Computational Biology and High Performance Computing 2000

PDF Version Also Available for Download.

Description

The pace of extraordinary advances in molecular biology has accelerated in the past decade due in large part to discoveries coming from genome projects on human and model organisms. The advances in the genome project so far, happening well ahead of schedule and under budget, have exceeded any dreams by its protagonists, let alone formal expectations. Biologists expect the next phase of the genome project to be even more startling in terms of dramatic breakthroughs in our understanding of human biology, the biology of health and of disease. Only today can biologists begin to envision the necessary experimental, computational and ... continued below

Creation Information

Simon, Horst D.; Zorn, Manfred D.; Spengler, Sylvia J.; Shoichet, Brian K.; Stewart, Craig; Dubchak, Inna L. et al. October 19, 2000.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The pace of extraordinary advances in molecular biology has accelerated in the past decade due in large part to discoveries coming from genome projects on human and model organisms. The advances in the genome project so far, happening well ahead of schedule and under budget, have exceeded any dreams by its protagonists, let alone formal expectations. Biologists expect the next phase of the genome project to be even more startling in terms of dramatic breakthroughs in our understanding of human biology, the biology of health and of disease. Only today can biologists begin to envision the necessary experimental, computational and theoretical steps necessary to exploit genome sequence information for its medical impact, its contribution to biotechnology and economic competitiveness, and its ultimate contribution to environmental quality. High performance computing has become one of the critical enabling technologies, which will help to translate this vision of future advances in biology into reality. Biologists are increasingly becoming aware of the potential of high performance computing. The goal of this tutorial is to introduce the exciting new developments in computational biology and genomics to the high performance computing community.

Source

  • Supercomputing 2000, Dallas, Texas, 11/06-10/2000

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--47001
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 772146
  • Archival Resource Key: ark:/67531/metadc717408

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 19, 2000

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • April 4, 2016, 12:31 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 8

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Simon, Horst D.; Zorn, Manfred D.; Spengler, Sylvia J.; Shoichet, Brian K.; Stewart, Craig; Dubchak, Inna L. et al. Computational Biology and High Performance Computing 2000, article, October 19, 2000; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc717408/: accessed January 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.