Variational Principle for Optimal Accelerated Neutralized Flow

by

A. Fruchtman and N.J. Fisch

October 2000
PPPL Reports Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Availability

DOE and DOE Contractors can obtain copies of this report from:

U.S. Department of Energy
Office of Scientific and Technical Information
DOE Technical Information Services (DTIS)
P.O. Box 62
Oak Ridge, TN 37831
Telephone: (865) 576-8401
Fax: (865) 576-5728
Email: reports@adonis.osti.gov

This report is available to the general public from:

National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

Telephone: 1-800-553-6847 or
(703) 605-6000
Fax: (703) 321-8547
Internet: http://www.ntis.gov/ordering.htm
Variational Principle for Optimal Accelerated Neutralized Flow

A. Fruchtman

Holon Academic Institute of Technology, 52 Golomb St., P. O. Box 305,
Holon 58102, ISRAEL

N. J. Fisch

Princeton Plasma Physics Laboratory, Princeton University,
P. O. Box 451,
Princeton, NJ 08543, USA

(October 4, 2000)

Minimizing the energy deposited in the electron current in neutralized
flows, such as in the Hall thruster, is examined. Modifying the electron current
along the channel by inserting emitting electrodes, can enhance the efficiency.
By employing variational methods, an optimal electron current distribution
is found. The efficiency enhancement due to this effect, however, is shown to
be small.

PACS numbers: 52.75.Di
I. INTRODUCTION

Electric propulsion for space vehicles utilizes electric and magnetic fields to accelerate a propellant to a much higher velocity than chemical propulsion does, and, as a result, the required propellant mass is reduced. Among electric propulsion devices Hall thrusters offer much higher thrust density than conventional ion thrusters. Hall thrusters now perform with efficiencies of 50% in the important range of jet velocities of 15,000-25,000 m/sec. Since the original ideas were introduced [1]—[7], Hall thrusters have enjoyed both experimental and theoretical progress. References to the Hall thruster research can be found in a parallel publication [8].

The Hall thruster employs a quasi-neutral plasma, and therefore is not subject to a space-charge limit on the current. The accelerated ion flow is neutralized by electrons that flow in a direction opposite to the direction of the ion acceleration. The neutralization results in an inefficiency, since part of the power is deposited in the electron current. This wasted power is reduced in the Hall thruster by reducing the electron current, that is achieved by imposing a radial magnetic field along the axial drift of the electrons. The magnetic field impedes the electron mobility. However, it is advantageous to look for different means of minimizing the power wasted in the electron flow. In this paper we theoretically explore such different means. We relax the condition that it is the cathode only, located at the exit of the acceleration channel, that emits electrons. Rather, we search for an optimal distribution of emitting electrodes along the channel so that the wasted power is minimal. The theoretical result could be tested experimentally as a basis for an improved Hall thruster configuration. However, as we show here, the efficiency enhancement due to such emitting electrodes in the acceleration region is very small. The idea of adding electrodes fits into our ongoing research of a configuration of the Hall Thruster, in which segmented side electrodes can either supply or absorb neutralizing electrons [9]. In our parallel publication [8] we have examined theoretically the case that an additional electrode absorbs electrons in the ionization zone, and have shown that it can significantly enhance the efficiency.
In Sec. II we present the model. In Sec. III we employ a variational method to find the optimal electron flow profile.

II. THE MODEL

Let us assume that the ions in a plasma are accelerated by an imposed potential drop, while electrons acquire a velocity in the opposite direction by the electric field, a velocity that is proportional to their mobility. For simplicity, we assume here a full ionization, and therefore neglect the processes of ionization and channel wall losses. If the plasma is quasi-neutral, the ion and the electron densities are equal:

\[\Gamma_i \left(\frac{m_i}{2Ze(\phi_A - \phi)} \right)^{1/2} = \frac{\Gamma_e}{\mu(x)(d\phi/dx)} \tag{1} \]

Here \(\Gamma_i \) and \(\Gamma_e \) are the ion and electron particle fluxes, \(Ze \) and \(m_i \) are the ion charge and mass, \(\mu \) is the electron mobility, \(\phi \) is the potential and \(\phi_A \) is the applied voltage. All quantities are assumed to depend on \(x \) only, the coordinate along the acceleration channel. The efficiency, the ratio of power absorbed by the accelerated ions to the total dissipated power by both ions and electrons, is:

\[\eta = \frac{Z\Gamma_i\phi_A}{Z\Gamma_i\phi_A + \int_0^t dx\Gamma_e(d\phi/dx)} \tag{2} \]

Equations (1) and (2) are, in dimensionless form:

\[\Gamma_{\varepsilon N} = \frac{1}{(1 - \psi)^{1/2}} \frac{d\psi}{d\zeta} \tag{3} \]

and

\[\eta = \frac{1}{1 + \int_0^\zeta d\zeta \Gamma_{\varepsilon N}(d\psi/d\zeta)} \tag{4} \]

Here

\[\zeta \equiv \left(\frac{2Ze}{m_i\phi_A} \right)^{1/2} \int_0^x \frac{dx'}{\mu(x')} \tag{5} \]
and $\zeta_T \equiv [2Ze/(m_i\phi_A)]^{1/2} \int_0^L dx/\mu(x)$. Also $\psi \equiv \phi/\phi_A$, where ϕ_A is the applied voltage, and $\Gamma_{eN} \equiv \Gamma_e/Z\Gamma$.

In the regular diode, when there are neither sources nor sinks, the ion and electron fluxes are constant along the channel. In this case we solve Eq. (3) with the boundary conditions $\Psi(0) = 1$ and $\Psi(1) = 0$ and obtain that

$$\Gamma_{eN,0} = -\frac{2}{\zeta_T},$$

(6)

and that

$$\eta_0 = \frac{1}{1 - \Gamma_{eN,0}} = \frac{1}{1 + 2/\zeta_T}.$$

(7)

Also

$$\psi_0 = 1 - \left(\frac{\zeta}{\zeta_T}\right)^2.$$

(8)

III. OPTIMAL ELECTRON FLOW PROFILE

We examine how modifying the profile of the electric potential can increase the acceleration efficiency. For such a modification to occur in a neutralized flow, the electron flow profile should be modified from being constant along the channel. Therefore, electrodes that act as electron sources or sinks should be added. In the Hall thruster the radial magnetic field lines intersect the radial channel walls, so that locating electrodes along the walls and injecting or absorbing electrons along magnetic field lines is possible.

Let us entertain the possibility of having an arbitrary electric potential profile that is monotonically decreasing from the anode towards the cathode, for which the value of the normalized voltage between the anode and the cathode is held unity. The electron flux density Γ_{eN} is now not constant, but rather its value is determined locally by Eq. (3). We search the optimal potential distribution, in which η is maximal. Thus, we look for the minimal value of the integral in the denominator of Eq. (4). We write this integral as
\[I = \int_{\zeta_0}^{\zeta_T} d\zeta F(\psi, \psi'), \quad (9) \]

where
\[F(\psi, \psi') = \frac{(\psi')^2}{(1 - \psi)^{1/2}}, \quad (10) \]

and \(\psi' \equiv d\psi/d\zeta \). We require that Euler’s equation
\[\frac{d}{d\zeta} \left(\frac{\partial F}{\partial \psi'} \right) - \frac{\partial F}{\partial \psi} = 0, \quad (11) \]

be satisfied. The optimal electric potential profile, the solution of Eq. (11) that satisfies the boundary conditions, is
\[\psi_{opt} = 1 - \left(\frac{\zeta}{\zeta_T} \right)^{4/3}, \quad (12) \]

while the optimal electron flow profile is
\[\Gamma_{e,N,opt} = -\frac{4}{3} \frac{1}{\zeta_T} \left(\frac{\zeta_T}{\zeta} \right)^{1/3}. \quad (13) \]

The efficiency of that optimal flow is found to be
\[\eta_{opt} = \frac{1}{1 + 16/(9\zeta_T)}. \quad (14) \]

Figure 1 shows the profiles of \(\psi_0 \) and of \(\psi_{opt} \) and Fig. 2 shows \(\Gamma_{e,N,opt}/\Gamma_{e,N,0} \), both as functions of \(\zeta/\zeta_T \). Figure 3 shows the ratio \(\eta_{opt}/\eta_0 \) as a function of \(\zeta_T \). As seen in Fig. 3, the efficiency enhancement is modest. The largest enhancement occurs for small \(\zeta_T \), and it is 9/8.

We note that in practice one can add a limited number of electrodes along the channel only. If, for example, we add one electrode only, we can specify the normalized location \(\zeta_1 \) of that electrode and the normalized potential \(\psi_1 \) at which it is held. We denote the constant electron flow in the region \(\zeta_1 > \zeta > 0 \) by \(\Gamma_1 \) and the constant electron flow in the region \(\zeta_T > \zeta > \zeta_1 \) by \(\Gamma_2 \). Employing Eq. (3), we derive the relations \(\Gamma_1 \zeta_1 = -2(1 - \psi_1)^{1/2} \) and \(\Gamma_2(\zeta_T - \zeta_1) = -2 + 2(1 - \psi_1)^{1/2} \). With these expressions for the electron flows \(\Gamma_{1,2} \) the efficiency in this case \(\eta_1 \) becomes
\[
\eta_1 = \frac{1}{1 - \Gamma_1 (1 - \psi_1) - \Gamma_2 \psi_1}. \tag{15}
\]

The maximal efficiency with respect to \(\psi_1\) and \(\zeta_1\) is found by solving \(\partial \eta_1 / \partial \psi_1 = 0\) and \(\partial \eta_1 / \partial \zeta_1 = 0\) for \(\psi_1\) and for \(\zeta_1\). We find then that the values that yield the maximal efficiency are \(\psi_1 = 1 - (\sqrt{2} - 1)^2/9\) and \(\zeta_1/\zeta_T = (\sqrt{2} - 1)^2/(2\sqrt{2} + 1)\). The efficiency in this case becomes

\[
\eta_1 = \frac{1}{1 + 2(1 + 6\sqrt{2} + 16)/(27\zeta_T)}. \tag{16}
\]

The maximal efficiency enhancement, when one electrode only is added, occurs also for small values of \(\zeta_T\), and is \(1.0594\) only.

IV. CONCLUSIONS

Adding electron sources along the acceleration channel enables one to reduce the power that is wasted in heating the electrons and thus to increase the efficiency of the accelerator. We have shown here, though, that the efficiency increase due to this effect is small. Adding electrodes along the channel has other potential advantages, that are addressed elsewhere [8,9], such as increasing the ionization and energy utilizations, and improving the plume collimation.

V. ACKNOWLEDGEMENTS

This research has been partially supported by the United States Air Force Office of Scientific Research, and by a Grant No. 9800145 from the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel.

Figure Captions

Fig. 1 The profiles of ψ_0 and of ψ_{opt} as functions of ζ/ζ_T.

Fig. 2 The ratio $\Gamma_{\epsilon N,0}/\Gamma_{\epsilon N,\text{opt}}$ as a function of ζ/ζ_T.

Fig. 3 The ratio η_{opt}/η_0 as a function of ζ_T.
The graph shows the relationship between η_{opt}/η_0 and ζ_T.