NON-DESTRUCTIVE TECHNIQUES FOR THE EVALUATION OF OVERLAY AND THERMAL BARRIER COATINGS ON GAS TURBINE COMPONENTS

PDF Version Also Available for Download.

Description

There is currently no satisfactory method for the non-destructive examination (NDE) of coatings on gas turbine parts and determination of coating thickness, for example, has to be carried out by sectioning of the component and subsequent metallographic analysis. This method, which is both time-consuming and expensive, has nevertheless been used extensively for aero-engine parts to monitor coating quality and to gather statistical information for process control. For large components from utility size gas turbines costs are high and compared with aero-engines, only a limited number of parts can be examined so that the destructive method becomes less attractive both as ... continued below

Physical Description

vp.

Creation Information

Cybulsky, Michael March 10, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 14 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

There is currently no satisfactory method for the non-destructive examination (NDE) of coatings on gas turbine parts and determination of coating thickness, for example, has to be carried out by sectioning of the component and subsequent metallographic analysis. This method, which is both time-consuming and expensive, has nevertheless been used extensively for aero-engine parts to monitor coating quality and to gather statistical information for process control. For large components from utility size gas turbines costs are high and compared with aero-engines, only a limited number of parts can be examined so that the destructive method becomes less attractive both as an inspection technique and for obtaining process control data to measure part to part variations in coating thickness, for example. During engine service protective coatings slowly degrade and this degradation process effectively controls the life of the part, particularly in situations where a thermal barrier coating (TBC) is used to protect against excessive metal temperatures. In this case growth of the oxide at the interface between the bond coat and the TBC leads to a build-up of stress in the TBC which can be relieved by a spalling of the ceramic layer and loss of the protection from the thermal barrier. In situations where the integrity of the TBC system is critical to the survival of the part, some non-destructive method of determining the degradation condition of the bond coat would clearly be advantageous. In this report the results are described of recent progress in a program to develop non-destructive methods to measure coating quality and to monitor the condition of coatings in service. The work which has formed part of the Advanced Turbine Systems (ATS) Project funded by DOE, has involved the use of eddy-current (ET) and ultrasonic (US) methods developed by SouthWest Research Institute (SwRI) who have been responsible for development of the technique.

Physical Description

vp.

Notes

OSTI as DE00778009

Source

  • Other Information: PBD: 10 Mar 1998

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: AC21-95MC30245--27
  • Grant Number: AC21-95MC30245
  • DOI: 10.2172/778009 | External Link
  • Office of Scientific & Technical Information Report Number: 778009
  • Archival Resource Key: ark:/67531/metadc716969

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 10, 1998

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • April 15, 2016, 1:09 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 14

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Cybulsky, Michael. NON-DESTRUCTIVE TECHNIQUES FOR THE EVALUATION OF OVERLAY AND THERMAL BARRIER COATINGS ON GAS TURBINE COMPONENTS, report, March 10, 1998; Morgantown, West Virginia. (digital.library.unt.edu/ark:/67531/metadc716969/: accessed July 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.