Computational Design Studies for an Ion Extraction System for a ''volume-type'' ECR Ion Source

PDF Version Also Available for Download.

Description

Numerical studies have been performed for optimally extracting high-intensity, space-charged-limited multi-charged ion beams from an all-permanent-magnet, ''volume-type'' ECR ion source, equipped with a three-electrode extraction system. These studies clearly demonstrate the importance of being able to adjust the extraction gap in order to ensure high quality, minimum divergence (highly transportable) ion beams. Optimum extraction conditions are reached whenever the plasma meniscus has an optimum curvature for a given current density. Optimum perveance (optimum current) values are found to closely agree with those derived from elementary analytical theory for extraction of space-charge-dominated beams. Details of the electrode system design as well ... continued below

Physical Description

vp.

Creation Information

Zaim, H. November 5, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Numerical studies have been performed for optimally extracting high-intensity, space-charged-limited multi-charged ion beams from an all-permanent-magnet, ''volume-type'' ECR ion source, equipped with a three-electrode extraction system. These studies clearly demonstrate the importance of being able to adjust the extraction gap in order to ensure high quality, minimum divergence (highly transportable) ion beams. Optimum extraction conditions are reached whenever the plasma meniscus has an optimum curvature for a given current density. Optimum perveance (optimum current) values are found to closely agree with those derived from elementary analytical theory for extraction of space-charge-dominated beams. Details of the electrode system design as well as angular divergence and RMS emittance versus extraction parameter data (e.g., perveance and extraction gap) are provided for ion beams of varying charge-state and mass, extracted under the influence of a mirror-geometry plasma confinement magnetic field.

Physical Description

vp.

Source

  • 9th International Conference on Ion Sources (ICIS'01), Oakland, CA (US), 09/03/2001--09/07/2001

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: P01-112348
  • Grant Number: AC05-00OR22725
  • Office of Scientific & Technical Information Report Number: 788567
  • Archival Resource Key: ark:/67531/metadc716636

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 5, 2001

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • March 24, 2016, 6:17 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Zaim, H. Computational Design Studies for an Ion Extraction System for a ''volume-type'' ECR Ion Source, article, November 5, 2001; Tennessee. (digital.library.unt.edu/ark:/67531/metadc716636/: accessed April 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.