Calculations of Operational and Residual Doses for the SNS Linac

PDF Version Also Available for Download.

Description

Dose profiles throughout the front-end building and the accelerator tunnel were calculated for the SNS linac system both for normal operation and after shut down of the facility based on normal operations beam losses. The calculated dose levels at an cylindrical envelope with 60 cm radius range from 0.08 to 10 rem/hr for the drift tube linac part, from 50-80 rem/hr for the coupled cavity linac part, from 1 to 20 rem/hr for the superconducting linac part, and from 70-200 rem/hr for the spare section extending after the linac. In the front-end building that houses the first 10 meters of ... continued below

Physical Description

vp.

Creation Information

Gallmeier, FX August 13, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Dose profiles throughout the front-end building and the accelerator tunnel were calculated for the SNS linac system both for normal operation and after shut down of the facility based on normal operations beam losses. The calculated dose levels at an cylindrical envelope with 60 cm radius range from 0.08 to 10 rem/hr for the drift tube linac part, from 50-80 rem/hr for the coupled cavity linac part, from 1 to 20 rem/hr for the superconducting linac part, and from 70-200 rem/hr for the spare section extending after the linac. In the front-end building that houses the first 10 meters of the drift tube linac, dose levels of up to 500 mrem/hr were calculated that need to be reduced by adequate shielding, for example an ordinary concrete shield of up to 120 cm thickness. The shield thickness can be reduced by 25% using borated concrete or a layer of 20 cm borated polyethylene followed by ordinary concrete. The calculated residual dose levels in the accelerator tunnel are a factor of 2000-30 00 lower compared to the operational doses assuming a 30-year operations period and a 1hour decay period.

Physical Description

vp.

Source

  • AccApp'01 and ADTTA'01 Nuclear Applications in the New Millennium, Reno, NV (US), 11/11/2001--11/15/2001

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: P01-111514
  • Grant Number: AC05-00OR22725
  • Office of Scientific & Technical Information Report Number: 788587
  • Archival Resource Key: ark:/67531/metadc717542

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 13, 2001

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • March 11, 2016, 2:23 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Gallmeier, FX. Calculations of Operational and Residual Doses for the SNS Linac, article, August 13, 2001; Tennessee. (digital.library.unt.edu/ark:/67531/metadc717542/: accessed September 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.