methods to be described, debugged, and run in a familiar, serial
development environment.

.
The parallel layer contains the core code necessary to create parallel versions of serial “

applications. To parallelize a branch-and-bound application developed with the serial layer,
the user simply defines new classes derived from both the serial application and the parallel
layer. A filly-operational parallel application only requires the definition of a few additional
methods for these derived classes, principally to tell PICO how to pack application-specific
problem and subproblem data into MPI message buffers, and later unpack them.

Any parallel PICO application constructed in this way inherits the full capabilities of the
parallel layer, including a wide range of different parallel work distribution and load balancing
strategies, and user-configurable levels of interprocessor communication. Application-specific
refinements to the parallelization can then be added by the user, but are not required.
Section 4 describes the parallel layer, and Figure 2 shows the conceptual relationship between
the two layers, a serial application, and its parallelization.

PICO’S parallel layer was designed using a d~tributed-memory computation model, which
requires message passing to communicate information between processors. We expect that
this design will be effective on a wider range of systems than a design based on a shared-
memory model. Although it is always possible to emulate distributed memory and message
passing on hardware with memory-sharing capabilities, it is much more difficult to do the
reverse. Emulating shared memory without hardware support may involve significant loss
of efficiency and low-level control. Furthermore, shared memory, either hardware-supported
or emulated, becomes rarer, more expensive, or both as the number of processors increases.
Aside from portability considerations, we are particularly interested in the application of
PICO on DOE’s massively parallel systems, for which distributed-memory parallel models
have proven particularly effective.

11
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The parallel layer is implemented using the MPI [37] standard for message-passing be-
tween processors. There are currently two portable, standard message-passing subroutine
Iibraries for constructing distributed-memory programs, MPI and PVM [13]. We selected
MPI because it is designed to be customized for maximum performance on MPP systems
like Janus, the ASCI Red supercomputer. The design of PVM stresses the ability to operate
on heterogeneous platforms, at some sacrifice in performance.

3. The serial layer

To define a serial branch-and-bound algorithm, a PICO user extends two fundamental
PICO classes, branching and branchsub, the principal classes in the PICO serial layer. The
branching class stores global information about a problem instance and contains methods
that implement various kinds of serial branch-and-bound algorithms, as described below.
The branchsub class stores data about each subproblem in the branch-and-bound tree, and
it contains methods that perform generic operations on subproblems. This basic organization
is borrowed from ABACUS [18], but it is more general, since there is no assumption that
cutting planes or linear programming methods are involved.

For example, our binary knapsack solver defines a class binaryKnapsack, derived fkom
branching, to describe the capaci@ of the knapsack and the possible items to be placed in
it. We also define a class binKnapSub, derived from branchSub, which describes the status of
the knapsack items at nodes of the branching tree (i.e. included, excluded, undecided); this
class descrubes each node of the branch-and-bound tree. Each object in a subproblem class
like binKnapSub contains a pointer back to the corresponding instance of the global class,

.in this case binaryKnapsack. Through this pointer, each subproblem object can find global
information about the branch-and-bound problem. Finally, both branching and branchSub
are derived from a common base class, picoBase, containing mainly common symbol defi-
nitions and run-time parameter objects., Figure 3 illustrates the basic class hierarchy for a
serial PICO application.

3.1. Subproblem states
A novel feature of PICO, even at the serkd level, is that subproblems remember their

state. Each subproblem progresses through as many as six of these states, boundable,
beingBounded, bounded, beingSeparated, separated, and dead, as illustrated in Figure 4.

A subproblem always comes into existence in state boundable, meaning that little or no
bounding work has been done for it, although it still has an associated bound value; typically,
this bound value is simply inherited from the parent subproblem. Once PICO starts work
on bounding a subproblem, its state becomes beingBounded, and when the bounding work
is complete, the state becomes bounded.

Once a problem is in the bounded state, PICO may decide to branch on it, a process
also called “separation” or ‘(spitting.” At this point, the subproblem’s state becomes
beingSeparated. Once separation is complete, the state becomes separated, at which
point the subproblem’s children may be created. Once the last child has been created, the
subproblem’s state becomes dead, and it may be deleted from memory. Subproblems may
also become dead at earlier points in their existence, because they have been fathomed or
represent portions of the search space containing no feasible solutions.

Class branchSub contains three abstract virtual methods, namely boundComputation,

12
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branching -“””””-””--”-”””””””:...”””-”-””-”.-. branchSub
GlobalPointer

Figure 3. Basic class hierarcy for a serial PICO application (in this case, binaryKnapsack,
with corresponding subproblem class binKnapSub).

I.: ----- -------------
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I 1
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Figure4. PICO’ssubproblem state transition diagram. It is possible that asingleappli-
cation of boundComput at ion may take a subproblem horn the boundable state, through
beingBounded, to bounded. Similarly, a single use of splitComputation may move a sub-
problem from bounded, through beingSeparated, to separated.
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splitComputat ion, and makeChild, that are responsible for applying these state transitions
to subproblems. PICO’S search hamework interacts with applications primarily through
these methods; defining a branch-and-bound application with PICO primarily consists of
providing definitions for these three operators for the application subproblem class (e.g.
birKnapSub).

The boundComputation method’s job is to move the subproblem to the bounded state,
updating the data member bound to reflect the computed value. The boundComputat ion
method is allowed to pause an indefinite number of times, leaving the subproblem in the
beingBounded state. The only requirement is that any subproblem will eventually become
bounded after some filte number of applications of boundComputation. This flexibility
allows PICO to support branch-and-bound variants where one can suspend bounding one
subproblem, set it aside, and turn one’s attention to another subproblem or task in the
meantime. The subproblem’s bound, reflected in the data member bound, may change at
each step of this process.

The splitComputation method’s job is similar to boundComputation’s, but it manages
the separation process. Eventually it must change the problem state to separated, set the
data member totalchildren to the number of child subprobIems. Before that, however, it is
aIlowed to return an indefinite number of times with the problem left in the beingSeparated
state. This feature allows PICO to implement branch-and-bound methods where the work
in separating a subproblem is substantial and might need to be paused to attend to some
other subproblem or task. The subproblem’s bound can be updated by splitcomputat ion
if the separation process yields additional information about it.

Finally, makechild returns a single child of the subproblem it is applied to, which must be”
in the separated state. After the last child has been made, the subproblem becomes dead.

In addition to boundComputation, splitComputation, and makechildj several additional
virtual methods must to be defined to complete the specification of a branch-and-bound
application. These definitions are described in Section 3.3.

3.2. Pools, handlers, and the search framework
PICO’S serial layer orchestrates serial branch-and-bound search through a module called

the “search framework” (literally, branching: : se~chFramework). The search framework
acts as an attachment point for two uker-specifiable objects, the “pool” and the “handler,”
whose combination determines the exact %avor” of branch and bound implemented.

The pool object dictates how the currently active subproblems are stored and accessed,
which effectively determines the branch-and-bound search order. Currently, there are three
kinds of pool: heap sorted by subproblem bound (biased slightly toward more integral prob-
lems if the bounds are all approximately equal), stack, and FIFO queue. If the user specifies
the heap pool, then PICO will follow a best-first search order; speci&ing the stack pool
results in a depth-first order, and specifying the queue results in a breadth-first order. For
particular applications, however, users may implement additional kinds of pools, thus spec-
ifjring other search orders.

Critically, at any instant in time, the subproblems in the pool may in principle represent
any mix of states: for example, some might be boundable, and others separated. This
feature gives the user flexibility in specifying the bounding protocol, which is a separate issue
from the search order; the “handler” object implements a particular bounding protocol.

14



To illustrate what a bounding protocol is, consider the branch-and-bound method for
mixed integer programming as typically described by operations researchers: one removes a
subproblem from the currently active pool, and comput~ its linear programming relaxation
bound. If the bound is strong enough to fathom the subproblem, it is discarded. Otherwise,
one selects a branching variable, creates two child subproblems, and inserts them into the
pool. Thk type of procedure is often called “lazy” bounding (see for example [6]), because
it views the bounding procedure as something time-consuming (like solving a large linear
program) that should be delayed if possible. In the PICO framework, lazy bounding is
implemented by keeping all subproblems in the active pool in the boundable state.

An alternative approach, common in work originating from the computer science commu- “
nity, is usually called “eager” bounding (again, see [6] for an example of this terminology).
Here, all subproblems in the pool have already been bounded. One picks a subproblem out of
the pool, immediately separates it, and then forms and bounds each of its children. Children
whose bounds do not cause them to be fathomed are returned to the pool.

Lazy and eager bounding each have their own advantages and disadvantages, and the best
choice may depend on both the application and the implementation environment. Typically,
implementors seek to postpone the more time-consuming operations in the hope that the
discovery of a better incumbent solution will make them unnecessary. So, if the bounding
operation is much more time-consuming than separation, lazy bounding is most appealing.
If the bounding operation is very quick, but separation more diflicult, then eager bounding
would be more appropriate. Eager bounding may save some memory since nodes can be
immediately fathomed, but has a larger task granularity, resulting in somewhat less potential
for parallelism.

Because PICO’S serial layer stores subproblem states and lets the user specify a handler
object, it gives users the freedom to speci& lazy bounding, eager bounding, or other proto-
cols. The search framework routine simply extracts subproblems from the pool hnd passes
them to the handler until the pool becomes empty. Currently, there are three possible han-
dlers, eagerHandler, b.zyHandler, and hybriillandler, although the user is free to write
additional handlers if greater flexibility is required.

The eagerHandler and lazyHandler methods implement eager and lazy bounding re-
spectively by trying to keep subproblerns in the bounded and boundable states respec-
tively. Problems that become fathomed or dead anywhere in the process of applying the
boundComputation and split Computation methods are immediately discarded. Further,
to permit users to pause the bounding or separation processes, any subproblem that re-
mains in the beingBouuded state after the application of boundComputation, or in the
beingSeparated state following the application of splitComputation, is immediately re-
turned to the pool.

The hybridHandler implements a strategy that is somewhere between eager and lazy
bounding, and is perhaps the most simple and natural given PICO’S concept of subprob-
lem states. Given any subproblem, hybridHandler performs a single application of ei-
ther boundComputation, splitComputation, or makeChild, to try to advance the subprob-
lem one transition through the state diagram. If the subproblem’s state is boundable or
beingBounded, it applies boundComputation once. If the subproblem’s state is bounded or
beingSeparated, it applies splitComputation once. Finally, if the state is separated, the
handler performs one call to makeChild, and inserts the resulting subproblem into the pool.
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It discards any subproblems becoming fathomed or dead at any point in this process.
The combination of multiple handlers, multiple pool implementations, and the user’s free-

dom in implementing boundComputation and splitComputation gives rise to enormous
flexibility in the kinds of branch-and-bound methods that the serial layer can implement.
Figure 5 depicts the relationship of the search framework, pool, and handler.

3.3. Serial layer virtual methods and run-time parameters
In addition to boundComputation, splitComputation, and makeChild, there are a num-

ber of additional abstract virtual methods in classes branching and branchSub that the
user must define in order to filly describe an application of the PICO serial layer. The two
classes also have a large number ‘of other virtual methods that may be overridden at the
user’s option. Table 1 describes all the required virtual methods and the more commonly-
overridden optional ones. The most noteworthy are candidateSolut ion, update Incumbent,
and incumbentHeuri.st ic, all members of branchSub.

The candidateSolution method tells the PICO search handlers whether a bounded sub-
problem needs to be separated at all. If this method returns llt~, PICO assumes that the
computed bound is in fact the objective value of the best feasible solution within the portion
of the search space corresponding to the subproblem. If this bound is better than the current
incumbent, the handler calls updateIncumbent to replace the current incumbent with the
solution corresponding to the subproblem. By default, updat eIncumbent simply stores the
corresponding objective value; in most applications, the user will override this function to
also store a representation of the solution for possible later output.

The incumbentHeuristic method provides a way for the user to specify a heuristic that
takes a subproblem for which cendidateSolution returns FALSEand attempts to perturb
it into a feasible solution. In applications with linear-progra mming-based bounds, for ex-
ample, incumbentHeurist ic might try to round the fractional variables found in the linear
programming relaxation. If it succeeds in finding a solution better than the incumbent, the
heuristic should call updateIncumbent. PICO’S handlers only call incumbentHeuristic for
a subproblem if the method haveIncumbentHeurist ic returns llt~. The default implemen-
tation of haveIncumbentHeuristic always returns FALSE.

PICO also provides a general mechanism for speci&ing run-time parameters. Table 2 shows
the limited number of parameters that control the operation of serial PICO. Technically, the
parameters are static objects that are members of the base class picoBase. User applications
can add an unlimited number of their own run-time parameters, so long as their names are
different from those in picoBase.

3.4. Memory management
Managing the pool involves frequent allocation and deallocation of small pieces of memory.

This can incur a significant time overhead from system calls, especially on a parallel machine.
Perhaps even more importantly, in systems such as Janus, the constant memory overhead
for allocation from the system heap can be close to the size of the memory request, which
halves the useable memory.

Therefore, PICO has its own memory management system for small, regular items such
as objects for pools or subproblem tokens (see section 4.2). PICO requests memory in large
blocks, and subdivides these blocks. This effectively eliminates the memory overhead and
almost eliminates calls to the system heap, at the cost of managing ikeelists.
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Required virtual method definitions: class branching

readIn Read problem instance data from the command line
and/or data file.

blankSub Construct an empty subproblem.

Required virtual method definitions: class branchSub

setRootComputation Turn a blank subproblem into the root problem.
boundComputat ion Compute (perhaps only partially) the bound of a sub-

problem in the boundable or beingBounded state.
splitComput at ion Separate (perhaps only partially) a subproblem in the

bounded or beingSeparated state.
makeChild Create a child of a subproblem in the separated state.
candidateSolution Return TRUEif a bounded subproblem does not need fur-

ther separation.
J

“Optional virtual method definitions: class ‘branching (selectedl— -. .

preprocess Preliminary computation before starting to search
aPrioriBound “Quick and dirty” bound on the best possible solution

(e.g. for knapsack, the sum of all item values).
init ialGuess Initial heuristic feasible solution value (e.g. for knapsack,

the result of a simple greedy heuristic).
haveIncumbentHeuri stic Return TRUEif there is a heuristic for forming possible

feasible solutions from bounded subproblems. -
serialPrint Solut ion Write incumbent solution to an output stream.

Optional virtual method definitions: class branchSub (selected)

incumbentHeurist ic Attempt to produce a feasible solution horn the current
(bounded) subproblem.

updat eIncumbent Store a new incumbent.

Table 1
Virtual method members of the branching and branchSub classes. Derived classes should
also have their own constructors and destructors.
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Name Meanimz Default
u

statusPrintFrequency Number of subproblems to bound between 1000
status printouts

depthFirst Use a stack as the pool, causing depth-first FALSE
search

breadthFirst Use a queue for the pool, causing breadth- FALSE
first search

lazyBounding Use the lazy bounding handler FALSE
eagerBounding Use the eager bounding handler FALSE
relTolerance A subproblern may be fathomed if its bound 10-7

is within this factor of the incumbent objec-
tive value

absTolerance A subproblem may be fathomed if its bound o
is within this absolute distance of the incum-
bent objective value

validateLog Causes quality-control output to be dumped FALSE
to a file for later analysis

Table 2
Run-time parameters defied in the “static base class picoBase, which control the generic
operation of the serial layer. The default pool is a heap, which causes best-first search, and
the default handler is hybridHandler.
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4. The parallel layer

The parallel layer’s capabilities are encapsulated in the classes parallelBranching and
parallelBranchSub, which have the same function as branching and branchSub, respec-
tively, except that they perform parallel search of the branch-and-bound tree. Both are
derived horn a common, static base class parallelPicoBase, whose function is similar to
picoBase, containing mainly common symbol and run-time parameter definitions. Further-
more, each of parallelBranching and parallelBranchSub is derived horn the correspond-
ing class in the serial layer.

To turn a serial application into a parallel application, one must define two new classes.
The first is derived from parallelBranching and the serial application global class. In the
knapsack example, for instance, we defined a new class paxalleZBinaryKnapsack which has
both parallelBranching and binaryKnapsack as virtual public base classes. We call
this class the global parallel chr.ss. For each problem instance, the information in the global
parallel class is replicated on every processor.

The global parallel class’s basic inheritance pattern is repeated for parallel subproblem
objects. In the knapsack case, we defined a parallel subproblem class parBinKnapSub to
have virtual public base classes binKnapSub and parallelBranchSub. As with the se-
rial subproblems, each instance of parBinKnapSub has a pakallelBinaryKnaps ack pointer
that allows it to locate global problem information. Figure 6 depicts the entire inheritance
structure for the parallel knapsack application.

Once this basic inheritance pattern is established, the parallel application automatically
combines the description of the application coming from the serial application (in the knap
sack case, embodied in binaryKnapsack and binKnapSub) with the parallel search capabil-
ities of the the parallel layer. For the parallel application to function, however, a few more
methods must be defined, as summarized in Table 3.

First, the parallel application global and subproblems classes both require constructors
and destructors. However, these methods are essentially trivial to define the destruc-
tors may have empty bodies, and the constructors may simply invoke the constructors for
their underlying classes. For technical reasons, the user must define two related methods,
blankParallelSub in the global class, and makeParallelChild in the subproblem class.
These methods fulfill the same roles as blankSub and makeChild, respectively, but in a par-
allel setting. Typically, these methods do nothing but call the constructor for the parallel
subproblem class.

The packing and unpacking virtual methods are of greater interest. The parallel global and
subproblem objects each require the definition of two methods, pack and unpack. The pack
method is responsible for packing all the application-specific data in an instance of the class
into a buffer suitable for sending between processors using the MPI datatype MPI_PACKED.
The unpack method is responsible for unpacking the same data from an MPI receive buffer,
and reconstituting the data members of the class instance. The parallel global class pack
and unpack methods are used to distribute the global problem definition when setting up
PICO, while the subproblem class pack and unpack methods are used to send subproblems
from one processor to another.

Optionally, the user may also define a packChild method, whose functionality is equivalent
to makeChild followed by a pack on the resulting subproblem. This method is discussed
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Figure 6. Inheritance structure of the parallel knapsack application. Other parallel applica-
tions are similar.
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further in Section 4.4.8.
In addition to the pack and unpack methods, the parallel application must define one ad-

ditional packing-related method, spPackSize. This method, a member of the global parallel
class, should return an integer giving the maximum number of bytes required to buffer the
application-specific data for a single subproblem. It is allowed to use any information in the
global parallel class, and will not be called until the global information has been replicated on
all processors. The parallel layer uses this method when allocating buffer space for incoming
subproblem information.

We now describe the operation of the parallel layer. The layer is very flexible, but as a
result it is also quite complex. For reasons of space, our description is somewhat abbreviated.

Required virtual method definitions: class parallelBranching

pack Pack application-specific global problem information
into a buffer.

unpack Unpack application-specific global problem informa-
tion from a bufFer.

spPackSize Estimate the maximum buffer space needed to pack
the application-specific portion of one subproblem.

blankParallelSub Construct an emDtv submoblem.

Reauired virtual method definitions: class mrallelBranchSub

pack Pack application-specific ~ubproblem data into a
bu.fFer.

unpack I Unpack application-speciiic subproblem data from a
buffer.

parallelMakeChild Construct a single child of the current subprob-
lem, which must be in the separated state. Sim-
ilar to mekeChild, but returns an object of type
parallelBranchSub.

Table 3
Abstract virtual methods of the parallelBranching and perallelBranchSub classes.

4.1. Processor clustering
PICO’S parallel layer employs a generalized form of the processor organization used by the

later versions of CMMIP [8,10]. Processors are organized into clusters, each with one hub
processor and one or more worker processors. The hub processor serves as a “master” in work-
allocation decisions, whereas the workers are in some sense “slaves,” doing the actual work of
bounding and separating subproblems. Unlike CMMIP, however, the degree of control that
the hub has over the workers may be varied by a number of run-time parameters, and may
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not be as tight as a classic ‘tmaster-slave” system. Further, the hub processor has the option
of simultaneously functioning as a worker; CMMIP only permitted this kind of function
overlap in clusters consisting of just one processor.

Three run-time parameters, all defined in parallelPicoBase, govern the partitioning of
processors into clusters: clusterSize, numClusters, and hubsDontWorkSize. First PICO
finds the size k of a “typical” cluster via the formula

k
{

= min clusterSize, max
{[

P
J }1,1 ,

numClusters

where F is the total number of processors. Processors are then gathered into clusters of size
k, except that if k does not evenly divide n, the last cluster will be smaller. In clusters whose
size is greater than or equal to hubsDo,ntWorkSize, the hub processor is ‘fpure~ that is, it
cannot simultaneously function as a worker. In clusters smaller than hubsDontWorkSize,
the hub processor is also a worker. The rationale for this arrangement is that, in very
small clusters, the hub will, be lightly loaded, and its spare CPU cycles should be used to
help explore the branch-and-bound tree. If a cluster is too big, however, using the hub
simultaneously as a worker may unacceptably slow the hub’s response to messages from its
workers, slowing down the entire cluster. In this case, a ‘@re” hub is more advantageous.

The value of hubsDontWorkSize must be at least 2, so it is impossible to form a cluster
with no workers.

4.2. Tokens and work distribution within a cluster
Unlike some “master-slave” implementations of branch and bound, each PICO worker

‘maintains its own pool of active subproblems. This pool may be any”of the kinds of pools
described in Section 3.2, although all workers use the same pool type. Depending on how
various run-time parameters are set, however, the pool might be extremely small, in the
extreme case never holding more than. one subproblem. Each worker processes its pool
in the same general manner as the serial layer: it picks subproblems out of the pool and
passes them to a search handler until the pool is empty. There are currently three parallel
search handlers, called eagerHandler, lazyHandler, and hybridHandler, which behave in
a similar manner to their respective serial counterparts, but with the additional ability to
release subproblems horn the worker to the hub.

For simplicity throughout the remainder of this section, we describe these handlers for a
configuration with a single cluster consisting of all available processors.

4.2.1. Random release of subproblems
The parallel version of eagerHandler decides whether to release a subproblem’ as soon

as it has become bounded. The parallel version of lazyHandler and hybridHandler make
the release decision when they create a subproblem. The decision is a random one, with
the probability of release controlled by run-time parameters. Released subproblems do not
return to the local pool; instead, the worker cedes control over these subproblems to the hub.
Eventually, the hub may send control of the subproblem back to the worker, or to another
worker.

If the release probability is 100%, then every subproblem is released, and control of sub-
problems is always returned to the hub at a certain point in their lifetimes (at creation for
lazyHandler and hybridHandler, and upon reaching the bounded state for eagerHandler).
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Inthisc~e, thehuband itsworkers function like a standard “master-slave” system. When
the probability is lower, the hub and its workers are less tightly coupled. The release proba-
bility is controlled by the run-time parameters minScatterProb, targetScatterProb, and
maxScatt erProb. The use of three different parameters, instead of a single one, allows the
release probability to be sensitive to a worker’s load. Basically, if the worker appears to have
a fraction l/k of the total work in the cluster, then it uses the value targetScatt erProb. If it
appears to have less work, then a smaller value is used, but no smaller than minScatt erProb;
if it appears to have more work, it uses a larger value, but no larger than maxScatterProb.

4.2.2. Subproblem tokens
When a subproblem is released, only a small portion of its data, called a token [33,7], is

actualIy sent to the hub. The subproblem itself may move to a secondary pool, called the
server pool, that resides on the worker. A token consists of only the information needed
to identfi a subproblem, locate it in the server pool, and schedule it for execution. On a
typical 32-bit processor, a token requires 48 bytes of storage, much less than the full data
for a subproblem in most applications. Since the hub receives only tokens from its workers,
these space savings translate into reduced storage requirements and communication load at
the hub.

When making tokens to represent new, boundable subproblems, the parallel version of
lazyHandler and hybMHandler take an extra shortcut. Instead of creating a new subpro~
lem with parallelMakeChild and then making a token that points to it, they simply create
a token pointing to the parent subproblem, with a special field, whichChild, set to indicate
that the token is not for the subproblem itseIf, but for its children. Optionally, a single token
can represent multiple children. If every child of a separated subproblem has been released,
the subproblem is moved from the worker pool to the server pool.

4.2.3. Hub operation and hub-worker interaction
Workers that are not simultaneously functioning as hubs periodically send messages to

their controlling hub processor. These messages contain blocks of released subproblem to-

kens, along with data about the workload in the worker’s subproblem pool, and other mis-
cellaneous status information.

The hub processor maintains a pool of subproblem tokens that it has received horn work-
ers. Again, this pool may be any one of the pools described in Section 3.2. Each time
it learns of a change in workload status from one of its workers, the hub reevaluates the
work distribution in the cluster. The hub tries to make sure that each worker has a suf-
ficient quantity of subproblems, and optionally, that they are of sufficient quality (that is,
with bounds sufficiently sufficiently far from the incumbent). Quality balancing is controlled
by the run-time pa~ameter qualit yBalance, which is TRUEby default. Workload quan-
tity evaluation is via the run-time parameter workerSPThreshHub; if a worker appears to
have fewer than this many subproblems in its local pool, the hub judges it “deservin#’ of
more subproblems. If quality balancing is activated, a worker is also judged deserving if
the best bound in its pool is worse than the best bound in the hub’s pool by a factor ex-
ceeding the parameter qualit yBalanceFact or. Of the workers that deserye work, the hub
designates the one with fewest subproblems as being most deserving, unless this number
exceeds workerSPThreshHub; in that case, the workers are ranked in reverse order of the
best subproblem bound in their pools.

24



As long as there is a deserving worker and the hub’s token pool is nonempty, the hub picks
a subproblem token from its pool and sends it to the most deserving worker. The message
sending the subproblem may not go directly to that worker, howeveq instead, it goes to
the worker that originally released the subproblem. When that worker receives the token, it
forwards the necessary subproblem information to the target worker, much as in [7,8,10,33].
This process will be described in more detail in Section 4.4.8.

Only one subproblem is dispatched at a time; if a token in the hub pool represents several
problems, the hub splits it into two, with one token representing one subproblem, and the
other any remaining subproblems. It sends the former token and retains the latter.

If the subproblem release probability is set to 100%, and workerSPThreshHub is set to 1,
the cluster will fimction like a classic master-slave system. The hub will control essentially all
the active subproblems, and send them to workers whenever those workers become idle. Less
extreme parameter settings will reduce the communication load substantially, however, at the
cost of possibly greater deviation from the search order that would have been followed by a
serial implement ation. Also, setting workerSPThreshHub larger than 1 helps to reduce worker
idleness by giving each worker a ‘tbuffer” of subproblems to keep it busy while messages are
in transit or the hub is attending to other workers.

The best setting of the parameters controlling the degree of hub-worker communication
depends on both the application and the hardware, and may require some tuning, but the
scheme has the advantage of being highly flexible without any need for reimplementation or
recompilation.

In addition to sending subproblems, the hub periodically broadcasts overall workload infor-
mation to its workers, so the workers know the approximate relation of their own workloads
to other workers’. This information allows each worker to adjust its probabtiky of releasing
subproblems appropriately.

4.2.4. Rebalancing
If the probability of workers releasing their subproblems is set too low, or the search process

is nearing completion, workers in a cluster have workloads that are seriously out of balance,
yet the hub’s token pool is empty. In this case, the hub has no work to send to underloaded
workers. To prevent such difficulties, there is a secondary mechanism, called “rebalancing,”
by which workers can send subproblem tokens to the hub. If a worker detects that it has a
number of subproblems exceeding a user-specifiable factor workerMaxLoadFact or times the
average load in the cIuster, it selects a block of subproblems in its local pool and releases
them to the hub. The hub can then redistribute these subproblems to other workers.

4.3. Work distribution between clusters
With any system-application combination, there will be a limit to the size of a cluster that

can operate efficiently,, even if its hub does not have any worker responsibilities. Depending
on the application and the hardware, the hub may simply not be able to keep up with all the
messages from its workers, or it may develop excessively long queues of incoming messages.

At this point, one option is to adjust the PICO’S run-time parameters to reduce the
amount of intra-cluster communication, but if communication is reduced too much, the hub
may have difficulty maintaining a proper load balance in the cluster. To be able to use
all the available processors, it may then be necessary to partition the system into multiple
clusters. Another reason for such partitioning is that particular classes of applications may
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simply perform better with the more randomized search pattern that results from multiple
clusters [8,10].

PICO’S method for distributing work between clusters resembles CMMIP’S [8,10], with
some additional generality: there are two mechanisms for transferring work between clusters,
scattering and load balancing. Scattering comes into play when subproblems are released by
the handlers. If there are multiple clusters, and a worker has decided to release a subproblem,
the handler makes a second random decision as ~to whether the subproblems should be
released to the worker’s own hub or to some other, randomly-chosen cluster’s hub. This
random decision is controlled by the apparent workload of the cluster relative to the entire
system, and the parameters mhItonLocalScatterProb, targetNonLocalScatterProb, and
mtionLocalScatterProb.

To supplement scattering, PICO also uses a form of “rendezvous” load balancing that
resembles CMMIP’S [8,10]; [26] and [19] also contain earlier, synchronous applications of
the same basic idea. This procedure also has the important side effect of gathering and
distributing global information on the amount of work in the system, which in turn facilitates “
control of the scattering process, and is also critical to termination detection in the multi-hub

d

case.
Critical to the operation of the load balancing mechanism is the concept of the workload

at a cluster c at time t, which we deiine as

L(c, t) = z lZf3-0 - Z(P, C,t)]’.
PGc(@)

Here, C(C7t) denotes the set of subproblems that c’s hub knows are controlled by the cluster ~
at time t, Z(C,t) represents the incumbent value known to cluster c’s hub at time t, and
z(.P, c, -t) is the best bound on the objective value of subproblem P known to cluster c’s hub
at time t. The exponent p is either O, 1, or 2, at the discretion of the user, much as in
CMMIP. If p = O,only the number of subproblems in the cluster matters. Vzdues of p = 1 or

P = 2 give progressively higher “weight” to subproblems farther horn the incumbent. The
default value of p is 1.

The rendezvous load balancing mechanism organizes all the cluster hub processors into a
balanced binary tree. Periodically, messages “sweep” through this entire tree, from the leaves
to the root, and then back down to the leaves. These” sweeps are organized into repeating
“rounds,” each consisting of three sweeps, synchronization, survey, and balance, as follows:

Synchronization Sweep: Each hub waits until its cluster appears to be idle, its cluster
has bounded a sufficient number of subproblems, or a sufficient amount of time has
passed (“sufficient” is defined by run-time parameters). Once these conditions are met,
it makes sure that it has received a message horn each of its child hubs, if any. Once all
such messages have been received, the hub then sends a message to its parent, unless
it is at the root of the tree. Once the root receives messages from all its children, it
initiates a broadcast down the tree that the rest of the load balancing process may pro-
ceed. This technique is designed so that the survey sweep, which follows immediately,
can start in a roughly synchronized way.

Survey Sweep: Each processor waits to receive workload information from its children, if
any. It adds these workloads to its own current workload, and forwards the result up
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the tree. The root is then able to compute an approximate total workload for the
system, which it broadcasts down the tree. The messages in this sweep also contain
information on the incumbent values Z(C,t) used to compute the cluster workloads, and
other miscellaneous information that is aggregated as the messages pass up the tree.
If there is any mismatch between the incumbent values used at the various clusters,
or a similar mismatch between the hub and any worker within a cluster, the survey is
repeated immediately. Such a mismatch means that a new incumbent value is currently
being broadcast (as will be described in Section 4.4.7), and some processors have not
had an opportunity to prune their subproblem pools to reflect this new incumbent.
The aggregate workload information is therefore inconsistent, and must be gathered .
again. Once consistent information has been gathered, the balance sweep may begin.

Balance Sweep: First, each processor determines whether its cluster should be a donor of
work, a receiver of work, or (typically) neither. Donors are clusters whose workload
exceeds the average by a factor of at least loadBalDonorFac, while receivers must be
below the average by at least loadBalReceiverFac. A single message sweep of the
tree then counts the total number of donors d and receivers r, and also assigns a unique
donor and receiver number. The first y = min{d, r} donors and receivers then “pair
up” via a rendezvous procedure involving 29 point-to-point messages; see [15, Section
6.3] or [8,10] for a more detailed description of this process. Within each pair, the
donor sends a single message to the reciever, containing enough subproblem tokens to
approximately equalize their workloads. Thus, the sweep messages are followed by a
possible additional 3y point-to-point messages. After these messages, if any, the entire
load balance round process repeats, starting with another synchronization sweep.

Under certain conditions, including at least once at the end of every run, a termination
check sweep is substituted for the balance sweep. This mechanism will be described in
Section 4.5.

Peer-to-peer load balancing mechanisms are frequently classified as either %vork stealiig~
that is, initiated by the receiver, or “work sharing? that is, tiltiated by the donor. The
rendezvous method is neither; instead, donors and receivers efficiently locate one another on
an equal basis, possibly across a large collection of processors.

4.4. Thread and scheduler architecture
From the preceding discussion, it is clear that the parallel layer requires each processor

to perform a certain degree of multitasking. CMMIP handled multitasking by combining
user-level interrupts for the highest-priority tasks with an ad hoc round-robin scheme for the
remaining ones. The former mechanism was not portable, and the latter lacked flexibility
(for example, a hub could not simultaneously serve as a worker and still control other worker
processors). Instead, PICO defines a thread of control for each required task on a processor,
and manages these threads through a scheduler module. The threads share a common global
memory space through a pointer to the instance of pamllelBranching being solved.

PICO is not truly multithreaded code, however. We do not use POSIX or other standard
thread packages, and, on each processor, PICO appears to the operating system as only a
single thread of control. The scheduler is non-preemptive, much like the schedulers in the
Macintosh and Windows 3.z operating systems: the scheduler explicitly calls each thread as
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a subroutine, and the thread restores control to the scheduler, only when it is ready, through
a standard subroutine return. There are several reasons why we took this approach:

Many versions of MPI are not “thread-safe” or make their own use of threads. If PICO
used ‘hue” threads, it could not be ported to such systems.

The approach simplified debugging and development.

Since PICO’S tasks can be trusted to cooperate, a non-preemptive discipline is adequate
to control them. .

Since threads only return control at times of their choosing, they can leave global “
data structures in a known state, and there is no need to worry about memory access
codicts and locks.

The approach allowed us to use our own customized scheduling algorithm.

PICO contains a general-purpose scheduler, which is designed to be usefid for other ap-
plications as well. We now. describe the general algorithm used the the scheduler. Further
detail for an earlier but similar version of the scheduler maybe found in [II].

4.4.1. The scheduling algorithm
At any given time, each thread is in one of three states, reudy, waiting, or blocked. Only

threads in the ready state are allowed to run. Threads in the waiting state are waiting
for the arrival of a particular kind of message, as identified by an MPI tag. The scheduler
periodically tests for message arrivals, and changes thread states horn waiting back to ready
as necessary. Threads in the blocked state are waiting for some event other than a message
arrival. The scheduler periodically polls these threads by calling their ready virtual methods;
when a blocked thread’s ready method starts returning TRUE,the scheduler changes it back
to the ready state.

Threads are organized into groups, each group having its own priority. Group priorities
are absolute, in the sense that the scheduler only runs threads horn the highest priority
group that contains ready threads. Only if all higher-priority thread groups are empty will
the scheduIer permit thread in lower groups to run.

Each group may use one of two scheduling disciplines. The first is a simple round-robin
scheme, in which ready threads are ~selected in a repeating cyclic order. The second pos-
sibility is a variant of stride scheduling [40,20]. This scheme allows the user to specifi the
approximate fraction of CPU resources that should be allocated to each thread.

In the stride scheduling discipline, each thread i has a bias bi that specifies its importance.
Let R denote the ready list, the set of ready threads in the highest nonempty group, then the
fraction of the CPU devoted to thread i G R will be approximately hi/ ~j~R bj. Each thread
also has a value vi which specifies its current position in the run queue. The scheduler runs
the ready thread with the lowest vi, and when the thread returns, updates vi - vi+ u/hi,
where u is the amount of time just used by the thread.

All stride-scheduled threads start with vi = O. When a waiting or blocked thread is about
to enter the ready list again, its vi is reset to m~~{vi, V*+ ki}, where V* = mhj~R{vj},
and Iii s R may be user-specified. To prevent numerical precision problems, a constant is
periodically subtracted from all the vi, i c R, so that V*= O.
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4.4.2. Thread group organization and thread types
The threads used by PICO belong to two broad categories: message-triggered threads and

compute threads. There are two thread groups: the message-triggered threads occupy the
higher-priority group, which uses round-robin scheduling, and the compute threads make up
the lower-priority “base” group, which uses stride scheduling.

A message-triggered thread typically spends most of its time waiting for messages. When
a message with the right tag arrives, the scheduler changes the thread’s state horn waiting
to ready. Since message-triggered threads are in {he high-priority group, they tend to run
soon after they become ready. Once it runs, the thread processes the message, issues a
nonblocking receive for another message, changes its state back to waiting, and returns.

Compute threads are usually in the ready state, but maybe in the blocked state if they
have exhausted all their available work. These threads are scheduled in the proportional- .
share manner described above, so long as no message-triggered threads need to run. By
default, all of PICO’S compute threads contain logic to actively manage their granularity,
that is, the amount of time u they consume before returning to the scheduler. There is a
run-time parameter t imeSlice which specifies an ideal time quantum for compute threads.
Compute threads try to manage the amount of work they do at each invocation so that
the average value of u is approximately equal to t imeSlice. The best value oft imeslice
depends on the hardware, the MPI implementation, and the application. A very small value
means that message-triggered threads will run soon after their messages arrive, giving fast
communication response, whereas a large value will minimize the overhead expended on the
scheduler and entering and exiting compute threads. Ideally, one attempts to balance these
two goals; in preliminary testing, we have had good results with a value approximately 20
times the time the scheduler needs to check for arriving messages.

4.4.3. Beginning the parallel search
To read in a problem instance, the parallel layer uses the readAndBroadcast method.

ReadAndBroadcast first uses the readIn method, inherited horn the serial application, to
construct the global class information on a single processor. It then uses the the global
class pack method to copy this information to a buffer, which it then broadcasts. All other
processors receive the broadcast, and then use the global class unpack method to construct
their replicas of the global class object.

Once a problem has been created and replicated on all processors, the application calls the
parallelSearch method to search for a solution. Before starting the scheduler, this routine
first calls the preprocess virtual method on all processors. By redefining preprocess for
the parallel global class, the application may parallize its preprocessing procedure; Section 5
gives an example of this technique.

ParallelSearch next initializes the scheduler, creating the thread groups and calling
the virtual method placeTasks to create the threads and place them the groups. The
default version of placeTasks should suffice for many applications, and we describe below
all the threads that it creates. If the application requires additional threads, it can redefine
placeTasks to call the default placeTasks, and then create and place any additional threads.
Again, we will present an example in Section 5.

Once the scheduler has been initialized, the first worker in the first cluster creates a blank
subproblem, calls makeRoot to turn it into the root problem, and then inserts the root
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problem into its local pool. On all processors, Paral.lelSe&ch then calls the scheduler to
begin running allthe threads. Onea&processor, thescheduler then mnsuntil some thread
sets the scheduler’s global termination flag, after which parallelSearch exits.

We now describe all the threads created by the default version ofplaceTasks, as also
depicted in Figure 7.

I Processors

Hubs

---------- -----
1

I Load Balancer Thread ~
I(multiple clusters only) I.-------------- J

IIncumbentBroadcastThreadI

Workers
(whichmaybe Hubs)

EzEE!E’

I Subnmblem Server Thread I

Subproblem Receiver Thread

Workers
which are not Hubs

]Worker Auxiliarlv Threadl

Figure 7. Threads used by the PICO core. Compute threads are shaded; all other threads
are message-triggered.

4.4.4.
The

thread

The worker thread
worker thread is a compute thread that is present on every worker processor. This
simply extracts subproblems from the worker’s local pool and passes them to the

search handler. If the local pool is empty, the worker thread enters the blocked state.
The worker thread attempts to regulate its granularity by adjusting the number of sub-

problems it passes to the handler before returning to the scheduler. For applications in
which the bounding or separation procedure is very time consuming, and may need to
be interrupted to allow message-triggered threads to run, the application may modify this
granularity-adjustment scheme. Essentially, the virtual methods boundComputation and
splitComputat ion can set the argument controlparam to some value proportional to the
amount of work they have done. On subsequent calls, the granularity-control algorithm will
pass, via this same argument, a suggested amount of work to perform.

The worker thread is also responsible for pruning the local subproblem pool and server
pool on its processor. If running on a processor that is also a hub, the worker thread also calls
the method parallelBranching: : activateHub before returning control to the scheduler.
This call allows the hub logic to respond to any changes in the cluster’s load resulting from
the work just performed, and is described in more detail in Section 4.4.6.

J
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4.4.5. The incumbent heuristic thread
Theincumbent heuristic thrmdka second, optional compute thread. Itisonly createdon

worker processors, and only if the both the application’s haveIncumbentHeurist ic virtual
methods returns TRUEand the run-time parameter useIncumbentThread is also set to TRUE.
This thread’s task is to search for better incumbent solutions. The algorithm and granularity-
adjustm’ent procedure used are entirely application-specific.

When any of the parallel search handlers move a subproblem to the bounded state, and the
incumbent heuristic thread exists, they call the f eedToIncumbentThread virtual method,
a member of the parBranchSub class. This method can decide whether the subproblem
partial solution is of interest to the incumbent heuristic, and, if so, can copy any necessary
data to the incumbent heuristic’s application-specific internal data structures. There is
also a quickIncumbentHeurist ic virtual method which may be called for any bounded
subproblem. This method is meant for a “quick and dirty” procedure not requiring a separate
thread (such as filling out a knapsack by the greedy method, or rounding up a fractional
solution to a set covering problem).

On worker processors, the scheduler uses stride scheduling to arbitrate between the worker
and incumbent heuristic threads. The biases of these threads are controlled by the run-
time parameters boundingPriorityBias and incSearchPriorityBias, respectively. In the
near future, we plan to add a feature whereby these biases may be dynamically adjusted
throughout the course of a run. This technique will allow applications to make heavy use of
the incumbent heuristic early in a run, when it is important to locate good incumbents, and
then phase it out as the run progresses and it is better to concentrate on proving optimality
of the current incumbent.

4.4.6. The hub thread
The hub thread is a message-triggered thread that runs on hub processors, and listens

for messages with the tag hubTag. These messages may originate horn any worker in the
system. These messages contain workload status information, tokens of subproblems that are
being released or scattered to the hub, and/or acknowledgements of receipt of subproblems
dispatched from the hub.

When it awakes, the hub thread processes the contents of one of these messages, making
the requisite changes in hub logic. data structures. It then calls the method activateHub.

Calling activateHub triggers all the functions of the hub, including pruning the hub’s pool
of active tokens, distributing subproblems to any deserving workers, and possibly sending
messages to workers informing them of the workload distribution in the cluster. When an
event occurs that might alter the workload situation in the cluster, act ivateHub may be
called by any thread running on a hub processor, and not just the hub thread.

4.4.7. The incumbent broadcast thread
The incumbent broadcast thread is a message-triggered thread that runs on all processors,

and listens for incumbent broadcast messages. Each processor stores both the best objective
value it currently knows for the incumbent, incumbentValue, and and the rank of the proces-
sor that generated that value, incumbentSource. PICO’S incumbent broadcasting scheme is
similar to CMMIP’S: when a new incumbent is found, one uses the parallelBranching class
signal Incumbent method to begin the broadcast. The incumbent broadcasting procedure
organizes all processors into a balanced tree rooted at the initiating processor. The tree’s
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radix may be speciiied by a run-time parameter; the default is a binary tree. The broad-
cast messages contain the objective value of the newly-found incumbent, and the processor
number of the tree root.

When the incumbent thread receives an incumbent broadcast message, it compares the
message’s objective value to the incumbent value currently known at the current processor. If
the received value is worse, the incumbent thread does not attempt to continue the broadcast.
If the two values are equal, it then compares the processor rank of the processor initiating the
broadcast to incumbentSource. Only if the broadcast root is smaller than incumbent Source
will the thread attempt to continue the broadcast. This procedure guarantees that if several
processors simultaneously try to broadcast incumbents, that one of the broadcasts with the
best value will reach all processors, while the others will be aborted.

If the broadcast should continue, the incumbent broadcast thread updates the local values
of incumbentValue and incumbentSource to those in the message, and forwards this infor-
mation along the broadcast tree. It sets flags forcing the worker thread to become ready,
and then prune the server and local worker pools. The incumbent broadcast thread also sets
a similar flag to force the hub thread, if present, to perform pruning of the hub pool.

4.4.8. The subproblem server thread
The subproblem server is a message-triggered thread that runs on all workers, and listens

for work dispatch messages born the hubs. These messages contain a subproblem token and
the processor rank of a worker to which the corresponding subproblem should be delivered.
The subproblem server thread’s task is to deliver the full information about the specified
subproblem to the worker in question.

Upon receiving a message, the subproblem server thread decodes the subproblem token
and the rank w of the target worker. It also checks the bound on the token to make sure
that the problem cannot be fathomed because of some recently broadcast incumbent value.
If the subproblem can be fathomed, it sends an acknowledgement message to the originating
hub @licating that the subproblem was properly received, but does not bother actually
trying to send the subproblem data to the worker. If, as usual, the subproblem cannot be
fathomed, the thread then calls the method parallelBranching: :deliverSP to deliver the
subproblem data

If a hub is also a worker, and it wishes to send some other worker a subproblem stored in
its own server pool, the hub simply calls the deliverSP method directly, rather than sending
a message to itself.

The deliverSP method first matches the token with the corresponding subproblem P on
the workeq thu step is very efficient, because the token contains the memory address of P.
DeliverSP then separately handles four possible cases, depending on whether the token is a
“child” or “self” token, and whether the target worker w is the same as the current processor
p, or some other worker. “Self” tokens refer directly to some subproblem in the server pool,
while “chlld” tokens refer to a child of such a subproblem. The cases are handled as follows;

1. If the token is a self token, and w = p, P is transferred from the server pool to the
local worker pool, and is marked as “delivered.”

J

2. If the token is a self token, and w # p, the server thread uses the application’s sub-
problem pack method to pack P into a buifer, and sends this buffer to w. P is then
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deleted from the server pool.

3. If the token is a child token, and w =p, theserver thread uses parallelMakeChild
to extract achild~’of~, andplaces .P’inthe thelocal worker pool, martingit as
delivered. If Pha.sno children left, itisdeleted.

4. If the token is a child token, and w #p, the server thread uses the application’s
packChild method topack achild P’ofPinto abuffer. The packChild method has
the default implementation ofcreating achild with makeParallelChild, placing itin
abuffer with pack, andthen deleting it. However, theapplication is free to substitute
a more efficient, application-dependent implementation. The buffer is sent to w, and
P is deleted if it has no children left.

The messages sent in cases 2 and 4 have MPI tag deliverSPTag.
After a subproblem is marked as delivered on a worker that is not a hub, an acknowledge-

ment for that subproblem is included in the worker’s next communication to its hub. If the
worker is itself a hub, the acknowledgement is entered directly into the hub data structures.

4.4.9. The subproblem receiver thread
The subproblem receiver thread is a message-triggered thread present on all workers, and

‘listens for messages with the tag deliverSPTag. Upon receipt of such a message, the thread
calls blankParallelSub and then the application’s subproblem unpack method to recreate
the data structures for the subproblem, which it then marks as delivered. If the subproblem
cannot be fathomed, the thread inserts it into the local worker pool.

4.4.10. The worker auxiliary thread
The worker a-”liary thread is a message-triggered thread that exists only on workers that

are not also hubs. It listens for messages with the MPI tag workerTagj which are sent by
hubs to their workers. Each of these messages can contain one of three possible “signals”
from the hub to the worker:

Load Information Signal: -The message contains information on cluster and system-wide.
workloads. The worker auxiliary thread copies this information to the workers local
data structures.

Termination Check Signal: This signal indicates PICO is double-checkiing whether the
system is indeed fully idle and ready to terminate. The worker auxiliary thread imme-
diately replies with a message containing a count of the total messages the worker has
sent. The reason for this procedure will be described in Section 4.5 below.

Terminate Signal: The hub has determined that the branch-and-bound search has termi-
nated. The worker auxiliary thread sets the scheduler’s global termination flag. When
the thread exits, the scheduler terminates, and the call to paral.lelSearch returns.

4.4.11. The load balancer thread
The load balancer thread orchestrates the load balancing scheme described in Section 4.3.

It runs on all hub processor. It contains finite state machine logic to move all processor
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approximately synchronously through the various message sweeps and other operations de-
scribed in Section 4.3. It is basically a message-triggered thread that listens for various kinds
of messages, depending on what phase of the load balancing procedure it is currently in. One
exception is that it may enter the blocked state when at the beginning of the synchronize
sweep, waiting for conditions to be right for another round of load balancing. The scheduler
unblocks it when the sweep is allowed to start.

The load balancer thread is responsible for terminating the search computation, as de-
scribed below. If there is only one cluster, then no load balancing is necessary, and termina-
tion is the thread’s only finction. In this case, it immediately puts itself in the termination
check sweep mode, iirst listening for termination check reply messages horn the workers.

4.5. Tern&ation detection
Proper detection of termination can be a tricky issue in asynchronous distributed-memory

computations. CMM”IP’Stermination procedure relied on specific properties of the CM-5’s
communication hardware and operating system, and could not be generalized to PICO.

In parallel branch and bound, it is important to terminate as soon as, but not before, there
are no active subproblems left to be bounded or separated anywhere in the system. In some
implementations of MPI, it is also important that when a processor calls MPI_Finalize to
terminate its computation, that it have received all messages sent to it by other processors,
except any that were cancelled via MPI.Cancel. If not, MPI-Finalize may “hang” or generate
system errors.

So, for PICO to be able to terminate, all worker subproblem pools and hub token pools
must be empty, and all messages sent must be received. We call “this situation quiescence.

4.5.1. The case of a single cluster
If there is only one cluster, quiesence is relatively straightforward to detect. The hub

knows which subproblems it has assigned to which workers, and through the delivery marking
and acknowledgement mechanism, which of these problems have been received. It also has
recent workload information horn each of its workers. Furthermore, the workload information
reported by workers contains counts of total messages sent and received, so hubs can also
detect messages in transit.

Once a worker becomes idle, it has no more subproblems in its active pool, and it reports
its workload to its hub immediately. If it is idle and receives a message of any kind, it resends
its idle report to the hub, with updated message send and receive counts included.

Suppose that the following conditions hold:

1.

2.

3.

4.

5.

The hub has an empty token pool.

All the clusters workers have reported themselves idle.

All subproblems dispatched from the hub have been acknowledged as delivered.

All processors agree on the objective value of the incumbent, and which processor
stores the incumbent.

The total counts of message sends and receives appear to match when summed over
all processors in the cluster.

J I
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In this situation, no more work can possibly arise in the normal operation of the system,
and no more messages can be sent by any of the PICO core threads. However, there is
still a possibility of premature termination if any application-specific threads have messages
in transit; enen thought the total count of messages sent and received may appear equal,
messages may still be in transit due to the phenomenon of “aliasing~ as described in the
next section. To check for this possibility, the hub sends a termination check signal to all
workers. The workers’ replies to these messages wake up the hub’s load balancing thread,
which double-checks the message counts, aad terminates the computation if appropriate.
This process is described in more detail immediately below.

4.5.2. Multiple clusters
When there are multiple clusters, properly detecting quiescence is more diilicult, even if no

application-specific threads are present. Basically, termination is detected at the end of the
survey sweep, when the total workload information summed over all clusters is distributed to
all hub processors. If all clusters have no active subproblems and the total counts of sent and
received messages match, then it is likely that the search can terminate. Note that messages
used by the load balancing process itself must necessarily be in balance at this point, and so
do not need to be included in the message counts.

However, even if the survey sweep detects that all clusters appear to be idle and the
total counts of sent and received messages match, it is still possible that the system is not
quiescent. Thus, we call this state pseudoquiescence. The reason is that it is not possible
to sample the message send and receive counts from all processors at exactly the same
time. Thus, ”a message can contribute to the total reception count collected by the sweep,
‘without yet contributing to the total send count. The reception of such a message can then
masquerade as the reception of another message whose send operation is included in the
count but has not been received even by the end of the sweep. Such ‘Wiasing” can cause
premature detection of termination. If such a message contained a scattered subproblem,
then PICO might terminate with an incomplete proof of optimality, or possibly an incorrect
solution. This phenomenon can also occur if there is only a single cluster, but there are
application-specific threads that send interprocessor messages.

To prevent such premature termination, we use a variant of the Your counter” method
due to Mattern [27], which seems to be the most efficient technique available (the name is .
misleading, since it is shown in the original reference [27]that the method can be implemented
with only three counters). In PICO’S case, the procedure works as follows: at the end of
the survey sweep, the load bakmcer threads on all hubs detect pseudoquiescence. Instead of
proceeding to the balance sweep, they substitute a termination check sweep instead.

At the start of the termination check sweep, each hub sends a termination check signal
message to all its workers (except itself, if it is also a worker). The worker auxiliary threads
on these workers respond with their total message sent counts. Once all its workers have
responded, each hub adds the counts for its entire cluster, including itself, together. The
sweep messages now proceed, adding this information recursively up the cluster hub tree.
The overall message count sums form at the the cluster tree root, and are broadcast back
down the tree. If the total message sent count collected by the termination check sweep
is the same as that collected by the immediately preceding survey sweep, then aliasing
is impossible, and the system was actually quiescent at the end of the last survey sweep;
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see [27] for a proof. In this case, the load balancer thread on each hub sends a termination
signal message to all its cluster’s workers, and then sets the scheduler termination flag. If the
counts do not match, then true termination has not occurred, and the load balancer thread
simply commences another round of load balancing.

Note that if there is only one cluster, the “tree” used in the termination check “sweep” just
consists of a single node and no edges. If the termination check fails in the one-cluster case,
the load balancer simply starts another termination check sweep, listening for termination
check reply messages horn the workers. The signal to send these messages will come from
the hub thread the next time it detects possible termination.

5. Application to mixed integer programming

To demonstrate how the PICO core can be used, we now describe the application of the
PICO class library to the solution of general mixed integer programming problems, without
the use of cutting planes. This application is the “PICO MIP” referred to in Section 2 and
Figure 1.

We stress that this application is not yet meant to be a completely state-of-the-art MIP
solver, as it is lacking a number of features present in the best commercial codes. At this
point, we present it to illustrate how the PICO core can be easily extended to include
additional, advanced features for applications, and to illustrate the degree of parallelism that
PICO can acheive.

Technically, the PICO MIP can solve any problem in the industry-standard MPS format.
For convenience, we will assume in our discussion that the problem being solved is to find
x c 3?” satisfying

rnin CTZ

S.T. Ax= b
.e<z<u

(1)

Zj integer V j G Z,

where c G 3?”, b c !Rm, A is an m x n matrix, 1 c [–co, +m)n, u ~ (–w, +W]~j t’ ~ u,
and Z G {l,..., n} is a nonempty set of indices of variables that are required to take
whole-number values. Note that inequality constraints can easily be accommodated in this
formulation by introducing slack variables, as is the case with most linear programming
solver software.

In the standard branch-and-bound algorithm for this problem, the root problem is sim-
ply (1) with the integrality constraints removed. The remaining subproblems are similar,
but with some of the lower bounds k’j increased or upper bounds uj decreased, for j G Z.
Let L(P) and u(F’) denote the lower and upper bound vectors for any given subproblem P.
The bound z(P) for subproblem P is obtained by solving the corresponding linear program,
yielding some linear programming solution z(P). The value z(P) = CTZ(P) is a lower bound
on the objective value any solution z of (1) that h~ .4?(P)< z < u(P). If ~j (P) is integer
(to within some specified numerical tolerance) for all -j c Z, then z(P) represents a feasible
solution to (1) that dominates all other solutions with 1(P) < z ~ u(P).

If there esists any j c Z for which ~j(~) is not integer, then the subproblem must be
separated. We select some such j, call it j (F’), and create a down child subproblem P- with
uj(p)(~-) = L~j(P)j ~d an Up child P+ With 4j(p)(P+) = [~j(~)l.
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5.1. Pseudocosts
Oneofthe keys tomaking this “textbook” branch-and-bound method work efficiently in

practice is to make a good choice of the branching variable j(~) from among the set J(P)
of indices j 6 Z for which xj (F’) is not integer.

The modeler may specify branching “priorities” to aid in this decision: for example, vari-
ables specifying whether or not a particular production plant is to be built would have higher
priority than variables specifying which products would be made in each plant. However,
priorities are not available for all problems, and often there are many eligible variables with
the same priority.

To choose among branching variables, we use a tirnetested technique employing pseudo-
costs [2]. At any time t, let X(t) denote the collection of all subproblems P for which z(P)
is known. Then define

s:(t) = {P GK(t) IP+GK(t),j(p) = j}.

The “up” pseudo-cost of variable xj, j G Z, at any time t such that S;(t) # 0, is

This quantity attempts to measure how rapidly the subproblem optimal objective value
increases, on average, as Zi is forced upward. We define the ‘(down” pseudocost in a similar
way, but this time tracking how the objective value changes as variables are forced downward:

s;(t) = {P G ~(t) I P- C K(t), j(P) =j}.

The method for choosing a branch variable is similar to CMMIP’S: for each j c J(P), we
calculate a “score” and branch on the variable maximizing the score. To compute the score,
we use the pseudocosts to estimate the respective degradations D: and D3: in the objective
value for the up and down children, via

D~ = +}(t) ([Z.i(p)l - ~j(p))

DJ~ = +;(t) (Zj(P) - [Zj(P)J) .

The score is then computed by

Oj = ~oQj + al min{D~, D;} + CZ2max{D~, D3:},

where Qj is the priority of variable j and ao, crl, and a2 are specified via run-time parameters.
Typically, a. is chosen very large, so that priority is the overriding consideration. Also, one
typically sets az = O, or at any rate CY2< al/lO. Thus, after priority, the next most
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important consideration is trying to simultaneously “push up”
subproblems.

A critical issue is what to do when S’(t) = 0 or Sj:(t) = 0.
approach than CMMIP, shown to be superior by Linderoth [24].
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encounters an index j G J(P) ~ Z that has not been fractional in any prior subproblem
solution, it ‘(probes” — that is, computes the objective values for — the subproblems P3* and

~3: that would result if j were the branching variable. These subproblems do not necessarily .
appear in the search tree unless j is later chosen to be the branching variable, but are
immediately incorporated into the set K(t), and thus into the pseudocost calculations above,
so there will be at least one element present in each of the sets $ (t) and S3:(t). If either of the

subproblems ~jf or ~j: is infeasible, we narrow the ‘bounds of the variable accordingly, and
set the pseudocost to infiity. If both directions are infeasible for any variable, the problem
has no solution. Once a pseudocost for a variable has a finite pseudocost, all previous infinite
pseudocosts are treated as inFeasFactor times that finite pseudocost and any subsequent
infeasible branches found during branching are treated as inl?easf actor times the current
pseudocost.

During the initialization of pseudocosts for a variable, we adjust the bound of the subprob-
lem to (in the case of minimization), the maximum objective value of the two branches if it
is higher than the current bound. This means that each subproblem must store its parent’s
LP bound for calculation of Mmre pseudocosts, rather than using its parent’s bound.

5.2. Other serial aspects of the algorithm
Our algorithm incorporates several other features that are standard in “industrial-strength”

MIP solvers. Before starting the search, we run a preprocessor, based on that in MINTO and
PARINO [34,29,24]. This preprocessor removes some redundant constraints and fixes the
values of some variables, if it can deduce the values they must take in the optimal solution.
Variable xj’s value is tied by setting lj = uj.

The algorithm also applies a standard “locking” procedure after solving the linear program
associated with each subproblem. Let ~(t) denote the objective value of the incumbent at
time t. If the absolute value of the reduced cost of a nonbasic variable ~j, ~ 6 Z, exceeds
~(t) —z(P), then ~j maybe fixed at its present value in all of .P’s descendants. This procedure
is valid because any descendant solution with a different but still integral value of ~j would
necessarily be fathomed. Again, the locking is accomplished by setting lj = uj.

There are a number of other features that are now becoming common in commercial MIP
solvers, but are not yet present in our algorithm:’ cutting plane methods to improve the
linear programming bounds, various kinds of roundhg heuristics to obtain feasible solutions
from subproblem solutions z(P) that do not meet the integrality constraints, and repeated
application of the preprocessor at branch-and-bound nodes. We plan to add these features in
later implementations or derived applications. Of these features, only an incumbent heuristic
was present in CMMIP; we plan to implement a more sophisticated approach.

5.3. Serial implementation
Mapping the MIP branch-and-bound algorithm to the PICO serial layer classes and virtual

functions is fairly straightforward. Class MILP is derived from branching, and contains
simple arrays for the vectors b, & and u, along with sparse matrix representation of c the
matrix A. It also contains tables required to calculate and update the pseudocosts ~~(t)
and @j(t).

Subproblems are represented by the class MILPNode, which is derived ikom branchSub.
Essentially, a subproblem P is completely described by the two n-vectors 4(P) and u(P).

38



In addition, however, each supproblem object stores a compacted representation of a cor-
responding linear programming basis. For problems in the boundable state, this basis cor-
responds to the optimal solution of the parent problem. For the bounded and separated

states, it describes the optimal solution to the problem itself. -
The preprocess method for class MILP executes the preprocessing procedure, and MILP’s

readIn method reads an MPS data file into the MILP data structures. MILPNode’s version of

the boundComputation method uses a commercial linear programming package to calculate

z(~) and z(~) for a subproblem. The linear programming solver is encapsulated in a special
interface class, allowing different LP packages to be specified at compile time. At present,

we are using ILOG, Inc.’s CPLEX 6.z packages, but we have also built encapsulations for
DASH Optimization’s XPRESS-MP package and the public-domain solver SOPLEX.

Except for the root problem, boundComputation always begins from the optimal basis of
the parent problem, which greatly speeds the calculations. If the parent was the last problem
run, then we don’t need to reset the basis. This preserves the LP-solver internal state and is
generally another significant factor faster than the case where we must load the parent basis.
We call th~ favorable situation a warm start. For both root and non-root problems, the
user can specifi whether the optimization is via primal simplex, dual simplex, or a barrier
method. The default for non-root problems is dual simplex.

Once the linear program has been solved, boundComputation executes the reduced-cost-
based variable locking procedure and identifies the set J(F’) of variables violating the inte-
grality constraints. The candidateSolution method for MILPNode simply returns lltuE if

J(p) =0, and otherwise FALSE.
The splitComputation method for MILPNode scans J(F’) for any indices ~ that have

not appeared in J(~’) for any prior subproblem ~!. For each such index, it computes the
objective value of the probe subproblems ~3* and ~j:, using ~’s optimal basis as a starting
point for the first computation and thereafter using the existing basis from the solution of
the previous closely-related subproblem. This procedure may be significantly more time

consuming than the original bound computation itself, but should become increasingly rare
as the computation progresses. After this probing process is complete, ~~(t), ~’:(t) # 0 for
all j c J(P). SplitComputat ion then calculates the scores Oj for all j c J(P) and chooses
the branching variable index j(~) to maximize ~j.

Finally, MILPNode’s makeChild method creates chdd subproblems. It creates a fresh
subproblem and copies the bound information 4?(P) and u(P) to the child, modi&ing the
bound lj(p) (.P+) for the up child, and ~j(p) (P-) for the down child. MakeChild also copies
~’s optimal basis information to the child.

Table 4 describes the runtime parameters for the serial MIP.

5.4. Parallel implementation
To make a parallel version of the MIP algorithm, we used the same procedure described

in Figure 6 and at the outset of Section 4. We defined a parallel global class parMILP with
parallelBranching and MILP as virtual public base classes. Further, we also defined a
parallel subproblem class parMILPNode with perallelBranchSub and MILPNodeas virtual
public base classes. We also provided straightforward implementations of the constructors
and destructors for these classes, along with the virtual methods described in Table 3. These
definitions are sufficient to provide a working parallel implementation. Since there is at
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Name Mean.hz l-kfalll+
—9 - ------

pcostUseDistances Do wecare howlarge theup/downmovement TRUE
is in calculating branching priority?

importSplitfac Weight on user-supplied priority in calculating 1010
branching priority

nearIntSplitf ac Weight on how close a variable is to integer in 0.0
calculating branching’ priority

objBestSplitFac Weight on the better direction for a variable 10.0
(calculating branching priority)

obj WorstSplitFac Weight on the worst direction for a variable 0.0
(calculating branching priority)

upSplitFac Weighting for general preference to branch up 5.0
first

downSplitFac Weighting for general preference to branch 0.0
down “first

t ableInitFrac Fkaction of noninitialized (pseudocost) 1.0
integer-violating variables to initialize through
probing

infeasFact or Weighting for pseudocost updates from infea- 10
sible branches ok those beyond cutoff

relVarSelectTol We can branch on any variable who’s score is
within this factor of optimal 10-5

sendSolutionToFile Write the solution (% a vector) to the file FALSE
PICO-Solution. If already tracking solutions
(see checkFathomOnSolution), append this so-
lution if it’s new

checkFathomOnS olut ion Exit with an error if the any of the solutions FALSE
stored in PICO-Solution are fathomed while
their value is better than the incumbent.

rootSimplexMethod Which simlex method to use to solve the root MILPPJode::primal
(primal, dual, barrier)

warmsimplexlfethod Which simlex method to use when a node’s MILPNode::dual
parent was the last problem solved

nonwamnSimplexMethod Which simlex method to use when a node’s MILPNode::dual
parent was not the last problem solved

preprocessLP Run the MILP preprocessor TRUE

.

Table 4
Run-time parameters defined in the branching class MILP, which control the selection of
branching variables and other aspects of the mixed-integer-programming search and param-
eters from the subproblem class MILPNode.
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present no incumbent heuristic in the serial application, there is currently no incumbent
heuristic thread in the parallel version.

‘However, we chose to extend the basic parallelizationin a two ways, both relating to
pseudocosts. We expect this situation tobean example of a standard pattern: pseudocosts
consitute a type of information that is not part of the incumbent or active subproblem
pool, but is nevertheless global, inthe sense that it is not localized within a particular
subproblem. Such global information typically needs some kind of special treatment in a
parallel implementation.

Consider how the default parallelization provided by PICO would operate in the case of
the MIP algorithm we have just described. The pseudocost tables, needed to calculate @J(t)
and ~~ (t), data members of MILP, will by default be maintained completely independently
on each processor. Initially, the fist worker “in the first cluster solves the root problem
F’O,while the other workers remain idle because there is no incumbent heuristic. Typically,
the set J(PO) of the root’s integrality-violating variable indices will be large. To initialize
the pseudocost information needed to split the root probIem, the first worker must solve an
additional 2 IJ(PO)] linear programs (albeit from a good starting basis). During this time, all
other processors will remain essentially idle, although the work could easily be partitioned
into 2 IJ(PO)] independent tasks.

Once the search tree starts to grow, and other workers become busy, a second source of
inefficiency would arise. Because the pseudocost tables are maintained separately and inde-
pendently on each processor, the pseudocost probing operation will be performed whenever
a variable Zj, j c Z, is detected to be fractional for the first time on a given processor. Thus,
probing for any particular variable might occur as many as @ times, where ~ is total the
number of processors, as opposed to once in the serial layer implementation.

To obtain more parallelism at the outset of the algorithm, we designed the preprocess
routine in paIMILP so that it $unctions differently from MILP’s. Recall that the parallel
search calls preprocess before running the scheduler; fi.uthermore, this call is executed on
every processor. The parallel version of the preprocessor, parMILP: :preprocess, starts by
fist calling the serial version MILP: :preprocess, to eliminate redundant constraints and fix
variables. This calculation is done redundantly on all processors.

Instead of returning at this point, however, the parallel MIP preprocessor now instructs all
processors to solve the root problem’s linear program. Again, this operation is done in parallel
and redundantly on all processors. The preprocessor then identifies the set of integrality
violating indices J(.RO),which require 2 ]J(l’o) I linear programs to be solved to initialize the
pseudocost tables. The preprocessor partitions these linear programs into ~ approximately
equal-sized groups, each of size approximately 2 IJ(PO)I/ji In parallel, without redundancy,
each of the P processors solves the problems in one of these groups. The preprocessor then
makes the combined results of these calculations collectively available to all processors via an
MPIAllgather communication operation. The preprocessor then returns. In thii manner,
the work required to separate the root problem is significantly parallelized.

ParMILPNode’s version of makeRoot sets the state of the root problem to bounded instead
of the usual value of boundable, since the work of bounding the root problem has already
been performed. When the first worker first processes the root problem, it immediately
performs separation and chooses a branch variable, a rapid operation since all the necessary
pseudocost. information is available.
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To limit possible redundancy in initializing the pseudocost information for indices j #‘
J(PO), we employ a second strategy. Whenever a worker probes a to initialize the pseudocost
data for a variable Zj, it places the resulting information in a special buffer, as well as in its
regular pseudocost tables. As soon as all newly-fractional variables have been probed for a
given subproblem P, the worker broadcasts the buffer to all other workers, as recommended
in [24]. The buffer is then reset to empty. Upon Ireception, all other workers incorporate
this information into their own pseudocost tables, making it unnecessary for them to probe
any of the variables in J(P) in the fiture. Otherwise, however, pseudocost information is
maintained completely separately by each processor.

Although substantial interprocessor communication is involved, each of the broadcast
operations may prevent as many as 2 (~ – 1) redundant linear program solutions. Each
pseudocost pair is broadcast along a balanced tree consisting of all workers, with the orig-
inating worker at the root; the radix of this tree is controlled by the run time parameter
pCostTreeRadix, which defaults to 2.

To receive and forward the messages required for pseudocost broadcasts, we introduce one
additional thread, the pseudocost broadcast -thread. This message-triggered thread listens
for incoming pseudocost data and incorporates the contained data into the local pseudocost
tables. If the current processor is not a leaf of the tree for the broadcast in question, it
forwards the broadcast to its children. To include this thread in the scheduler, parMILP
overrides parallelBranching’s default implementation of the virtual method placeTasks.
The substitute implementation fist calls the original implementation, in order to create all
the standard threads. It then creates an additional thread object (of type pCostCastObj)
and inserts it into the message-triggered, higher-priority thread gToup.
“ It is possible, under this scheme, that some variables may still be probed redundantly:
several processors could encounter the same newly-fractional variable at about the same
time, with one or more beginning to probe before the broadcast from the first one reaches
them. In practice, we fid that there is very little redundancy.

The code also includes an option whereby pseudocost information for an index j c Z, may
be broadcast by processor p not only the first time processor p encounters a fractional value
of xj (F’), but the first k times, where k is set by a run-time parameter. This generalization
allows the code to better deal with problems where pseudocosts behave in an “unstable”
way, but such problems appear to be rare in practice. Even with this generalization, the

approach is considerably simpler than CMMIP’S [8,10].
Finally, we note that the current version of the parallel MIP application does not pause

either the bounding or separation, that is, boundComputat ion always completes bounding a
subproblem, leaving it in the bounded state, and splitComputation always completes the
separation process, leaving a subproblem in the separated state. In the future, if we observe

situations where invocations message-triggered threads are unacceptably delayed by very
long bounding or separation operations by the worker thread, we could alter our approach.
For example, boundComputation could return, leaving a subproblem in the beingBounded

state, after a fixed number of dual simplex pivots. Applying boundComputat ion again would
resume the computation. A similar procedure could be applied when evaluating probe sub-

problems in splitcomputation.
Table 5 describes the runtime parameters for the parallel mixed-integer-programming code.

42



Name Meanin~ Default

I pCostShareCutOff I Stop broadcasting pseudocosts foravariablel 2 I
after we have this many values

pCostMinBcastSize Minimum number of (up and down) pseudo- 5

I costs to share at a time if none are new I

Table 5
Run-time parameters defined in the class parMilp which control the level of pseudocost
broadcasting.

5.5. Preliminary computational results
To illustrate the parallelism PICO can attain, we now describe the performance of the

PICO MIT on the “Janus” ASCI Red supercomputer at Sandia National Laboratories [28].
This system consists of 4,536 nodes, each with two 333-megahertz Pentium II processors
and 256 megabytes of RAM. By default, one processor on each node functions as a compute
processor, and the second as a communications processor for interacting with the internal
network. Optionally, in what is called ‘%irtual node mode? the two processors on each node
can be used as compute processors, each with 128 megabytes of RAM. The nodes are linked
by an extremely fast 76 x 32 x 2 communications grid, which also includes some “service”
nodes that do not directly run user programs. We have measured this network’s delivery
time for a 256-byte message at about 18 microseconds. The system implements “space
sharing”, rather than time sharing; typically, each active job has full control of a subset of
the processing nodes.

In this section we describe the solution of some moderately difiicult MIP problems from
the MIPLIB [3], using between 1 and 128 Janus processors. For our initial experiments, we
selected six problems, all solvable on a single processor using the basic branch-and-bound
algorithm described above, but still requiring a substantial amount of tree search. Table 6
describes these problems.

Tables 7 through 9 show the solution of these problems using the PICO MIP. The one-
processor data are for a single run of the serial layer on a single Janus processor. The data
for all other numbers of processors are the average of five runs of the parallel layer.

The parallel runs were configured with a clusterSize of 4, so processors were grouped in
sets of four;each consisting of one worker-hub and three pure workers. For the two- and three-
processor runs, there was just a single cluster of two or three processors, respectively. The
hybridHandler bounding protocol was used, in combination with the heapPool subproblem
pool, which implements best-first search. The scattering parameters were set so that an
average of 65% of newly-created subproblems were released to the hubs; 2570 of the time,
subproblem releases were forced to go to the local hub, and the remaining 75% of the time
they were sent to a randomly-chosen hub. These parameter settings result in a fairly high
level of communication, but Janus’ internal network seems able to support this level.

The T columns in the tables represent the number of compute nodes, the “nodes” column
gives the total number of subproblems bounded, and the run times are in seconds. The
“speedup” column displays the speedup relative to the corresponding one-processor run. The
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General
Binary Integer Continuous

Problem Variables Variables Vmiables Rows Application
-1

bel13a 39 32 52 133 Fiber optic network
design

lseu /39 28 (Unknown)
misc07 259 1 212 (unknown)
modO08 319 6 Machine loading
qiu 48 792 1192 Fiber optic network

design
stein45 45 331 (Unknown)

Table 6
Description of the test problems.

“idle” column is the percent of thetotal processor seconds spent inan idle state, and the
“scheduler” column is the percent of total processor seconds devoted to scheduler overhead.
Figures 8 through 10 display the same information ‘graphically on a log-log scale. Each “+”
data point represents a run of the code, and dashed lines connect the average run times
for each processor configuration. The straight dashed line represents an “ideal” situation in
which the speedup factor on P processors would be exactly F.

In many of the problems, the size of the se~ch tree inflates fairly dramatically as one moves
from the serial to the parallel version of the algorithm. This inflation occurs because a parallel
algorithm cannot follow a strict best-first ordering, and the current implementation lacks an
incumbent heuristic. If a high-quality incumbent is unavailable for a significant &action of
the run, a parallel algorithm can spend significant amounts of time investigating noncritical
subproblems. Experience from [7,10] suggests that even a crude incumbent heuristic can
greatly dampen such tree inflation; we hope to add a (more sophisticated) heuristic to the
PICO MIP soon.

After the initial tree inflation phenomenon, speedups generally remain fairly linear, with
some “noise” and gentle degradation, uritil about 48-64 processors, after which they “tail
off.” In the near future, we plan to experiment with more difficult problems, larger total
numbers of processors, and larger cluster sizes.

One problem, qiu, has dramatic oscillations in node counts (and hence runime) as the
number of processors grows. Though we haven’t completed our investigation, we believe this
is due to the sensitivity and numerical properties of the problem. In particular; all the initial
pseudocosts for the first integer violations found after solving the root problem are very close.
When a processor calculates a number of pseudocosts, it repeatedly modifies the bounds of
two variables between calls to the linear-programming solver. This dramatically incre=es
the solver speed because is can use internal state left from the previous solve. However, this
means that each variable is “probed” in a slightly different environment depending upon the
number of processors, which determines which grotip of variables is initialized as a group on
some processor. Because the pseudocosts are all so close and the problem is difficult, and
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hence pushes the LP-solver tolerances, the initial set of global pseudocosts differs slightly
for each number of processors. We conjecture this effects initial tree growth and that qiu
can have radically different behaviors depending upon these initial branching choices. In
fact making slightly-suboptimal branching strategies according to our ranking fimction can
lead to an order of magnitude increase in node count. When we forced a parent-basis reload
before each pseudocost initialization, and therefore forced a uniform set of initial costs, the
node counts were monotonically slightly increasing with the number of processors. Though
this provides more stability for this problem, this is not the default behavior because it
dramatically slows down this computation.



?roblem

bel13a
bel13a
bel13a
bel13a
bel13a
bel13a
bel13a
bel13a
bel13a
bel13a
bel13a
bel13a
bel13a
bel13a
lseu
lseu
lseu
lseu
lseu
lseu
lseu
lseu
lseu
lseu
lseu
lseu
lseu
lseu

-
1

2
3
4
6
8
12
16
24
32
48
64
96
128

1
2
3
4
6
8
12
16
24
32
48
64
96
128

54,111
57,745
57,758
57,186
55,218
54,518
54,436
54,214
53,962
54,012
54,045
54,019
54,093
54,155
11,383
18,780
20,828
16,343
17,970
21,152
19,733
20,805
23,210
22,748
23,832
25,189
31,169
28,418

J. awc

152.8
87.6
59.6
44.1
30.0
22.1
15.1
11.4
7.8
6.0
4.7
3.3
2.4
2.1

24.8
19.9
14.6
8.8
6.8
6.0
3.9
3.1
2.4
1.9
1.6
1.2
1.1
0.9

Speedup

1.0
1.7
2.6
3.5
5.1
6.9
10.1
13.4
19.6
25.5
32.5
46.3
63.7
72.8
1.0
1.2
1.7
2.8
3.6”
4.1
6.4
8.0
10.3
13.1
15.5
20.7
22.5
27.6

Idle Scheduler

0.0%
0.5%
0.5%
0.6%
1.5%
1.2%
1.3%
2.1%
2.3%
4.0%
14.0%
8.4%
12.4%
17.1%
0.0%
0.3%
0.7%
0.5%
1.5%
1.0%
2.6%
3.2%
4.2%
6.5%
9.9%
12.1%
20.8%
28.3%

0.0%
1.0%
0.9%
1.0%
1.3%
1.4%
L3%
0.9%
1.3%
1.7%
2.5%
3.0%
0.0%
0.0%
0.0%
1.0%
1.0%
1.1%
1.5%
1.7%
2.6%
3.2%
1.7%
0.0%
0.0%
0.0%
0.0%
0.0%

Table 7
Computational results for bel13a and lseu.
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Table 8

Problem

misc07
misc07
misc07
misc07
misc07
misc07
misc07
misc07
misc07
misc07 “
misc07
misc07
misc07
misc07
modO08
modO08
modO08
modO08
modO08
modO08
modO08
modO08
modO08
modO08
modO08
modO08
modO08
modO08

~

1

2
3
4
6
8
12
16
24
32
48
64
96
128

1
2
3
4
6
8
12
16
24
32
48
64
96
128

Nodes

30,449
63,905
68,017
57,830
92,293
81,182
73,939

122,378
87,108
133,126
95,658
97,652
96,452
114,486
18,079
21,792
21,953
22,678
24,881
25,597
26,290
25,39.5
28,664
24,571
28,182
27,534
29;783
30,289

Time

465.3
511.0
381.3
251.1
270.9
176.3
113.9
142.4
70.4
81.1
42.4
34.4
25.9
23.8
112.9
61.2
40.7
31.5
24.0
18.5
13.0
9.5
7.4
5.0
4.1
3.1
2.5
2.4

Computational results for misc07 and modO08.
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Speedup

1.0
0.9
1.2
1.9
1.7
2.6
4.1
3.3
6.6
5.7
11.0
13.5
18.0
19.6
Lo
1.8
2.8
3.6
4.7
6.1
8.7
11.9
15.3
22.6
27.5
36.4
45.2
47.0

Idle

0.0%
0.5%
0.6%
0.8%
1.0%
0.9%
2.2!%
1.6%
5.4%
3.2%
9.3%
12.8%
19.9%
19.6%
0.0%
0.2%
0.3%
0.5%
0.8%
0.9%
1.5%
2.1%
3.5%
5.6%
7.8%

11.5%
16.1%
23.7%

Scheduler

0.0%
0.3%
0.3%
0.3%
0.4%
0.4%
0.5%
0.4%
0.7%
0.5%
0.9%
1.0%
1.5%
1.3%
0.0%
0.5%
0.5%
0.6%
0.8%
0.5%
0.8%
1.1%
1.4%
2.0%
1.5%
0.6%
0.0%
0.8%

i



.— — —.—..——

Table 9

Problem z Nodes Time Speedup Idle Scheduler

qiu i 30,653 4,718.0 - 1.0 - 0.0% 0.0%
qiu 2 32,646 2,216.4 2.1 1.6% 0.1%
qiu 3 17,940 854.1 5.5 2.1% 0.1%
qiu 4 41,278 1,557.0 3.0 1.5% 0.1%
qiu 6 19>932 466.6 10.1 3.4% 0.2%
qiu 8 30,536 595.5 7.9 2.7% 0.2%
qiu 12 22,409 278.0 17.0 4.8% 0.3%
qiu 16 32,750 332.7 14.2 6.5% 0.4%
qiu 24 32,356 233.7 20.2 9.9% 0.6%
qiu 32 23,157 145.7 32.4 17.7% 1.0%
qiu 48 28,656 123.9 38.1 21.0% 1.2%
qiu 64 32,649 111.7 42.2 24.7% 1.4%
qiu 96 36,938 92.6 51.0 33.7!% 1.9%
qiu 128 52,278 98.6 47.8 35.5% 2.0%
st ein45 1 53,461 333.5 1.0 0.0% 0.0%
st ein45 2 69,504 212.7 1.6 0.8% 0.6%
stein45 3 71,666 146.3 2.3 0.9% 0.6%
st ein45 4 67,462 104.4. 3.2 1.1% 0.6%
st ein45 6 66,236 70.1 4.8 1.6% 0.8%
stein45 8 68,015 53.8 6.2 1.6% 0.7%
stein45 12 69,770 37.3 8.9 2.5% 0.8%
st ein45 16 65,151 27.0 12.4 3.7% 0.7%
stein45 24 65,634 18.9 17.6 5.8% 1.1%
stein45 32 68,001 14.9 22.4 8.7% 1.3%
st ein45 48 62,188 10.1 33.0 14.3% 1.2%
st ein45 64 68,455 8.5 39.2 17.0% 1.2%
stein45 96 69,903 6.5 51.3 25.0% 1.5%
stein45 128 73,220 5.7 58.5 29.7% 1.7%

Computational results for qiu and stein45.
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Figure 8. Computational results for bel13a and lseu.
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6. Resource-constrained project scheduling

This section describes the application of the mixed-integer-programming capability in
PICOtoa resource-constrained project scheduling problem. We derived problem-specific
classes from the general MIP branching and subproblem classes to provide customized in-

. cumbent heuristics and output.
Sandia National Laboratories has developed and implemented the Pantex Process Model

[21] to support the planning and scheduling activities at Pantex, a US Department of Energy
production plant in Amarillo, Texas. The plant simultaneously supports three major DOE
programs – nuclear weapon disposal, stockpile evaluation, and stockpile maintenance – which
share its facilities, technicians, and equipment. We focused on one piece of the PPM, namely
the Evaluation Planning Module (EPM) used to project facility and technician utilization
over a given planning horizon (typically a year). Multiple mathematical formulations of this
problem are introduced in [17,21,22].

The remainder of this section is organized as follows. Section 6.1 defines the EPM resource-
constrained project scheduling problem. Section 6.2 gives the mixed-integer-programming
formulation of the EPM problem. Section 6.3 describes the incumbent heurstics we imple-
mented for this problem. Section 6.4 describes 1/0 and mapping variables from the Pantex
MIP formulation to PICO’S linear variable organization. We used the AT&T Mathematical
Progr amming Language (AMPL) to facilitate the input and mapping. Section 6.5 discusses
modeling issues.

6.1. Problem description
A substantial portion of the Pantex workload relates to tests of weapons in the active

stockpile. Each of these jobs involves partial disassembly of the weapon, one or more tests,
and then re-assembly and return of the weapon to the active stockpile. The jobs are generally
referred to as evaluations, and their planning and scheduhng fits a job-shop paradigm.

Each job consists of a set of-tasks. Some pairs of tasks have precedence constraints, where
one job must complete before the other begins. The task precedence relationship forms a
~orest. That is, each task will have at most one “parent” task it must wait for. Of course,
by transitivity, it must also wait for any task its parent must wait for. In practice the trees
of precedence constraints are highly chainlike.

Tasks are assumed to have a fixed duration for purposes of the EPM planning problem.
This duration can be as short as an hour or as long as several months. The scheduling
of each task must obey a time window. It must start no earlier than its earliest allowable
start time @4SZ”, and must finish by its latest allowable finish time (..MFT). These time-
window boundaries are also called release dates and deadlines respectively in the scheduling
literature. The first task in a job (one with no parent) often has an EAST that is tied to
the arrival of the weapon. The task for the test itself often has a LAFT motivated by the
availability of external resources (e.g., off-site engineers).

The time horizon is broken into time periods. Currently each period is six consecutive
~vor~lng days, more generically called slots. Each day is decomposed into a fixed number of

units (currently the units are hours and each day is eight hours). Task lengths are given in
units. The PPM, and some stochastic global heuristics for the EPM, model the start time
of a job as a continuous variable. Humans generally don’t schedule to a finer granularity
than the quarter hour, and there is sufficient uncertainty in the data to justi& rounding or

I
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shifting to align job starts with the hour (unit).
The evaluation of each task requires a specific facility type (e.g., a Task Bay with 220

electricity) and a qualified crew (e.g., two people holding a single specific certification).
Facilities are hierarchically arranged to reflect how one facility can be replaced by another,
more general, facility (at a price). However, in the current PPM, and hence our data sets,
there is no hierarchy. Each technician has a list of certifications to which (s)he can be
assigned. The availability of each technician and the number of facilities of a given type
varies by time period in general. However, in our current model we assume all technicians
are available at all times and only the facility availability is part of the input. We also assume
that technician certifications don’t expire.

In a true schedule, each job is assigned to a specific facility and given a specific team of
qualified technicians. However, for planning future technician/facility needs, it is currently
sufficient to assign tasks to a pooI of facilities and technicians. Each technician is assigned
to certifications by specifying the amount of time (possibly fractional) that will be devoted
to each certification during each time period. No technician is assigned more time units for
a particular certification during a time period than the sum of the task lengths (within that
period) of tasks requiring that certification. For example, if there is only one task assigned
to the time period and it requires 3 technicians for 2 units each, then no technician can have
more than 2 units assigned to that certification during that time.

A production plan assigns a start time and facility type to each task. Preemption is not
allowed, so a task will occupy that facility for its entire duration beginning at its start time.
A production plan is feasible ifi

1.

2.

3.

4.

5.

AU precedence constraints, release dates, and deadlines are obeyed.

Each task is assigned to an acceptable facility (type matches or exceeds requirement).

The total amount of work scheduled for each facility type during any particular time
period does not exceed the availability of such facilities.

In each time period the requirements for technicians are matched by technician assign-
ments and the total time assigned to each technician is not greater than an entire time
period.

For each time period, no technician is assigned to a particular certification for more
time units than the sum of the task lengths (within that period) of tasks requiring
that certification (in the example above, constraint (4) could be satisfied by a single
technician for 6 hours).

Typically, an EPM planning problem spans a year and involves at least 500 jobs and 1000
tasks. Each job has horn one to six tasks. About 28 facility types are involved along with
300 technicians, each of whom holds 2-3 of the 80 possible certifications.

In practice, these planning problems are often infeasible. Consequently, the EPM module
formulates the EPM planning problem using ghost facilities or facility overage and ghost
certification hours or technician overage that reflect the number of additional resources that
are required by a production plan. Thus the only constraints on a production plan are the
time windows &nd precedence constraints, which are much easier to satis& than resource
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constraints in general. With this formulation, production plans are evaluated by summing
the total number of hours of ghost facilities and ghost technicians over all time periods.
These two factors (technicians, facilities) are weighted equally.

6.2. The Pantex MIP Formulation
This section gives the mixed-integer-programming formulation of the EPM problem imple-

mented in the PICO system. We first discuss discretization issues and then give the explicit
mathematical formulation.

As mentioned in the previous section, the PPM +igns task start times to the hour, or an
even smaller granularity. To limit the size of the MIP, “b&” tasks with length at least a slot
are aligned with slots (days) by starting them at the beginning of a slot. Short tasks (strictly
less than a slot long) can start on unit boundaries. This introduces less unforced idle time
and makes the MIP output more comparable to output from the PPM. This is implicitly
represented in the MIP with the function b(j, j’) defined below. Start times are specified as
slots, but understood to be mid-slot if a predecessor is running at the start of the slot, and
the task can finish before the end of the slot while obeying precedence constraints. That is,
a short task will never be split across two slots.

To be more explicit, there are two types of precedence constraints: packed and normal. In a
normal precedence constraint, the successor cannot, start until the slot after the completion
of the predecessor. In a packed precedence constraint, the (short) successor can “pack”
into the remaining time in the slot where the predecessor finishes (without going into the
next slot). Therefore, long tasks have only normal predecessor constraints with their single
immediate ancestor (if it exists).

If a short job has a packing precedence constraint with its immediate ancestor, we may
need to add one more (normal) constraint with a nonadjacent predecessor. For example, if
there is a chain of many unit-sized jobs, each pair can share a slot, but the entire chain may
not fit into a single slot. Specifically, let the precedence chain for short job j be PI, PZ,..., pd,
where pl is job j’s immediate ancestor, p2 is pi’s ancestor and so on. There is a constraint
between job j and job pd if all the following conditions are met:

1. job j and jobs pl through p&l all fit in a slot,

2. adding job pd to the group in (1) would overflow a slot, and

3. Jobs P1 through pd all fit in a slot.

The first condition implies there are no extra constraints required between job j and
predecessor jobs PI through pci-1. The second condition implies a normal constraint between
job j and p& However, if the third constraint is not met, then there will already be a
(nonadjacent) constraint earlier in the chain (e.g. between pl and pd) and therefore adding
one between j and pd would be redundant.

We now give the mathematical formulation of the MIP for the EPM planning problem.
The formulation uses the following input parameters, constants, and shorthand:
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!ll

(12

Pj
Pj

Tj

dj

T(j)

T(j, r)
K(j)
Cj
Sj
c(w)

fk,~

jl + j2

W, j’)
.

The number of time units in a time slot
The number of time slots in a time period
The processing time (in units) of task j
The minimum number of full time slots needed to process task j ([~j/~1]).
Used to constrain the start time of (long) successor jobs.
Release time slot of task j (possibly derived from the release dates of
predecessors). This is the EAST, earliest available start time.
Deadline (aligned with a slot) for task j (possibly derived from deadlines
of successors). This is the LAFT, last available finish time.
Set of possible start slots for task j.
Shorthand for all time slots from rj to dj – pj.
The amount of processing (in units) on task j performed during
time period T if j is started in time slot t.
Set of start times t for task j such that p(j, t, T) >0.
The set of possible facility types for task j.
The technician certification for task j
Crew size for task j (number of required technicians)
The set of certifications held by worker w
The number of time units available in facilities of type k during
time period T.
Task jl preceeds task j2.
1 if j <j’ and task j’ can be ‘[packed” with j (see detailed documentation). .
Otherwise b(.i,i’) = O.-----

The formulation has the following integer variables:

{

1 if task j starts at time slot t in a facilMy of type k
Xjtk =

O otherwise f
t

The MIP formulation uses rational variables for ghost facilities and ghost technicians: . I
!

Ywcr = fraction of time worker w spends using certification c in time period 7 \I
F’, = number of ghost facilities of type k in time period r“ I

G. = number of ghost technicians with certification c in time period r I
There are two justifications for using rational rather than integer variables. First, within

Pantex, resources are divided among various program managers, each responsible for evalu-
ating a subset of the stockpile. Thus one problem instance could be a the plan for one such
manager, which is a subset of the total plan for Pantex. In this case, the fractional piece of a
ghost facility could correspond to borrowing a facility part-time for another manager. Even
if borrowing part-time is not feasible in some instance, there is sufficient uncertainty in the
values we eventually choose for the objective function that using the ceiling of these rational
variables will probably still be sufficiently optimal. For technicians, the fractional portion of
a person-hour also seems to be in the noise with respect to uncertainty in objective-function
weights.

Finally, here is the MIP formulation:
I
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subject to

Q!12Ywfx 5

. Constraints (2)
any technician in

assure that every
any time period.

1 Vj (2)

Vw, r (3)

Vt E Z’(j), j’< j (4)

1’

E Xjlttk

kCK(j’)

Tj?<ti~t-p~+b~’J)

fk,r + qlqd?k~ VT,k (5)

~qmywcr+m G-r VT,c ~ (6)
w

Z Z d~j ~,~)~jtk Vc,7-,w : c G c(w) (7)
j:Cj=C ~GTti,7)

kcK(j)

(8)

task is done. Constraints (3) prevent overscheduling
Constraints (4) assure a task is hot started until all

predecessors are completed. Constraints (5) ensure there is sufficient facility capacity in each
time period to perfo& all the work that must be done in that time period, and constraints (6)
are the analogous constraints on certification hours within each time period. Constraints (7)
prevent some situations where a technician is taking the place of multiple technicians (see
the detailed problem statement).

6.3. Pantex Incumbent Heuristics
This section describes the incumbent heurstics we implemented for the EPM planning

problem. The heuristic uses the LP-relaxation of the MIP, available at each node of the
branch-and-bound tree. It is an cwpoint schedule. This class of algorithms, first introduced
in [30], gives good theoretical and practical performance for schedules with average weighted
completion time as the objective function. It has also performed well in practice for the best-
effort objective, where one finishes as many jobs as possible by their deadlines[31]. This is
closely related to our objective function. In an a-point schedule, one solves an LP-relaxation
of and integer-programming (1P) formulation for a scheduling problem. Then one sorts the
jobs by the point in time where an a fraction (for O< a ~ 1) of the job is completed. Then
one typically schedules the jobs greedily in that order.

We currently set a = .5. However, when we have many processors, it would be reasonable
for processors to try different values of a. There can be at most n interesting ranges of a,
where all values in a given range yield the same ordering.

We need only specify the greedy procedure for scheduling the
by the a point. First we compute the “resource availability” from
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solution. That is, we consider the ghost facilities to be “real” and we assume the technician
availability dictated by the LP technician assignments (to certifications in each period) plus
the ghost technicians. Since the objective-function value of this solution is a lower bound on
the optimal integer solution, we are free to use all these resources in our heuristic solution
without degrading the objective value. Each job must be placed within its time window and
behind all its predecessors. Given this, we place each job in the earliest place that creates
no overage with respect to the modified resources. If no such place exists, we place the job
either as early as possible, or in the place with minimum overage. We try each of these
strategies.

Note that as a subroutine in a branch-and-bound search, some of the jobs maybe restricted
to an exact start time, or forbidden to start in certain time slots. Those that are iixed are
placed before all others. Forbidden slots are considered in determining the legal placements
for a job when it’s time to place it.

The LP technician assignments may not be optimal with respect to these job start times.
However, we can compute an optimal (rational) technician assignment for these job place-
ments using a network flow algorithm. We compute one network-flow problem for each
period.

The flow problem is formulated as follows. There is a source node s, a node Wi for each
worker i, a node Cj for each certification j and a sink t. The sink is connected to each of the
Wi nodes with capacity equal to the total time the worker is available to work during this
period. In our current model, this is the same for all workers: 48 hours. There is an edge
from each worker node TVito each certification node C“ where worker i has certification j.
The capacity is the total number of units of work for certification j scheduled in this period
(according to our heuristic schedule). Finally; there is an edge from each certification node
to the sink with capacity equal to the total man-hours of work for certification j in this
time period. That is, for each (piece of a) job with certification j run in this time period,
we multiply the length of the job (in this time period) by the crew size. The capacity on
the sink-to-worker edges reflects the bound on technician availability. The capacity of the
worker-to-certification edges reflects the total time a worker can spend on a certification
(constraints 7 above). The capacity of the certification-to-sink edges reflects the total work
requirement for each certification. The technician assignment is encoded in the flow from
worker nodes to certification nodes. The residual capacity on the edge iiom certification j to
the sink (that is the difference between the capacity and the flow) is the technician overage
from this assignment. In particular, if the maximum flow in this network saturates all the
certification-to-sink edges, then all the work is done and there is no overage.

We compute these network-flow problems using Andrew Goldberg’s maximum flow code
that at one point was available from DIMACS (from the first implementation challenge).
W-ecould use the LP solver, but that would require constant exchanges of problems within
the solver and significantly increase runtimes.

6.4. Input/Output and Variable Mapping
This section describes data input/output the mapping of variables from the Pantex MIP

formulation to PICO’S linear variable organization.
The above incumbent heuristic used variables that had two or three indices. For example,

zjkt represented scheduling task j in facility type k and time slot t. However, PICO has a
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Iinearordering of thevariables. Therefore, the Pantex Problem cl~sdefines mapping arrays. .
For example XMap~] [t][k] gives the integer variable number corresponding to Zj(~_,j)~~.That
is, the facility types are stored sparsely, and the legal start times are represented in a compact
array. Similarly the class defines the reverse map arrays xTaskMapj xSlotMap, xFacilit yMap
which give the task, slot, and facility type for a given (linear-ordered) LP variable (and –1 if
the variable is not an x variable). We have similar mapping arrays/matrix for they variables.

We went through a number of steps to get specific instance data into the PICO Pantex class
data structures. The PPM placed data into a series of ascii files. We read these files to fill in
C++ data structures representing the problem. We created an AMPL (AT&T Mathematical
Programming Language) model of the MIP formulation and used a C++ program to create
an AMPL data file corresponding the PPM ascii files. We used AMPL to create an mps file
(standard integer and linear program specification language) and mappings of the AMPL
variables (logically named as in the above mathematical representation) to the rows and
columns of the MPS matrix. These ties together were suiiicient to initialize our branching-
and problem-class data structures.

We now describe how we (numerically) convert data from the PPM representation to legal
input parameters for the MIP. The PPM measures task length in periods, eg. 2.6667 periods.
We convert this to time units and roundup (making tasks slightly longer).

In the PPM release dates (EASTS) are points in time, measured in (floating-point) number
of time periods. The MIP interprets these as units, though they will almost always be aligned
with the start of a slot. Generally, the release date is computed by converting periods to
slots and rounding up (moving back in time). However, if a short task can run entirely in its
release slot, the release date rounded up to the nearest unit (rather than slot). Because task
lengths are rounded up to the nearest unit, there will be cases where a task can fit into its
release slot according to PPM data, but not for the MIP. For example, if a task is released
with 2.3 units remaining in the slot and is 2.3 units long, it can technically be run in its
release slot. However, for the MIP granularity, the task is 3 units long and released with
2 units remaining in the slot. Therefore, its release date will be the start of the following
slot. In the worst fcase, a job could be tightly constrained to a time window and the MIP
rounding make it appear infeasible when it could fit in the PPM world. We could handle
these cases by preprocessing.

Deadlines are a point in time in the PPM, given as a (floating point) number of periods
since time O. The MIP has deadlines aligned with units, rounded down (moved forward in
time). This is used with the (unit-based) length of the job to determine the last possible
starting time.

6.5. Modeling Issues
The plan modeled in the PPM is easier to solve or approximate than a true schedule,

and given the uncertainty in the data (job load, task duration, etc), the extra resolution is
probably not warrented. However, the optimal overage for this schedule is a lower bound
on the optimal overage for a true schedule where jobs are assigned to specific facilities with
specific teams of technicians and all resources constraints are met at the finest resolution (in
this case, by the hour). Therefore, a decision to allocate more resources to Pantex can be
justified based on the calculations of the PPM, but the resources specified in the plan may
not be sufficient. We feel it is important to determine how much this plan underestimates
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the resource requirements for a true schedule and how much the PPM overestimates the
optimal plan. These comparisons will be made in a future paper. Modeling a true schedule
with an hourly task-alignment will increase the size of the MIP by an order of magnitude.

7. Debugging and correctness

In this section we describe the tools we’ve developed and/or used to insure that PICO
is working correctly at all levels. In particular we describe the log analyzer, the quality-
assessment suite, the facility for ‘~watching” the fathoming of specific solutions, utilib tools,
and commercial tools.

PICO has a runtime option to create for each processor a log file conttig information
on subproblem creation, bounding, splitting, fathoming, etc. The log analyzer checks the set
of files for consistency to make sure, for instance, that each subproblem is explicitly resolved.
For example, each problem must be explicitly fathomed or it must be split with each of its
children resolved.

The quality-assessment (qa) suite is a set of scripts to check PICO. The scripts run PICO
in serial and in parallel on one to six processors for each problem in the test suite with each of
a set of test parameter files. The problems are taken for MIPLIB except for a tiny bipartite
matching problem that is included because the root problem as an integeral LP solution.
These test problems are small enough to run through all these tests settings in a reasonable
time. There is a pure binary integer program, one with general integer variables, one truly
mixed problem, one that is integer infeasible, and a couple that tend to have pathological
behavior and therefore tend to expose errors in the handling of special cases. The qa suite
runs each of these tests using the log analyzer option and the checks the objective value,
giving a final summary of errors.

In cases where the optimal objective value is known, but PICO is failing to find an optimal
solution, PICO has a facility for “watching” optimal solutions. This is particularly useful
when, for example, the serial code can return an optimal solution, but the parallel code is
incorrect. If the runtime parameter, sendSolut i.onToFile is TRUE, PICO will save the
solution (as a vector in a format PICO can read) to the file PICO-Solution. If the runtime
parameter checkFathomOnSolution is TRUE, PICO will read the solution(s) in PICO-
Solution and exit with an error and a dump of state if it is about to fathom a subproblem
containing any of these solutions and the incumbent is strictly worse than these solutions
(i.e. they are still candidate solutions). If both of these runtime parameters are set, if PICO
finds an optimal solution, it wilI append it to the PICO-Solution file if it is new. This is
particularly useful when one is debugging a problem with multiple optimal solutions. One .
can run PICO multiple times (using the repeat parameter), saving all the optimal solutions
that are found, and watching all of them for improper fathoming.

The PICO MIP class does a final feasibility check before accepting a new incumbent. It’s
possible that the solution is considered a candidate because it satisfies the integer tolerance on
all integer variables, but the actual solution is slightly off true integers. PICO explicitly sets
all the bounds in the LP solver to the rounded values of the variables and solves the problem
again. If the problem is (slightly) infeasible, the incumbent is rejected. The Pantex class also
does a feasibility check using its problem-specific view of the variables. For example, it checks
that time windows are obeyed, that ghost variables are correct given the job placements and

.
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resource availability and so on.
Finally, we used William Hart’s utilib package of vector and matrix utilities. These provide

automatic bounds checking, allowing easy detection of bugs. We have also run PICO through
the purify and insure++ codes to check for memory leaks.

8. Conclusion and fiture development plans

We have just described a flexible, object-oriented approach to implementing parallel
branch-and-bound algorithms, includlng an application to general mixed integer program-
ming and an application of mixed-integer programming to resource-constrained project
scheduling. Limited, preliminary computational testing on a small set of moderately dif- “
ficult MIP’s reveals some initial inflation of the search tree, most likely due to the absence
of an incumbent heuristic, followed by fairly Iiiear speedups through 32-48 processors.

The innovations of this work include:

●

●

●

●

●

In

A novel object-oriented approach to describing branch-and-bound algorithms, using
transition operators acting on subproblems moving through a state graph.

The abfity to describe both the search order and bounding protocol in a modular way.

The division of the class library into serial and parallel layers.

A continuously adjustable degree of communication between the hub and worker pro-
cessors within a master-slave cluster.

Use of stride scheduling to manage concurrent tasks within each processor executing
the parallel branch-and-bound method.

future, we plan to carefully investigate the performance of PICO on various processor
configurations, refining its work distribution algorithm, so that the PICO core can be con-
figured to operate efficiently on harder problems and larger processor configurations than
described here. We also plan to reiine the MIP application by including a parallel incumbent
heuristic, as well as adding some other modern features including node-level preprocessing
and cutting planes. The flexible underpinnings provided by the PICO core should make these
enhancements relatively easy. Forthcoming papers ,will also describe some more specific ap-
plications of PICO, including a full description of computational results for the Pantex EPM
scheduling problem with comparisons to other heuristics for this problem.
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