Upgrade for the NSTX Control Computer

PDF Version Also Available for Download.

Description

The National Spherical Torus Experiment (NSTX) is a proof of scientific principle experiment as a magnetic fusion containment device. A primary goal of NSTX operations is control of the plasma current, position and shape in real time for a wide range of plasma pressure and current density profiles. In order to employ the best calculation of the plasma current, position and shape, it is planned to implement the equilibrium analysis code, EFIT, in real-time, RTEFIT. EFIT inverts the Grad-Shafranov equation and performs a least squares fit to the magnetics data. RTEFIT is also capable of providing the plasma current profile ... continued below

Physical Description

3 p.

Creation Information

Mueller, D.; Gates, D.A. & Ferron, J.R. June 1, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The National Spherical Torus Experiment (NSTX) is a proof of scientific principle experiment as a magnetic fusion containment device. A primary goal of NSTX operations is control of the plasma current, position and shape in real time for a wide range of plasma pressure and current density profiles. In order to employ the best calculation of the plasma current, position and shape, it is planned to implement the equilibrium analysis code, EFIT, in real-time, RTEFIT. EFIT inverts the Grad-Shafranov equation and performs a least squares fit to the magnetics data. RTEFIT is also capable of providing the plasma current profile and the plasma pressure profile from analysis of diagnostic data. The calculation time for RTEFTI using the present NSTX control computer system is comparable to the expected energy confinement time on NSTX and is thus slower than desired. A computer upgrade based upon 604e processors will permit the RTEFIT calculation loop to complete in about 3 ms. The presence of the passive plates further complicates the control algorithm to be used in conjunction with RTEFIT. The planned approach is to measure the eddy currents in the passive plates and to use the transient response of the coils to minimize the total shell current effect.

Physical Description

3 p.

Notes

INIS; OSTI as DE00007699

Medium: P; Size: 3 pages

Source

  • Institute of Electronical and Electronics Engineers, Sante Fe, NM (US), 06/14/1999--06/18/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: Cfpaper-4036
  • Grant Number: AC02-76CH03073
  • Office of Scientific & Technical Information Report Number: 7699
  • Archival Resource Key: ark:/67531/metadc717481

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 1999

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • April 10, 2017, 7:38 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Mueller, D.; Gates, D.A. & Ferron, J.R. Upgrade for the NSTX Control Computer, article, June 1, 1999; Princeton, New Jersey. (digital.library.unt.edu/ark:/67531/metadc717481/: accessed October 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.