Effusive-Flow of Pure Elemental Species in Tubular Transport Systems: Radioactive Ion Beam Applications

PDF Version Also Available for Download.

Description

Maximum practically achievable intensities are required for research with accelerated radioactive ion beams (RIBs). Time delays due to diffusion of radioactive species from solid or liquid target materials and their effusive-flow transport to the ion source can severely limit intensities of short-lived radioactive beams, and therefore, such delays must be minimized. An analytical formula has been developed that can be used to calculate characteristic effusive-flow times through tubular transport systems, independent of species, tube material, and operational temperature for ideal cases. Thus, the equation permits choice of materials of construction on a relative basis that minimize transport times of atoms ... continued below

Physical Description

3 pages

Creation Information

Bilheux, J.C. April 16, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Maximum practically achievable intensities are required for research with accelerated radioactive ion beams (RIBs). Time delays due to diffusion of radioactive species from solid or liquid target materials and their effusive-flow transport to the ion source can severely limit intensities of short-lived radioactive beams, and therefore, such delays must be minimized. An analytical formula has been developed that can be used to calculate characteristic effusive-flow times through tubular transport systems, independent of species, tube material, and operational temperature for ideal cases. Thus, the equation permits choice of materials of construction on a relative basis that minimize transport times of atoms or molecules moving through the system, independent of transport system geometry and size. In this report, we describe the formula and compare results derived by its use with those determined by use of Monte-Carlo techniques.

Physical Description

3 pages

Source

  • 5th International Conference on Physics with Radioactive Ion Beams (ISOL'01), Conference location not supplied, Dates not supplied

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: P01-110495
  • Grant Number: AC05-96OR22464
  • Office of Scientific & Technical Information Report Number: 779792
  • Archival Resource Key: ark:/67531/metadc717475

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 16, 2001

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • March 30, 2016, 12:33 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Bilheux, J.C. Effusive-Flow of Pure Elemental Species in Tubular Transport Systems: Radioactive Ion Beam Applications, article, April 16, 2001; Tennessee. (digital.library.unt.edu/ark:/67531/metadc717475/: accessed November 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.