Photocharge Transport and Recombination Measurements in Amorphous Silicon Films and Solar Cells by Photoconductive Frequency Mixing: Annual Subcontract Report, 20 April 1999 - 19 April 2000

PDF Version Also Available for Download.

Description

This report describes research focused on improving the individual component cells from which the multijunction devices are fabricated. The Mid-Bandgap and Metastability subteam and the Low-Bandgap subteam have the responsibility to develop appropriate materials for the respective layer of the triple-junction solar cell. To this end, it is necessary to characterize the materials that are prepared for the appropriate layer to optimize the devices and to develop an understanding of the conditions responsible for light-induced degradation so as to develop means to mitigate the degradation. Using the photomixing technique, UCLA was able to determine the mobility and lifetime separately of ... continued below

Physical Description

vp.

Creation Information

Braunstein, R.; Kathwinkel, A. & Sheng, S. R. (University of California/Los Angeles) August 29, 2001.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This report describes research focused on improving the individual component cells from which the multijunction devices are fabricated. The Mid-Bandgap and Metastability subteam and the Low-Bandgap subteam have the responsibility to develop appropriate materials for the respective layer of the triple-junction solar cell. To this end, it is necessary to characterize the materials that are prepared for the appropriate layer to optimize the devices and to develop an understanding of the conditions responsible for light-induced degradation so as to develop means to mitigate the degradation. Using the photomixing technique, UCLA was able to determine the mobility and lifetime separately of a number of semiconductor materials. We have established that different kinetics of degradation occur for mobility and lifetime. We have found that the drift mobility is electric-field dependent, and we developed a model for the charge transport through long-range potential fluctuations that enable a determination of the range and the depth of these fluctuations for material in the annealed and light-soaked states. UCLA has continued to provide transport parameters for the Mid-Gap, Metastability, and Low-Band teams. The materials studied were prepared by various deposition techniques. In phase II of this program, we investigated in detail the charge-transport properties by photomixing of a-Si:H, {mu}c-Si:H and a-SiGe:H alloy films prepared by hot-wire chemical vapor deposition (HWCVD) and plasma-enhanced chemical vapor deposition (PECVD) techniques, particularly under the conditions of high deposition rate and the transition from amorphous to microcrystalline state. Photomixing experiments were initiated to compare intrinsic film properties and device performance, and to study the impact of the changed contact geometry on the results of our photomixing measurements. We also attempted to employ the photomixing technique to measure the drift mobility of the transparent conducting oxide. Following our previous measurements of the transport parameters under hydrostatic pressure, we initiated the hydrostatic pressure dependence of small-angle X-ray scattering measurements to find the origin of the inelastic effect. Time-resolved photo- and thermoelectric effects (TTE) were used to simultaneously determine the thermal diffusivity, carrier lifetime, carrier mobility, and trap-level density in crystalline and amorphous Si (a-Si:H) and Si/Ge (a-Si/Ge:H) samples.

Physical Description

vp.

Source

  • Other Information: PBD: 29 Aug 2001

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NREL/SR-520-30811
  • Grant Number: AC36-99GO10337
  • DOI: 10.2172/788773 | External Link
  • Office of Scientific & Technical Information Report Number: 788773
  • Archival Resource Key: ark:/67531/metadc717126

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 29, 2001

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • March 31, 2016, 3:21 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 6

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Braunstein, R.; Kathwinkel, A. & Sheng, S. R. (University of California/Los Angeles). Photocharge Transport and Recombination Measurements in Amorphous Silicon Films and Solar Cells by Photoconductive Frequency Mixing: Annual Subcontract Report, 20 April 1999 - 19 April 2000, report, August 29, 2001; Golden, Colorado. (digital.library.unt.edu/ark:/67531/metadc717126/: accessed October 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.