An expandable software model for collaborative decision making during the whole building life cycle

PDF Version Also Available for Download.

Description

Decisions throughout the life cycle of a building, from design through construction and commissioning to operation and demolition, require the involvement of multiple interested parties (e.g., architects, engineers, owners, occupants and facility managers). The performance of alternative designs and courses of action must be assessed with respect to multiple performance criteria, such as comfort, aesthetics, energy, cost and environmental impact. Several stand-alone computer tools are currently available that address specific performance issues during various stages of a building's life cycle. Some of these tools support collaboration by providing means for synchronous and asynchronous communications, performance simulations, and monitoring of a ... continued below

Physical Description

vp.

Creation Information

Papamichael, K.; Pal, V.; Bourassa, N.; Loffeld, J. & Capeluto, G. April 1, 2000.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Decisions throughout the life cycle of a building, from design through construction and commissioning to operation and demolition, require the involvement of multiple interested parties (e.g., architects, engineers, owners, occupants and facility managers). The performance of alternative designs and courses of action must be assessed with respect to multiple performance criteria, such as comfort, aesthetics, energy, cost and environmental impact. Several stand-alone computer tools are currently available that address specific performance issues during various stages of a building's life cycle. Some of these tools support collaboration by providing means for synchronous and asynchronous communications, performance simulations, and monitoring of a variety of performance parameters involved in decisions about a building during building operation. However, these tools are not linked in any way, so significant work is required to maintain and distribute information to all parties. In this paper we describe a software model that provides the data management and process control required for collaborative decision making throughout a building's life cycle. The requirements for the model are delineated addressing data and process needs for decision making at different stages of a building's life cycle. The software model meets these requirements and allows addition of any number of processes and support databases over time. What makes the model infinitely expandable is that it is a very generic conceptualization (or abstraction) of processes as relations among data. The software model supports multiple concurrent users, and facilitates discussion and debate leading to decision making. The software allows users to define rules and functions for automating tasks and alerting all participants to issues that need attention. It supports management of simulated as well as real data and continuously generates information useful for improving performance prediction and understanding of the effects of proposed technologies and strategies.

Physical Description

vp.

Notes

OSTI as DE00789989

Source

  • ACADIA 2000 Conference. Eternity, Infinity and Virtuality in Architecture, Washington, DC (US), 10/19/2000--10/22/2000

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--45548
  • Report No.: DR-437
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 789989
  • Archival Resource Key: ark:/67531/metadc717585

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 1, 2000

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • April 4, 2016, 12:54 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Papamichael, K.; Pal, V.; Bourassa, N.; Loffeld, J. & Capeluto, G. An expandable software model for collaborative decision making during the whole building life cycle, article, April 1, 2000; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc717585/: accessed August 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.