Electronic Damping of Microphonics in Superconducting Cavities

PDF Version Also Available for Download.

Description

In previous applications of high-velocity superconducting cavities the accelerated beam currents were sufficiently high that the microphonics-induced frequency excursions were significantly less than the loaded bandwidth, and the power absorbed by the beam dominated the total power requirement. In new applications (CEBAF Upgrade, RIA) the beam currents will be sufficiently low that the RF power requirements will be dominated by the control of the cavity fields in the presence of microphonics. Active electronic damping of microphonics by modulation of the cavity field amplitude has been occasionally used in the past in small, low-velocity, low-gradient superconducting structures; its application to much ... continued below

Physical Description

184 Kilobytes pages

Creation Information

Delayen, J.R. June 1, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In previous applications of high-velocity superconducting cavities the accelerated beam currents were sufficiently high that the microphonics-induced frequency excursions were significantly less than the loaded bandwidth, and the power absorbed by the beam dominated the total power requirement. In new applications (CEBAF Upgrade, RIA) the beam currents will be sufficiently low that the RF power requirements will be dominated by the control of the cavity fields in the presence of microphonics. Active electronic damping of microphonics by modulation of the cavity field amplitude has been occasionally used in the past in small, low-velocity, low-gradient superconducting structures; its application to much larger, high-velocity, high-gradient structures could result in a substantial reduction of the RF power requirements. This paper presents an analytical study of various schemes for electronic damping and presents formulae that quantify the reduction of microphonics as a function of RF field amplitude modulation.

Physical Description

184 Kilobytes pages

Source

  • PAC 2001, Chicago, IL (US), 06/18/2001--06/22/2001

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: JLAB-ACT-01-11
  • Report No.: DOE/ER/40150-1885
  • Grant Number: AC05-84ER40150
  • Office of Scientific & Technical Information Report Number: 783670
  • Archival Resource Key: ark:/67531/metadc717322

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 2001

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • Feb. 5, 2016, 8:03 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Delayen, J.R. Electronic Damping of Microphonics in Superconducting Cavities, article, June 1, 2001; Newport News, Virginia. (digital.library.unt.edu/ark:/67531/metadc717322/: accessed September 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.