
,,

.

,

Taming the Vipefi
Software Upgrade for VFAUser and Viper

Randall Takeshi Dorin
University of Arizona, Tucson, Arizona

Technical Advisor: John Moser Ill
Manager: Michael E. Partridge
Telemetry and Instrumentation: Dept. 2665
August 8,2000

Abstract
Due to memory card malfmction, the Viper has previously been unable to record

meaningfi.d data. In order to improve the Viper’s reliability, it has become

imperative to create a fimction to test for faulty memory cards. The Memory Test

fimction will indicate faulty cards by number after the test has been completed

successfi..dly. This fiction w-Malso be integrated with existing code in Delphi, C,

and Assembly languages, manifesting itself as a button on VFAIJser.

DISCLAIMER

This repofi was prepared as an account of work sponsored
byanagencybf the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

of this document may be illegible
in electronic image
produced from the
document.

products. Images are
best available original

Contents

Improvement Summa~ ...2

Memo~Problems tith VFAUser ..3

Background information on VIperand VFAUser ...3

Methods and Materials ..4

Matching fipeda~ons ..4
Learning New Languages ...5
Writing New Code ...5

Upgrade Goals ..4

Operational Ovemiew of the Memo~Test ..6

Conclusions ...7

Improvement Summary

This report describes the procedure and properties of the soiisvare upgrade for the
Vibration Perilormance Recorder. The upgrade will check the 20 memory cards
for proper read./write operation.

. The upgrade was successfi.dly installed and uploaded into the Viper and

the field laptop.

. The memory checking routine must run overnight to complete the test,

although the laptop need only be connected to the Viper unit until the

downloading routine is finished.

● The routine has limited ability to recognize incomplete or corrupt

header and footer files.

. The routine requires 400 Megabytes of free hard disk space.

● There is one minor technical flaw detailed in the conclusion.

t

Taming the Viper:

Software Upgrade for VFAUser and Viper

IVlemory Problems with VFAUser
Currently, a ku-geproblem with the Viper system is that on occasion, one or

more of the Flash memory cards fail. The Viper currently saves 16 bits of

information sequentially across 20 Flash memory cards. If one or more of the

cards fails to record the information correctly then the test will result in useless

data. Unfortunately, neither VFAUser nor the Viper has any way to check the

operational ability of the cards.

Background Information on Viper and VFAUser
The Viper system is a vibration sensor attached to the back of bombs to

determine the amount and direction of force felt during aerial maneuvers. There

are two separate parts to the Viper system: the Viper unit that is attached to the

bomb, and a Microsoft Windows interface named VFAUser used to communicate

with the Viper unit. VFAUser communicates with the Viper unit through a field

laptop’s parallel and serial ports. Using these ports limits the speed of

communication, but that cannot be easily changed.

The Viper Unit itself has two separate parts contained in a metal shell. One

part, known as the Memory module, holds twenty 20Mb Memory cards and acts

primarily as a place to store data. The other part, known as the Control Unit,

consists of a Motorola microprocessor and RAM. It’ as it’s name implies controls

and regulates the Viper Unit.

The Viper Unit was originally programmed in Assembly, and then later

translated and improved into C for clarity by John Moser III. VFAUser was

written by Daniel Gallegos in Delphi 5, an Object Pascal environment. It is

.

necessary two write in all three languages to add any new function to the Viper

system.

Upgrade Goals
The goal of this Viper Upgrade is to create a function that will test the

Flash memory cards’ ability to correctly record and download data from the

sensors. It should have the following properties:

● Be able to identifi the bad card by name so that they may be replaced

● Check the entire memory of all 20 cards.

● Appear as a button on VFAUser under the “Memory Module” tab.

● Finish Operation in a timely manner.

Methods and Materials

Matching expectations
The first step in the process of engineering the software upgrade was to

verify that both the programmer and the consumer had matching expectations as to

what the final specifications of the software upgrade would be. In order to ensure

and document the agreement, the programmer created two documents: a Statement

of Work and a Requirements Document.

The scope of the two documents is slightly different. The Statement of

Work encompasses a broader-spectrum than the Requirements Document in that it

includes a general description of the requirements as well as a budget and

milestone summary. The Statement of Work therefore establishes the scope of the

project in both time to create the upgrade and expectations of the final product.

This is usefhl in that it creates a scale by which to measure progress.

The Requirements Document focuses on what the upgrade will do, and how

the upgrade will be activated. In short, the Statement of Work establishes the

scope, and the Requirements Document fills in the detail creating the substantive

description of the desired abilities of the upgrade.

Combined, the two documents outline what is to be delivered, and how

long it will take to deliver it. Once created, these documents are sent to the

consumer to ensure that they are compliant with consumer expectations.

During the creation of the upgrade, the programmer was in close contact

with his supervisor, meeting at least once a week to discuss progress and

problems. During these meetings, expectations for the software continually

evolved due to previously unseen problems as well as new insights.

Learning New Languages
The requirements for progr arnming the new code include an understanding

of three different programming languages: C, Object Pascal and Assembly for the

Motorola Micro-controller. Unfortunately, the programmer only knew C, and

Pascal. In order to program the upgrade it was necessary for the programmer to

learn Assembly and Object Pascal (as it pertains to Borland’s Delphi 5) well

enough to accomplish the upgrade goals.

This upgrade involved adding fimctionality instead of creating a better

version of the software, therefore there were two ways to learn the language:

through reading, software tutorials, and instruction; and through reading existing

code. As it turned out, the two most usefid were instruction from John Moser and

reading the existing code.

Writing New Code

Before the programmer can begin to create the new code, it is necessary to

read and understand all the relevant pre-existing code. John Moser, creator of the

old C and Assembly code for the Viper Unit, proved vital in pointing out the

important aspects of the code. He often provided tips on how to alter the structure

of the old code so that it would not interfere with the new code.

Although the code could be compiled on the machine that it was written, it

could not be run. This is because in order to work properly, any new Delphi Code

needs to be transfemed onto a laptop that runs MS Windows95. Any new C and

Assembly code needs to be uploaded into the Viper’s memory. Therefore, most of

the newly created code could not be tested unless the programmer went into the

secure area. However, the programmer did not have the necessary security

clearance hence any testing required the presence of his supervisor.

Due to the fact that the checking routine would be run solely on the laptop,

the programmer decided that it would be best to write this part as a stand-alone

program, therefore

the secure area.

it could be run without going through the trouble of testing in

Operational Overview of the Memory Test
When the memory checking routine is activated horn VFAUser on the field

laptop, the memory checking routine will send a message through the parallel port

that will tell the Control Unit in the Viper to execute the associated command.

The Control Unit will begin by erasing aiiy data currently on the memory cards.

Once it has finished it will send a message back through the parallel port that

informs the user that it ftished erasing the memory. The Control Unit will then

immediately begin writing a known sequence of hexadecimal characters into

memory. Once the Control Unit has finished, it will send a message back through

the parallel port, and wait for further commands.

While VFAUser is waiting for the Control Unit to send a message

indicating that it is finished erasing, it displays ‘erasing memory’ and a timer.

Once it has received confirmation of a successfid erasure, it displays ‘writing to

memory’ and a timer, until it receives confirmation that the write has been

successful. Once it has received confirmation of a successfid write, it serialsa

command telling the Control Unit to begin downloading all the data through the

parallel port into a predefmed file on the laptop.

.

Once the Control Unit has ftished downloading all the data into the laptop,

it stops and waits for fhrther commands. In contrast, VFAUser immediately

launches into a checking routine that compares the known sequence of

hexadecimal data to the downloaded data. If any irregularities are found, the

checking routine calculates and displays what card the error came horn, what byte

it was, and what value was found. The checking routine then continues to ftish

checking the remaining data. If no errors are found, VFAUser erases the 400-Mb

file. However, if errors are found, VFAUser saves the 400-Mb file and the file

containing the error information displayed earlier.

Conclusions
The objective of the added ftmction was achieved with one minor flaw: the

checking function will report 32 corrupt bits if the first 16 bits of a header or

footer is corrupt. This is minor, because the flaw accurately reports the error, but

inaccurately reports the size of the error. Because any error must be manually

checked to find the cause, it should be quickly noticed that there is only 16 corrupt

bits.

%rclia is a mukiprog-am latxxato~
operated by Sandia Corporation, a
Lockheed Martin Company, for the
United States Department of Energy
under contract DE-.AC(M-94AL8~.

