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Abstract

This report presents research on public key, digital signature algorithms for cryptographic
authentication in low-powered, low-computation environments. We assessed algorithms for
suitability based on their signature size, and computation and storage requirements. We
evaluated a variety of general purpose and special purpose computing platforms to address issues
such as memory, voltage requirements, and special functionality for low-powered applications.
In addition, we examined custom design platforms. We found that a custom design offers the
most flexibility and can be optimized for specific algorithms. Furthermore, the entire platform
can exist on a single Application Specific Integrated Circuit (ASIC) or can be integrated with
commercially available components to produce the desired computing platform.
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Several digital signature algorithms are candidates for low-power usage, but some may have
restrictions. We recommend an elliptic curve implementation of an El Gamal signature as a
general solution. We used special elliptic curve and finite field operations to optimize the
algorithm, and designed an implementation for an ASIC. The design is available to interested
readers and is ready for easy integration into specific applications.
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1. Introduction

Cryptography is used to provide privacy, integrity, authenticatio~ and non-repudiation of data.
--Thereare two basic categories of cryptography today conventional or symmetric key
cryptography, and public or asymmetric key cryptography. Both conventional and public key
“cryptography provide privacy and integrity of data through encryptio~ however, only public key
cryptography provides the fimctions of authentication and non-repudiation. This is done through
the use of digital signatures.

Public key, digital signature algorithms are typically computationally intensive and generate
large signatures. Our focus is on low-power environnients where available computing resources
.imdpower are limited. Such environments maybe too prohibitive to support digital signatures.
Yet, such environments often must support devices transmitting critical data that must be
authenticated. For example, multilateral treaties may require remote monitoring devices for
treaty verification. The device may be located in hostile territory it may use only a small
processoq and it may be required to run off a single battery that is Ietl unattended for years. The
data reported by the device will have international ramifications and must be authenticated.
.Digital signatures would be ideal in such situations, yet the demands of a public key algorithm
,my not cotiorm to the environment.

The purpose of this Laboratory Directed Research and Development Project (LDRD) was to
fin~ modifi, or invent a computationally inexpensive public key signature scheme for efficient
use in such low-power environments. We researched and tested implementations of several
different types of algorithms and also investigated commercial, special purpose, and custom
hardware for efficiency.

As a general solutio~ we recommend an elliptic curve-based digital signature scheme optimized
for low-power use on custom hardware. We developed and tested such a design targeted to a
c~tom integrated circuit (ASIC, FPGA, PLA) for use in low-power public key cryptography
applications. Even more efficient algorithms may be available for use in special situations, and
we point those out as well.

In symmetric key cryptography, every user of the system shares a common key that is used both
for encryption and decryption. The algorithms are fmt and efficient, and use commands easy for
computers to carry out, such as shz~tand exclusive-or operations. The encryption fimctions are
effkctivel y “one way” (i.e., there is no mathematical way to invert the operation); however, if
one has access to the key, the encryption process can .bereversed to decrypt.

Since the encryptioddecryption key must be kept secret and shared by users in several locations,
key management problems can arise. In public key cryptography, each participant holds a
private-public key pair and only the user’s private key must be kept secret. Although the public
key is mathematically related to the private key, knowledge of the public key reveals nothing
about the secret private key and so the public key can be operdy available to ail. The pubIic key
is used to encrypt data that only the holder of the private key can decrypt. Because of the
asymmetry of the keys and the fact that a private key belongs to a unique user, the private key
can also be used to generate a digital signature unique to the user and each message.
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Although key asymmetry in public key cryptography enables cryptographic fimctionality not
possible with symmetric cryptographic systems, these extra capabilities are not “free.” In order
to enable different keys for encryption and decryption, algorithms with special mathematical
properties must be used. Exploitation of these mathematical properties leads to attacks on the
system. To protect against such attacks, the keys that must be used are much larger than those
used with symmetric key cryptosystems. The mathematical operations, together with the large
keys, means the work involved in a public key system is usually many times greater than with
conventioml cryptography.

Our goal was to find, modi~, or create a public key signature scheme that could be adapted to
perform in a low computation, low-power environment. There were several issues to consider in
each scheme, including signature size and computation and storage requirements.

Signature Size: Many of the signature schemes require that large signatures be sent with
the message, regardless of message size. Since bandwidth can consume the most power
in the system, minimizing the size of the signature is important.

Computation: Most public key systems require modular exponentiation, a very costly
operation. One of the first steps was to look at systems in which modular exponentiation
was minimized or could be avoided in the signing fimction of the scheme (i.e., systems
for which pre-computation is possible).

Storage: Although storage may be a lesser issue than power consumption, unlimited
storage should not be assumed.

RANUROM: Although RAM/ROM size maybe a lesser issue than power consumption,
unlimited RAM/ROM should not be assumed.

Each algorithm in a public key system has a “hard” mathematical problem as the basis of its
security. Used in this sense, “hard” means the operation is computationally not feasible to invert
without special knowledge (e.g., the private key). We looked at algorithms based on a variety of
problems including number theoretic, probabilistic, coding theoretic, polynomial-based, and
hash-based. While several algorithms have great potential, others perliorm well only in certain
situations. The study of the algorithms, together with some optimizations and a comparison of
their features, can be found in Section 2.

The secondary goal of this LDRD was to evaluate various computing platiorms for suitability to
low-power public key cryptography. While section 2 presents an analysis of candidate public key
algorithms, sections 3 and 5 present information on various computing platforms on which these
algorithms must run and section 4 discusses currently available memory options. We discuss
basic power consumption issues and processing features that lend themselves to low-power
public key cryptography applications as well as evaluate specific general-purpose commercially ..
available processors as candidate computing platfoxms. Section 5 also offers information on
special purpose (e.g., smart card) and custom (e.g., ASIC) computing platforms and their
potential in low-power public key cryptography applications. For hardware applications, memo~
can be a vital issue. Indeed, we found that the performance of some algorithms improved ~.
dramatically if pre-computed stored values could be accessed during implementation.
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Section 6 discusses low-power design techniques for a custom-computing platform. A custom-
design platform offers the most flexibility in giving the customer exactly what is needed. Custom
designs can address issues such as speed power, security, and fimctionality. The entire
computing platform can exist on a single Application Specific Integrated Circuit (ASIC), or can
be integrated with commercially available components to produce the desired computing
platform. Reconfigurable logic (Field Programmable Gate Array%FPGAs, Programmable Logic
Arrays-PLAs) can be just as easily targeted as ASICS depending on the needs of the design.

Finally, having determined that an elliptic curve implementation of the El Gamal digital
signature scheme has the most potential as a general-purpose solution, in Section 7, we present a
design that fi.uther optimizes the code and takes advantage of the custom-computing platform.
The design is targeted to a custom integrated circuit (ASIC, FPGA, PLA) for use in low-power
public key cryptography applications.

‘2. Algorithms

Public key algorithms base their security on the improbability that an adversary will solve a
particular problem. The problems may be difficult in the sense that they are thought to be NP-
complete, or it may simply be the case that no efficient algorithms are known. Number theoretic
“problems provide the most common basis for public key schemes of today. Indeed, most
cryptosystems base their security on the difficulty of solving the discrete logarithm problem, the
integer factorization problem, or a related analog of these problems. These schemes involve
expensive computations such as modular multiplications and can have long signatures. Hence,
these algorithms may not be suitable for many low-power environments. Nevertheless,
optimization may be made to improve the performance of these algorithms.

In addition to studying common public key schemes, we broadened our search to include some
lesser-studied and lesser-used algorithms in the hope they would be usefil in a low-power
environment. In particular, we studied schemes based on coding theoretic problems, probabilistic
“schemes, hash-based schemes and polynomial schemes. We found that coding theoretic schemes
generally havevery large keys, making them unsuitable for low-power environments. We
present them here for informational purposes only.

Probabilistic schemes have been defined primarily as identification schemes. Most are based on
NP-complete problems, and any public key identification scheme can be converted into a
signature scheme. Although we had difficulty translating them into signature schemes efficient
enough for the low-power world, those ideas are presented as a possible basis for fhture research.

‘Hash-based schemes are very efficient computationally but can be limiting in other ways. For
example, many schemes require pre-determination of the number of signatures that will be
signed. Others are based on chaining, and verification becomes impossible if messages’are ever
lost, leaving them open to denial of service attacks.

Finally, polynomial-based schemes hold promise for computing shorter signatures, but the public
key sizes are very large and verification can be difficult.
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In each category (number theoretic, coding theoretic, probabilistic, hash-based and polynomial)
we examined a number of algorithms and analyzed their petiormance based on our criteria of
signaturesize, storage and computation requirements. We present a comparative summary of the
best candidate algorithms in a table near the end of this section. Some of the algorithms are good
for signatures and some are most efficient at verification. Often, the very low-power
environments are concerned only with signing hence, the emphasis is on signing.

If two-way authentication is desired, different algorithms maybe used for signing and
verification. The best general solution we found for signatures was the elliptic curve-based
version of the El Gamal scheme. In addition to being quite efficient as is, we found some very
helpfi,d optimizations in the elliptic curve operations as well as the underlying field operations.
The implementation of the algorithm in custom hardware design is described in Section 7.

All of the problems presented here are “hard” in the sense that there are no known algorithms for
solving them efficiently. The recommended. key sizes are chosen to protect against attacks that
the best computers with the most efficient algorithms could reasonably mount. As algorithms to
solve these problems become more efficient, key sizes should be increased. The user is advised
to consult the literature for current recommended key sizes.

I 2.1 Number Theoretic Schemes

There are two main problems that the security of number theoretic schemes is based upon: the
discrete Iogarithm problem and the integer factorization problem. Given a group G and two
group elements @ ~=~, the discrete logarithm problem is to find the integer t. The group G
should be chosen so that this problem is difficult. The most common groups chosen for use
include (Z/pz)* = {1,2,..2-1), the non-zero group of integers modulo a large (non-smooth)
prime, p, and the group of points on an elliptic curve modulo p. Given a large integer n, the
integer factorization problem is to find the divisors of n. Typically, cryptographic systems based
on this problem use a large integer n which is the product of two large primes p and q: n = pq.
Most of the algorithms presented here are based on one of these problems or a variant of one of
these problems.

The following algorithms require modular multiple-precision operations. Although modular
arithmetic usually requires a fair amount of computing power, these algorithms minimize these
requirements by avoidigg exponentiation or by minimizing the cost of exponentiation, and by
using pre-computation and added storage. Features associated with each algorithm make it a
viable choice despite the requirement for modular multiple-precision arithmetic operations.

2.1.1 ESIGN

The ESIGN (Efficient digital SIGNature) Algorithm is described in [MvV97]. It is based on the
Integer Factorization problem. This algorithm may be a candidate in a low-power environment
where two-way authentication is required.

To generate a key pah
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1.

2.

. -.
3.

Select random primes p and q such that p zq andp, q are roughly the same bit-length

Compute n = p2q

Select a positive integerk24

An entity’s public key is (n, k). The corresponding private key is (p, q).

To generate a signature:

1. Compute v = H(m),H: {0,1~ + Z/nZ

“” 2. Select a secret random integer X,Osx <p

3. Compute w=\((v–x~)modn) l(pq) Iand y = W.(k#-*)-l modp

4. Compute the signature s =(X+ypg)modn

‘To verify a signature:

1. Compute u= Skmodn and z= k?(m)

H#lgn

2. Accept the signature zfl zs us z + 2

The recommended modulus leng@ n, is 768bits. Therefore the signature length is also 768 bits
or 96 bytes. Since k can be chosen to be small, the exponentiation required to generate w can be
optimized for a small known exponent and a known modulus. The same is true of the
exponentiation required for verification making this algorithm a possibility in a low-power
environment where two-way authenticated communication is required.

2.1.1.1 Evaluation of ESIGN

Table 2.1 Parameter Sizes for ESIGN
r

Parameter Description Size (in bits)
P Secret prime =256

Q Secret prime = 256
N Composite modulus of two primes p and >768

q, n= pzq

K Public integer >4 NA
] x ~Secret random integer, OSXSP-1 \ =256 I

v Hash digest of the message 160
w I((V-xk)modn)/(pq) I =512
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Parameter ! Description Size (in bits)
Y w.(kck-])-’ modp =256

s Signature, (x+ ypq)modn >768

Signature operations required: Random number generation modp, a has~ a small
exponentiation mod n, a small exponentiation mod
p, a division bypq, and an inverse modp

Verification operations required: A small exponentiation mod n, a hash, and a
comparison

Storage required to sign (in bits): =256 bits forp, ~512 bits forpq, and 768 bits
for n

Amount of data transmitted: 96 bytes

2.1.2 Feige-Fiat-Shamir

The Feige-Fiat-Sharnir Algorithm is described in [MvV97]. It is based on the intractability of
computing square roots modulo n. Computing square root modulo n is equivalent to the integer
factorization problem: if you know the factorization of n, then taking the square root of a number
modulo n is easy conversely if you know the square root of a numbers modulo n, you can find
the factors of n easily. One of the advantages of the Feige-Fiat-Shamir scheme is that, unlike the
RSA scheme, all entities in the system can share n. This maybe convenient in a situation where
there are many users. Of course, in this case, n must be generated by a TTP (Trusted Third Party)
since p and q (the factors of n) must not be revealed to any entity.

To generate a key pair:

1. Generate n (which ean be shared), a composite of two large secret primesp and q

2. Generate k distinct random integers S1,S2,...sl= (Z/ nZ)*

3. For each ~j,l< ~~ k, compute Vj= Sj2modrz
.

An entity’s public key is

To generate a signature:

(V,,V2,...,
. .

Vk) and n. The entity’s prwate key 1s (S1,S2,...s~).

1.

2.

3.

4.

Generate a random integer, r e (Z / nZ)*

Compute u = r2modn

Compute a k-bit hash, e= H(nzllu)

Compute s = r. ~~=ls~ modrz

16



5. Thesignature is (e,s)

To verifi a signature:

.
1.

2.

3.

Compute w= S2.~~=lv~ modn

Compute e’=H(n@)

Accept the signature Ijfe = e‘

The length of the modulus should be at least 768 bits, and the recommended value for k is 160.
The length of e should be 160 bits. Therefore, signature generation requires, on average, 1602 or
80 modular multiple-precision multiplications. The signature length under these

‘-recommendations is 160+ 768 bits or 116 bytes. The ~ignature l&@h is probably too long for
this application.

-,

.2.1.2.1 Evaluation of Feige-Fiat-Shamir

Table 2.2 Parameter Sizes for Feige-Fiat-Shamir

Parameter j”
.

Description Size (in bits)

N
Composite modulus of two primesp and
q, n=pq

>768

K [ Cardinality of sets Sand V >160

s Set of private keys Si,l<i Sk,O<Si<n ~ 7(33

v
Set of public keys >768
vi,l<i~k,()<vi <n,Vi=S~2rnOdn

R Random number os r <n >768

u I r2modn > 7&j

E H(m]]u) 160

el it~bit ofe, ()<i<k-1 NA

s Ill
k ej

r. >768j=lSj modn

‘Signature operations required:

,.

Verification operations required:

Random number generatio~ modular squaring, a
bask maximum of 160 modular multiplications (on
average 80 modular multiplications)

One modular squaring, a hash, maximum of 160
modular multiplications (on average 80 modular
multiplications)

-.
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Storage required to sign (in bits): 768 bits for n and 768 bits for each of the 160 Si

Amount of data transmitted: 116 bytes

2.1.3 Optimal El Gamal Scheme

The Optimal El Garnal-type Algorithm is described in [HX94] and ~94]. It is based on the
intractability of the discrete log problem. The prime p is chosen to be about 768 bits and q is

defined to be a prime dividing (p – 1) of about 160 bits. The number g is an element of

(Z/pZ)* of order q. The following equations speci@ the digital signature r and S:

r = (gk modp)modq

s = (nH(m) -k) modq

Here, x constitutes the private key and k is a per message secret. H(m) is the message digest. The
k, r, and w values can be pre-computed and used for each signature generation. Only a single
modular multiple-precision subtract and multiply are required to compute the second part of the
signature,s. The signature length is 40 bytes. Each of the pre-computed values is 20 bytes in
length. The implementation would have to store three 20-byte pre-computed values for each
message it is to sign. When those values have been used, the application could either no longer
sign messages or could use some other mechanism to sign messages.

Example: (3*20 bytes) *(1 message/day) * (365 days/year)* (5 years) = 109,500 bytes of
pre-computed data

Another disadvantage is that the pre-computed values must remain secret since they are all
comprised of x (the private key) and/or k (the per message random value). Since the low-power
device will not be computing these values, they must be protected wherever they are generated
and during transmission to the low-power device. In addition, signature verification is not
optimized

Y
‘H(m) = rfgs ~odp

r’= ((y rii(~)g-s ~modp)modq

rH(m)gq –s )modp)modqr’=((y

Does r = r’ ? If yes, accept; if no, reject

Therefore, two-way authenticated communications using this method alone are not suitable for
the low-power environment. However, it maybe possible to authenticate using one mechanism
in one direction and veri~ using another mechanism in the opposite direction.

This pre-computational technique can be used for any of the El Gamal signature schemes
including DSA. In addition, one of the values required for the modular multiplication can be
stored in Montgomery form to allow concurrent multiplication and modular reduction rather than

18
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a multiplication followed by reduction. The Montgomery form of a value requires no additional
memory for storage.

‘2.1 .3.1 Evaluation of Optimal El Gamal Scheme

... Table 2.3 Parameter Sizes for Optimal El Gamal

f. Parameter I Description Size (in bits)
P ~Prime modulus ~ 768

Q ~Prime divisor ofp – 1. ~ 160

G ~Any value such that the order of g is q > 7(jg
x \ Secret key 160

“ Y “gxmodp >768

H(m) I Hash digest of the message 160
K ~Random per message secret 160

.“ R I (gkmodp)modq 160

s ~ (z@(nz)-k)modq 160 4

Signature operations required:

Verification operations
required:

Storage required to sign (in
pits):

Amount of data transmitted:

Hash of message, 160-bit modular multiplication
and subtraction

Hash of message, 160-bit modular multiplication,
two modular exponentiations in the size ofp

768 sp, g, 160 bits for q, and (3*160) bits for each
message to be signed

40 bytes

The Balanced El Gamal Scheme, a variation of the optimal El Garnal scheme, requires less
storage and only two more modular multiplications to sign. See Appendix A, Section 9.1.1 for

--more details.
.

..Note: Some of tie algorithms described above take advantage of pre-processing to improve
efficiency, at the cost of some storage. Care must be taken that the pre-processing does not affect
the security of the system. The Schnorr scheme, described in [S89], is a DSA variant that takes
advantage of a pre-processing mechanism. However, the pre-processing mechanism presented by

“-Schnorrhas been successfidly attacke~ as described in [dR93]. The algorithm is described in
Appendix A, Section 9.1.2.
..

-...

-2.1.4 Elliptic Curve El Gamal

“Elliptic curves consist of pairs (x,y) (points), which are solutions to a certain cubic equation
together with a distinguished point, 0, called the origin (point at infinity). For use in
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cryptography, we consider only those points whose coordinates lie in some finite Galois field.

Typically, the field is either GF(p) for some primep, or GF(2Z). For a general introduction to
elliptic curves, see [Si186]. For our purposes, we consider the case where the field of definition

for the points on the curve is G17(2w).The arithmetic is faster and, in that case, the curve E can

be given by an equation of the following form: E: y2 + xy = X3+ ax2 +b, with a,b c GF(2”).

There is an addition law that can be defined on the points of the curve. Suppose Ml= (XI,YI)

and A42= (X2,y2) are two points on the curve E. Then, the addition of the points, Ml+ M’2= M,

is defined geometrically (see Fig. 2.1): Draw a line through the points &fland &fz. Since it is a
cubic, the line will intersect the elliptic curve at exactly one other point, P. The point
MS = Ml + M2 is the point on the curve defined by the reflection of P about the x-axis. For an

algebraic description of the addition law, see [P1363]. The set of points on the curve defined

over the finite field GF(2” ) form a group with identity element 0. Multiplication’ is defined on

E as repeated addition: @ = P+ P + ...P (n times). The discrete logarithm problem is defined on
the elliptic curve group as follows: Given an elliptic curve E and points G,V = nG ~ 1?, find n.
Note that multiplication in the elliptic curve group is analogous to exponentiation in a finite field.

Figure 2.1 Addition on an Elliptic Curve

Any discrete logarithm-based cryptosystem can be carried out using the group of points on an
elliptic curve instead of the usual finite field group. However, traditional attacks on discrete log-
based systems over finite fields do not carry over when the base group is an elliptic curve. For
this reason, smaller key sizes can be used and the algorithms are often more efficient. We
describe the El Gamal Signature scheme using elliptic curves.

To generate a key pair and system parameters for a curve over the field GF(2n) when m is
around 160 bits:

1. Choose an elliptic curve E y2 + xy = X3+ ax2 + b with coefficients a,b c GF(2”). We

note that a can always be determ@ed by a single bit. Furthermore, the coefficient
b (implied by the coordinates of the points) is never used in any algorithms, so the
storage required for the coefficients of the elliptic curve is really just one bit
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.

2,

3.

4.

5.

Choose r, a prime divisor of the order N of the elliptic curve, and let kbe such that
rk = N.

Choose G= (g1g2), a point on the elliptic curve of order r

Choose the long-term private key s

Compute the public key W = SG

To generate a signature on a message M:

1.

2..-,.

3.

4.

5.

Generate a key pair (u, V= uG), where u is a random integer mod r. Let V= (XV,yY)
(V# O because Visa public key)

Convert xv into an integer i

Compute an integer c =imodr. Ifc = O,thengoto Step 1

Let~= Hash(M). Compute an integer d = (cfi + u) mod r. If d= O,then go to Step 1

Output the pair (c, d) as the signature

To veri~ a signature:

1.

2.

3.

4.

5.

6.

If c is not in [1, r– 1] ordis not in [1, r– 1], output “invalid” and stop

Compute integer k = c~ mod r

Compute an elliptic curve point P = IzlV– dG. IfP = O, output “invalid” and stop.
Otherwise, P= (XP,yp)

Convert the field element XP to an integer i

Compute an integer c‘ = i mod r

Ifc’ = c, then accept

2.1.4.1 Evaluation of Elliptic Curve El Gamal over G~2m)

Table 2.4 Parameter Sizes for Elliptic Curve El Gamal over GF’(2m)

Parameter I Description Size (in bits)
M ~.Size of binary finite field z 160
A,b Coefficients for the elliptic curve =1

y2 + xy = X3+ ax2 + b (storage for value
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Parameter 1 Description Size (in bits)
R [ Prime divisor of the order of the elliptic =160

curve
G ~Point of the elliptic curve of order q =320
s ~Secret random integer, private key =160
F= H(m) I Hash digest of the message 160
w ~Public point W= SGpublic key =320
u \/Random value mod r =160
c x-coordinate of V = UGmod r =160
D ~d = (c~s+u) mod r %160

Signature operations required: Hash, an elliptic curve scalar multiply, two modular
multiple-precision multiplies and an addition
modulo r

Verification operations Hash, one multiplication mod r, an inverse, two
required: elliptic curve scalar multiplications, and one point

addition

Storage required to sign (in 320 bits for r ands, 160 bits for u, d = (c~s+u) mod
bits): r, 1 bit for a,and 320 bits for G

Amount of data transmitted: 40 bytes

2.1.5 Knapsack Schemes

Knapsack schemes are based on the subset sum problem. The subset sum problem is defined in
[MvV97]:

Given: a set {a1,a2,...,a~] of positive integers called a knapsack set, and a positive integers

Determine: whether or not there is a subset of the a~ that sum tos (i.e., determine whether there

exists Xi~ {0,1},1s ~ s ~, such tbt Z~=laixi = ~).

This problem is known to be Nl?-complete and the computatioml version is known to be NP-
hard.

To use the subset sum problem as the basis of a public key scheme, an instance of the subset SW’
problem which is easy to solve is selected and transformed into an instance of the subset sum
problem which is difficult to solve. The first instance can serve as the private key and the second
instance can serve as the public key.

The Chor-Rivest scheme is the only known knapsack public key scheme that has not been
broken. Unfortunately, using recommended parameter sizes, the public key is roughly 40,000
bits in length, making this algorithm not feasible for the low-power environment. We give a
description in Appendix A, Section 9.1.3 for informational purposes.

22 ‘



2.2 Incremental Schemes

Incremental cryptography is described in [BGG94]. The idea behind incremental cryptography
‘“is that once having signed a particular message m, the work necessary to sign a message m‘, -

,
.which is a modification to rn, should be proportional to the difference between the two messages.
:Thus, a small change should require far less effort than signing a completely different message.
[BGG94] use the standard mechanism of hashing and then transforming to compute a digital
signature. They propose that what is needed is an incremental collision-free hash algorithm that
would be applied only to the blocks of the message which had changed. The transformation

‘$.mction would, in fact, remain the same as with standard digital signature mechanisms.

‘There are two problems associated with this proposed mechanism. The most serious problem is a
result of the fact that the only Jmown incremental collision-free hash algorithm is based on n
“exponentiations moduIo a k-bit prime where k is the size of each message block. Therefore, at
least one modular exponentiation must be petiorrned in addition to any exponentiation(s) already
pefiormed as part of the transformation. Except for large messages, standard hash algorithms are
generally much more computationally efficient than even a single modular exponentiation. In
addition, incremental schemes still require exponentiation(s) for transformation of the hash
result. The scheme described by [BGG94] is more computationally intensive than standard
public key signature schemes.

2.3 Coding Theoretic Schemes

There are several public key schemes that are based on coding theory. In general, the keys for
these schemes can be quite large, which makes them not fmible for the low-resource computing
environment.

The McEliece Public Key Encryption Algorithm is described in [MvV97]. It is based on the
difficulty of decoding an arbitrary linear code which is known to be NP-hard. It has received
little practical attention due to the size requirements of public keys. Since the size of the private
key is 264 kilobytes, we do not consider it a candidate for low-power computing, but we do
present a description in Appendix A, Section 9.1.4 for informational purposes.

2.4 Probabilistic Identification Schemes

Probabilistic schemes have been defined primarily as identification schemes. Identification
schemes give interactive zero-knowledge proofs of identity via a challenge-response protocol.
Any public key identification scheme can be converted to a public key signature scheme via the
use of a cryptographically secure hash fimction to simulate the random challenges. There are
several problems (typically NP-hard) that can provide a basis for identification schemes. Some
examples are the permuted kernel problem, syndrome decoding for error-correcting codes, the
constrained linear equation problem and the perceptions problem.

When the algorithm is translated from an identification scheme to a signature scheme, the
challenges that must be simulated cause a large communication overhead. If these are to be used
in a low-power environment, modifications must be made to reduce the overhead. We attempted

*
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such modifications but ran into some stumbling blocks. We describe below some of the
identification schemes and then give our insights on how they maybe efficiently translated into
siguature schemes based on our attempts.

2.4.1 Permuted Kernel Problem Scheme

Thispublic key identification scheme is defined in the abstract [S89a], with fhrther analysis done
in [BCCG92] and [PC93]. It is based on an NP-complete algebraic problem known as the
permuted kernel problem. The problem is defined as [MvV97]:

Given: an mx n matrix A over Z/pZ, p prime and relatively small (e.g., 25 1), and an n-vector V

Find: a permutation z on {1, .... n} such that VZ=~er(~)

Where: ~er(~) is defined as tie kernel ofA consisting of all n-vectors IVsuch that A?V= [0 ... 0]
mod p

Public Information: A, p, V

Private Identification Key z

Use in a Three-Pass Zero Knowledge Identification Scheme (Shamir):

1.

2.

3.

The prover (A) chooses a random n-vector R and a random permutation, and sends the
cryptographically hashed values of the pairs (c,fl) and (mr,~o) to the verifier (B)

B chooses a random value OSC<p, and asks that A send W=Rm+c(vz)m

After receiving W,B asks A to reveal either o or m. Jn the first case, B checks that
(cT,~W) hashes to the first given value, an~ in the second case, B checks that

(zc,w-c(vZ)C) hashes to the second given value

Note:

AmW=A@(R. +c(Vz)C)=A(R +cVfl)=M

W-c(Vz)a =Rm

The probability that a cheater can evade detection is 1/2, so the protocol is repeated k times to :.
reduce the probability of successful cheating to some acceptable limit, i.e., 1/2k. If a prover can
pass the test, his identity is accepted. We attempted to modiq this identification scheme into a .
signature scheme suitable to the low-power environment. A log of our progress can be found in
Appendix B, Section 10. ..
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2.4.2 Syndrome Decoding Based Identification Scheme

I
This public key identification scheme is defined in [S93]. This scheme is based on the syndrome
decoding problem for error-correcting codes. The security of this scheme is based on the,
hardness of decoding a word of given syndrome with respect to some binary linear error-
correcting code.

r 2.4.3 Constrained Linear Equation Scheme

This public key identification scheme is described in [S94]. This scheme is based on a
combinatorial problem known as the Constrained Linear Equation (CLE) problem. It consists of
solving a set of linear equations modulo some small prime q, where the unknowns belong to a
specific subset of the integers modulo q. A CLE problem can be defined as

.-
. Given: A small prime number q,.a system S of r homogeneous linear equations with k “

unknowns whose coefficients are integers mod q, and a subset k of the integers mod q

. Find A solution S consisting of k elements of the given set X

It is easily seen that the problem is NP-complete. It is further assumed that the CLE is intractable
in the sense that no probabilistic polynomial time algorithm can take as its input the values q, S,
X, and output, with non-negligible probability, a solution of S consisting of k elements of the
given set X.

I 2.4.4 Perception Scheme

l..
Several difficult, indeed, NP-complete, problems exist in the field of machine learning. An
identification scheme based on an NP-complete problem faced in machine learning, called the
perceptions problem, is presented in [P95]. The perception problem can be defined as:

I . An &-vector or matrix is a vector or matrix whose components are either-1 or +1

I ● Given an s-matrix A of size (m x n)

I . Find an s-vector Yof size n such that AY2 O
.

1“ The pemmted perception problem can be defined as:

I . Given: an”.s-matrix A of size (m x n) and a mukiset (a set where repeated elements are
allowed) S of non-negative integers of size m

I . Find: an s-vector Yof size n such that {K~Y)jlj = Q.--,m}~}=s

I
All of these problems give rise to zero-knowledge identification schemes. They can also be
translated into signature schemes, but the overhead involved is huge. In the following subsection,
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we give suggestions on how to improve efficiency when converting from a zero-knowledge to
signature scheme.

2.4.5 General Strategies For Efficiently Implementing Probabilistic Schemes

The following strategies may be usefil in converting zero-knowledge schemes to signature
schemes useftd for the low-powered environment.

●

●

●

The verifier pre-computes entities that otherwise would need to be transmitted, so that the
signature length will be reduced at the expense of increased verification operations. For
example, the verifier computes (ci, ri, bi) Vi in permuted kernel identification scheme

(see Appendix B, Section 10.1).

Reduce signature length by transmitting a permutation seed rather than the complete
permutation. The seed is input to an algorithm that produces a permutation. Transmission
requirements are reduced at the expense of increased verification operations.
Permutations are used in the PKP and Syndrome Decoding algorithms.

Reduce signature length by using only a subset of “commitment bits.” For example,
consider the Syndrome Decoding case (see Appendix B, Section 10.2). Let

Cj ={c{,c;,c;},j=l,2,...,k

represent the k sets of commitments that are required. Each commitment ( C: ) assumed to

be the output of a hash function (typically 64 to 128 bits). Suppose that instead of making
a fill commitment, the prover commits to only the first q bits, thus reducing the signature
size at the expense of reduced security. In the case of Syndrome Decoding, the security is
reduced from about

The following table illustrates how the security varies with q and k.

Table 2.5 Security versus q and k for Syndrome Decoding

k=20 k=30 k=40 k=60

9
= 1 .026 .0042 .00068 .000018

9 = 2 .0032 .00018 .00001 3X10-8

~ = 3 .001 3.2x10-5 1X104 1X10-9

q = 4 .0056 1.3X10-5 3X10-7 2xlo-’” ._
Large q .0003 5.2x10+ 9X10-8 3X10-11
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In this case, the total number of commitment bits transmitted is 3”q” k. (Note that the

commitment bits form only part of the total signature. For example, if our desired security was 1
x 10A, we could obtain this in various ways. One way would be to select q = 3 and k = 40 for a

‘-~otalof 360 “commitment bits.” One can also use this table to establish the trade-off between q -
and security for a particular value fork.

‘Inthe case of the PKP Algorithm, Cj = {c{,c~ },j = 1,2,... ,k. Using an analogous approach, the

security of this scheme is reduced iiom about

.:.

.

2.5 Hash-Based Signature Schemes

.Signatures based on hash functions can be less computationally intensive than their mathematical
:counterparts, and so are worth looking at for a low-power environment. We start our
‘investigation of hash-based signature schemes by looking at some one-time signature schemes.
“’Anyone-time scheme can be extended to an N-time scheme, but this is usually done naively and
the corresponding signatures can become unreasonably long. Furthermore, in an N-time scheme,
only N messages can be signed. The larger N is, the larger the signature and the memory
required to construct a signature. If there area very large or unknown number of messages to
sign, it maybe impractical to predetermine a number(N) of messages to sign. We will
investigate an alternative to the N-time schemes whereby the signature for a message is based
upon corroborating information in previous messages. These schemes can be computationally
efficient and are worth consideration if only a finite (pre-determined) number of messages must
I?esigned or if there is little possibility that messages may be lost.

2.5.1 One-Time Signatures

One-time digital signature schemes can be used to sign only one message. Otherwise, forgery is
possible. Anew key pair is required for each message. However, one-time signature schemes can
be very efficient an~ given that there is a mechanism-for authenticating the necessary public-
idormation, can be converted to generalized signature schemes.

2.5.1.1 Lamport’s Scheme
The Lamport one-time signature scheme essentially signs one bit of the message at a time. Let m
be the length of the message to sign. Let h be a hash fiction which outputs k bits.

To generate a key pak

1.

, 2.

Generate 2nzrandom strings Al, ....Afi Ill, .... Bm each of length k bits

The public key is (Xl, ...JJ* Yl,....YJ where ~ = h (AJ and ~ = h(Bj)
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3. Theprivate key is (Al, ....AWBl, ....BJ

To generate a signature:

The signature of an m-bit message M = bl ...bmis (S1,....S.) where $ = A..if bj = Oand $
=Bjifly = 1

To veri~ a signature:

Check that h ($) =x ifbj = O~dh($) = ~if bj = 1

The Signature and Verification algorithms are quite easy however, the length of the signature is
k% bits. This can be quite large if the message is long. There are two very similar variations of
this scheme, both of which eliminate the need to ‘sign’ the zero bits. The first is the Lamport/2
scheme, which cuts the length of the signature essentially in half. The second is the Merkle
scheme. There are fhrther variations of each of these schemes where more than one bit is signed
at a time.

2.5.1.1.1 The Lamport/2 Scheme

The Lamport/2 Scheme cuts the number bits in the signature approximately in half. Denote by w
the length of the message to be signed and let n. = log [nv2] + 1.

Key generation

1.

2.

3.

Choose m + n +2 random k-bit strings: Al, ....Am.Bl, ....Bn.Co, CI

The public key is (Xl, ...x~, Yl,....Y., 2., ZI) where Xj = h (Aj) ~d ~ = h (Bj), ad Zj = h
(q)

The private key is (Al, ....IIm Bl, .;.,Bn,Co, Cl)

To generate a signature for M = bl ...bm.

1.

2.

3.

If more than nv2 bits of Mare O,then complement each bit of Mand set d = 1 (we will -:-
denote this complemented version of Mby A4also); else leave Mas it is and set d = O

Denote the number of zeroes in ik?by e = el ...e~.Note that lkfhas, at most mL2zeroes,
and so the binary representation of e has at most n bits

Finally, denote the empty string bys. The signature for M = bl ...b~ is (SI,....S~ TL ....
T., U) where ~= Ajifbj=O~d$=~ifbj= l;2j=Bjifej =Oand~=~ifei= l;and
U=cd 4

To veri~ the signature:

1. Compare h (U) to 20 and ZI to determine if d = Oor d = 1. If d = 1, then complement A4
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2.

3.

Now, as in the general Lamport scheme, check to see if the appropriate pre-images (those
of the zeroes) have been correctly supplied in the signature as well as those for the binary
representation of e

If so, the signature verifies

2.5.1 .1.2 The Partitioned LamporV2 Scheme

In the Partitioned Lamport/2 scheme, the bits of the message are partitioned and so we
effectively sign multiple bits at a time. As usual, denote by m the number of bits in the message
to be signed. Let q be a small integer (say q = 4,5, or @ (Note that if q = 1, this is the same as
the Larnport/2 scheme). Define also the following quantities:

● r = [m/q]
- .-

● s = 2og([l-(29-l)n]+l)

● ▼ ✝ [.S/q]

“Keygeneration:

1. Select r + t + 2 random k-bit integers: Al, ....A., Bl, ....l?l.Co, Cl

2. The private key is (Al, ....A., BI, ....B., CO, Cl)

3. The corresponding public key is ~ = – h2q-l(B”),and ~= h (Cj) where h’h;q-l(Aj) and L –
denotes repeating the hash fimction x times

To generate a signature for M = bl ...b..

1.

2.

..

3.

4.

5.

Partition itf = bl ...b~ into r groups of q bits each

Let nj denote the integer value of thejth group of bits (e.g., if thejti group of bits is 1010,
then nj = 10)

Definen= Znj. Ifn< r(2q – 1)/2

Replace each nj with 29 -1 – nj and set d = 1;,else set d = O.Recompute n (if necessary)

Note: This is done to force n z r (29–1)L2.Define e = r (29 - 1)– n. Our construction of n
forces e to have a binary representation e = el ...es of fewer thans bits. Finally, partition e
into t groups of q bits each and denote by ~j he intwr v~ue of fie~ti !YOUPof bits-

The signature of A4is (S1, ....5’,, Tl, .... T. U) where Sj = h“’ (Aj),Tj = h“’ (Bj),U = Cd

To verifi the signature:

1. Computed by comparing Uwith h (CO)and h (CI)
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2. Check that the correct pre-images were supplied by hashing the values an appropriate
number of times

Note on block size: It seems that the block size q into which the message is partitioned can
be larger without effecting the security of the system. If q is larger, then the signature is
smaller, however the number of hashes required to generate the public key and the signature
grows exponentially since number of times the hash function needs to be performed is
approximately the size of q. Furthermore, the number of hashes required in the verification
process grows exponentially with q as well.

2.5.1.2 Merkle’s Scheme
The Merkle one-time signature scheme can be converted to a generalized signature scheme using
authentication trees, which are not described here. In addition, there are methods for reducing the
size of the private key and improving the general efficiency.

2.5.1 .2.1 Merkle’s Single Bit Scheme

In general, Merkle’s scheme was designed to sign a single bit of a message at a time. A basic
description follows.

To generate a key pair:

1.

2.

3.

4.

Generate t = n + Llgn] + 1 where n is the number bits in the message to be signed

Select random secret strings kl ,k2,... k, each of bitlength 1

Compute vi = H(ki ), 1< i < t, where H is a pre-image-resistant hash function

H{O,l]* + {0,1}’

The public key is (vl ,V2,..., , (v ). The corresponding private key is kl, kz,..., k,)

To generate a signature:

1. Compute c, the binary representation for the number of zeroes in m

2. Form w=mc=(a1,a2,..., a,)

3. Determine the coordinate positions il < i2 <... < iti in w such that aij = 1, 1< js u .-

4. Letsj=ki,l Sj~uJ

(5. The signatures sl, sz,..., sU)

To veri~ a signature:
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1.

.-
2.

3.

4.

Compute c, the binary representation for the number of zeroes in m

Form w=nzc=(aI,a2,..., a,)

Determine the coordinate positions il < iz <... < ia in w such that aij = 1, 1s js u

Accept the signature Z~ vi, = L7(sj)Ws js u

Signature generation requires almost no computation. Signature verification is also quite efficient
requiring fewer than n + [lg n] + 1 hash operations, which makes this scheme attractive when

two-way authentication is required. If n = 128 and 1= 64, then the public and private keys each
-require 1088 bytes. The signature requires 600 bytes, which is quite long. In additio~ to use
Merkle’s scheme as a generalized authentication scheme, key pairs must be pre-computed and
stored. When these key pairs are exhausted, another signature mechanism must be used or the
keys must be replenished. .

Example: 1088 bytedlcey * (1 messagekiay) * (365 days/year)* (5 years) = 1985600 bytes of
pre-computed data.

2.5.1.2.1.1 Evaluation of Merkle’s Single Bit Scheme

Table 2.6 Parameter Sizes for Merkle’s Single Bit Scheme

Parameter Size (k~
N Number of bits in the message 128, but may vary
L \ Bit length of each ki and Vi 64

T n+llgnj+l 136, but may vary

kr ~Random secret strings, 1< i < t 64
VI Hash of the secret strings, 1s is t 64, but may vary depending

on hash fimction used
c Number of zeroes in the binary 8

representation of the message, Os cs 128
w ~Message concatenated with c 136

Signature operations required: Compute the number of zeroes in the message (c),
concatenate the message and this value (w). For each
bit of w which is one; send the equivalent ki ~
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Verification operations Compute the number of zeroes in the message (c),
required: concatenate the message and this value (w). For each

bit of w which is one, verify the equivalent public key
Vi

Storagerequired to sign (in 1088 bytes for all the ki

bits):

Amount of data transmitted: 0-1088 bytes, depending on the number of ones in w

2.5.1 .2.2 Merkle’s MultipleBit Scheme

Merkle’s single bit scheme can be modified to sign multiple bits of the message at once. These
modifications decrease the size of the keys and the signature.

Let

k = word size of the machine

in
= length of message to be signed

t = mlk

r = ~(Llogtj+l+k)/kl

To generate a key pair:

1.

2.

3.

Generate t+r random bit strings Iq,kt,..., k,+,, ki =1,1 SiSt+r

Compute vi = H(ki),l < i < t + r, where H is a pre-image-resist.ant hash fimction

H{O,l}* + {0,1}’
.

The public key is (VI, V2,..., Vf+r). The corresponding private key is (kl, kz,..., kt+r) ‘

To generate a signature:

1. Let the length of the rn be kt bits

2. Write m=ml mz . .. m, , where each mi is k bits long and represents a number between

zero and 2~ –1 (i.e, unsigned).

.
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3. Define

‘

U can be represented in lgU ~lIgtJ+ 1+k bits and can be written as UI Uz . .. u,

4. The signature form is

(~,,~z,...++r)

where

-...
Si =W’(ki),lsist

:, St+i=hui(kt~i),1s is r

...

and h“ denotes a c-fold composition of h with itself

“Thesignature is verified in a similar manner as in sectiofi 2.4.1.1, with the appropriate
modifications. When these key pairs are exhausted, another signature mechanism must be used
or the keys must be replenished.

2.5.1 .2.2.1 Evaluation of Merlde’s Multiple Bit Scheme

If the length of m is 128 bits and each kiis 16 bits in length, then

● t=8

● r=[(3+l+16)/16]=2

● t+r=10

● Let each Sibe 128 bits long

The total signature lengjh is 1280 bits, or 160 bytes, or four times as long as a DSA signature.
The amount of storage required per message for all ki, 1s is t + r is (2 x (2 + 8)) or 20 bytes.

Example: (20 bytes/key) *(1 messageklay) * (365 days/year)* (5 years) = 36500 bytes of pre-
computed data.

Note on block size: The remarkon block size after the Partitioned Larnport/2 scheme (Section
2.5.1. 1.2) applies here as well.

.

.
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2.5.2 Converting One-time Schemes to N-time Schemes

One simple way to convert a one-time scheme to an N-time scheme is to form a set of Nprivate
one-time keys and the corresponding public keys with the idea of using each of them once. The
public key is just the concatenation of all the one-time public keys and likewise for the private
key. A major drawback to this is that the size of the keys is very big.

An alternative to the above approach is to construct a hash tree. In this scheme, the signer sets up
the keys for N one-time schemes using a common hash function. Again, the secret key is the
concatenation of the secret keys for each one-time scheme. The public key is constructed using a
hash tree T which is the complete binary tree with N leaves (we assume N is a power of 2). The
nodes are labeled so that v+ is the root node, VO,VI are the left and right children, respectively, of

V~,~d v.O, v.1 me tie lefi ~d right children, rwectively, of V.. Each node has con~ins a k-bit

hash value where we denote by R= the value stored in node V.. The hash value in the ~d leaf

(where we think of the j in binary representation) is Rj = h(~~) ), where KY) denotes the j&

public key. For all non-leaf nodes, Ra = h(Rao,R.l ). The k-bit value R@stored in the root node

is the public key for the N-time scheme.

When signing the rti message in the N-time scheme, the signer includes in the signature the usual
one-time signature using the rti private key together with the corresponding public key and
R@ 1s j ~ log N. The verifier checks that the signature is valid (assuming the public key sent is

correct) and then verifies the key is valid by computing R= for all a which are the prefixes of the

binary representation of r. If the value computed for R@matches the public key, then the key was

valid.

2.5.2.1 The LM Scheme
The LM scheme is a method designed to make more secure the conversion to N-time schemes
using the hash tree, and also to make the messages shorter. To sign a long message, a single
random k-bit string C is appended to the secret key. A corresponding string is appended to the .
private key Z = h (C ~lnl 010), where 1 is the identity of the signer, n is meant to signify that the.
nti message in an N-time scheme is being signed, and 010 (or any other 3 bit string) is a constant “.
string.

To sign the message, the signer computes h (M lC~l~ 01O)and signs using the nthone-time
scheme, as usual. In addition to sending the usual information in the signature, the signer also
sends the random value C, with C being different for each pair ~ n. The verification procedure
proceeds as usual; however, the verifier must first compute h (M lCll~[ 010).

2.5.2.2 Guy Fawkes
Guy Fawkes is really a protocol designed for authenticating messages using hash fbnctions and
commitments to Mure keys. A commitment to the first key must be made known in a secure
way. Then, subsequent keys are committed to in one message, to allow verification in the next.
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This idea is appealing because only two hashes are involved at each step, the signatures are
shorter than in the previous schemes, and an unlimited number of messages can be signed.
. .
We should note that all messages must be received correctly because of the interdependence of
the messages in the verification processes; before the (n – l)st message can be sent, the nth
message must be known (in order to commit to it). Furthermore, this protocol is prone to a man-
in-the middle attack provided an adversary can intercept two consecutive messages. From then
~on,the adversary can intercept all messages and replace them with his own. However, the
algorithm can be modified so that an adversary must intercept 3,4 or even N messages before
beginning an impersonation at the expense of lengthening the size of the signature and making

~the messages more interdependent. We can prevent this attack by alternating this procedure with
:another signing method so that no Nmessages are signed the same way where N is the number of
messages an adversary needs to intercept. This then renders the man-in-the middle attack not
faible.

The protocol: Let h be a hash fbnction. Party A generates a series of passwords Xo,X1,X2 .... A
commits to ~ in message Aj.I and reveals it in message Aj+l.The commitment is

aj = h(-4j+l,h(&l ),x)

The first message must be authenticated by some trusted means to start off the chain (e.g.; RSA).
Denote this trusted signature by sign (M).

First message:

(n – 1)=message:

nti message:

(Ao,ao,h (Xo), sign (Ao, h (Xo)))

(n >1): (An_l, a._l = h(A~ h (X. ), X..l), h(XM1),Xn_2)

(An,a., h(X.), X._l)

In a.-l, party A has committed to password X., the message An, and makes use of the current key
X..l. In the nti message, A reveals knowledge of password Xn.1as well as the hash of X. so the
verifier can check that h (An,h (Xn),Xbl) = an-l. Furthermore, password Xn~land message Az+l,

are now committed to in Step n, and so the process continues.

Suppose that an adversary wished to intercept messages and attempt to replace them with forged
@an-in-the-middle) messages. Having intercepted (An, an,h (X.),X.-I), he cannot change the
message, An, since aml contains a commitment to it he cannot change an, since it contains as
input X., which has not been revealed yet but has been committed to in the previous message.
Similarly, h (XJ was committed to in an-l, and he must also reveal the correct value of X.-l in
order to veri$ the against h(Xn-l) from the previous message. Since X~is not known yet, but was
committed to in the previous message, he must also send along the correct value of h(Xn).Hence,
if the adversary tries to forge any part of the message, it will not veri~.

On the other ham$ suppose an adversary has intercepted two messages:

A@message: (An, an= h (An+l,h (Xtil), Xfil), h(Xn),X._l)
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I i’f+lst message: (A.+1,a.~1, h (Xtil), XJ

The adversary now has tiorrnation about two consecutive passwords and this gives him enough
information to change parts of the rzthmessage (but not the intended message), and most of the
(n+l)” message (including the intended message). The Nand (N+l)S messages become:

I Forged l?’ message: (Am,a ‘n= h (A ‘~~1,h (rM), Q, h (-L), XL)

I
Forged N+lq message: (A‘ml, a ‘til= h (A‘~+z,h (X’.+2),X’n+l),h (X’tiI), XJ where a
prime after a symbol denotes something changed by the adversary

After sending these two forged messages, the adversary has complete control of the system and
can change all of the keys and messages from thereon out. The adversary will only be caught if
he stops spoofing the system. Note that the adversary needed two messages to get the value of
X., and couldn’t send along a forged message until the (n + l)W,in order to make sure everything
verified.

I Modification 1

I With a slight modification, it would be necessary for the adversary to intercept 3 messages
before beginning to forge. In this case, the definition of an changes to:

I an= h(An+l,h(Xn+J,h(X~+Z),X~)

I Three consecutive messages then look like:

I (n - l)S message: (A..l, a._I = h(A.9h(Xn),h(X.+l),X..l), h(X..l), X.-2)

Jhmessage: (An,an= h(A~+i,h(Xtil), h(X~J, X.), h(X~),X~-J

I (n+ l)S message: (A.+l, a.+l = h(A.~zjh(xn+z), h(&+3), Xz+l), h(xn+l), .&)

To veri~ the (n+ l)S message, the user checks that h(X.) is correct in the ntimessage, and that
a.-l = h(A., h(X.), h(X.+l), X.-l) validates in the (n – l)s message. The addition of h (X.+2)in the
definition of a. has the effect of making the validation process 3-message dependent, but it alSO ‘“.

- serves the purpose of making it impossible (for similar reasons as above) to forge based on 2
consecutive intercepted messages. An adversary must intercept 3 consecutive messages in order
to be able to begin forging messages. This process can be repeated to increase the message ~
interdependency as well as the number of consecutive messages an adversary needs to intercept
before he can begin forging.

I Modification 2

One could also help to discourage a man-in-the middle attack for a scheme, where an adversary
needs n consecutive messages before forging can begin, by encrypting every nthmessage using a
diffkrent method. If the adversary can not break this encryption scheme, he will never have
enough information to successfully forge a verifiable message.
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2.6 Polynomial Schemes

*

In recent years, asymmetric polynomial schemes have emerged as a possible alternative to
asymmetric schemes based on the discrete logarithm or factoring problems. Although they have
not been studied with as much intensity, they seem to offer desirable benefits such as smaller
signature size, and as they are related to NP-hard problems, it seems reasonable that upon tier
analysis they will prove to be secure.

In 1988, Matsurnoto and Imai [MISS] described the C*Algorithm, which makes use of
multivariate polynomials of degree two over a finite field. This scheme was subsequently broken
.by Patarin in 1995 [Pa95], and [Pa96] d~veloped a new ftily of Asymmetric algorithms based
on polynomials in which he modified C to avoid its weaknesses. This new ftily of algorithms
is based on Hidden Field Equations (HFE). Its security relies on the difficulty of factoring a
randomly selected system of multivariate quadratic equations over a finite field, which is an NP-

..hard problem.

;2.6.1 Hidden Field Equations (HFE)

“The HFE algorithms are described in [Pa96]. HFE signatures are generally of size 160 or 128
bits, but car-be made as small as 64 or even 32 bits at the expense of more difficulty in
verification. To understand HFE signatures, we must first explain HFE encryption.

tie public information in HFE is the following

1. A finite field K of q =pm elements (typically; = 2), and a length n

: 2. A set of n polynomials (pI,.. .,p.) in n variables over K

3. A method for putting formatting (redundancy) in messages

The secret items are:

1.

2.

.

,“ 3.

An extension, L. of K of degree n (where n is as in Item 1 above)

A function~fiom L. to L. with degree d (fis a polynomial, not too big, degree d <
and generally, 17s d < 64)

Two afllne bisectionss and t from H to ~

024,

Once a basis for LJK has been chosen, an element of L. can be represented by an n-tuple of
elements from IC (xl, ....xJ. The polynomial fimction~(secret item 2) is chosen in such a way
that~can be represented by an n-tuple of polynomials of degree 2:

j(xl, ....xn)= (p’l(xl,....XlJ)....,p ‘n(xl,....%))..,

The polynomials in the public key(2) area gotten fi-omthe composition of the fimctions t,$ and
s (private key items 2 and 3): t (@(xl, ....xJ)) = (P1(.x1,....@, . . .,p~(xl,...JJ). Since~can be
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represented by the polynomials p’ of degree 2, ands and t are affine fimctions, the composition
results in the polynomial p, which is also quadratic.

2.6.2 HFE encryption and decryption

To encrypt a message x = M, redundancy is first added as prescribed in Item 3 of the public key
(i.e., the way to add redundancy is common knowledge), and then the message is input into the

.

public polynomials. The output is the encryption of the message:

HFE (~ = HFE (xl , ....xn) = (P1(XI, ....xn). .O.,pn(xl,....xn)) = Y.

To decrypt, the public polynomials are ‘ipverted’. Since the polynomials are the result of the
composition t(j(s(x)), we must invert t,s, andf Since t ands are affine bisections, they can be
easily inverted. To ‘invert’j we set~= Oand solve for the roots of the resulting polynomial
equation (this is the most difficult part of the algorithm). Since~is not necessarily invertible (it is
a polynomial of degree d), we may getup to d solutions. We can identify the correct solution
because of the redundancy added by the sender:

x= HFP(Y)

2.6.3 HFE signature and verification

Let h be a public, collision-free hash fimction whose output is 128 bits (e.g., h is MD5). Let II
denote the concatenation operation.

To sign a message:

1.

2.

3.

Generate a small integer R with no block of bits of the form 10000 in its base 2
representation (e.g., start with R = O)

Compute l@l]10000l I&?)

Consider the HFE Encryption Algorithm: HFE (X) = Y whereXand Yare 128 bits. With ‘“’
Y= h(Rl I1OOOOIIll), try, using the secret key, to find a valueXso that HFE (X) = Y.

(Note that Ymay have no inverse, since the secret polynomial f may not be invertible for
that value. In that case, go back to 1 and try again by, for example, adding 1 to R). Once
successful, the signature of M will be RIlx

To veri~ a message:

1.

2.

Separate R andx from Rllx (x has a fixed number of bits so this is easy).

The signature is valid if h(R II1OOOOIIM)=HFE (X).
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2.6.4 Variation on Length of the signature

In theabove signature, the length is the length of Rllx, which will be just a few more than 128
~bits. We-can shorten the signature to about 64 bits as follows:

“To sign a message:

Same as above

Same as above

Consider HFE Encryption Algorithm HFE (~ = YwithXand Yof length 64 bits. Denote
by F the public computation of HFE and F1 one pre-irnage of HFE (if one exists) so that
Y= F(X).

Denote by hl the first 64 bits of the hash value h(l?l11000O\IiU’)and by h2the last64 bits.

Compute S = F] (hl d9F1 (hz %F1 (hI))), i.e., we search for at a value S such that
F (F(F’(S) @hl) @3h2)= hl.(**)

If we are not successful (i.e., if HFE is not invertible for some step), then go back to Step
1 and try another R value). Otherwise, the signature of Mis RIIS.

1. Separate R and S (S has a fixed length of 64), and then compute lz(lll\10000l~ = hl Ilh2

2. The signature is valid if the equation (**) above is satisfied

Comments on HFE:

●

●

The length of the signature in this case is a little more than 64 bits, but notice that it
requires three inversions of F’in signing, which is more difficult than just 1 in the first
scenario. In order to shorten the signature I%rther,it is suggested to send only the first 32
bits of S. Although this is nice and small, it increases the verification process because the
other 32 bits will have to be found by exhaustive search which is quite slow.
Furthermore, we do not recommend a signature as small as 32 bits because it is too short
to guarantee security.

The polynomial~is specified so that the exponents of the variable are powers of q (the
characteristic of K) or a stun of two powers of q (this is to guarantee that the public keys
are quadratic polynomials). HFE recommends that the degree of~should be at le~t 17
and should have “enough” monomials of Harnrning weight two in x. This is to avoid the
“affine multiple attack.” In general, it seems that to avoid this attack it is enough to have
at least one exponent with rather large Hamming weight. The HFE paper fiuther suggests
(lmsed on intuition) that some of the coefficients ofJshould be general field elements of
Las opposed to only using Oor 1 (i.e., elements of K) as coefficients. Another attack to
avoid is the “quadratic attack.” The quadratic attack is possible if one can obtain lots of
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quadratic relations on the plaintext. It is not immediately apparent if there is an easy
check for this. Any~that is chosen should be analyzed to prevent against this or any other
obvious attack.

. A computational concern arises about the time it will take to produce a signature that
corresponds to the computation time for decrypting. The main work in the decryption lies
in solving the equationflx)=a.

. The size of the public key can get very large. In general, if L=GF (2~), then the size of
the public key will be N*(N (N-1))/2 bits. The paper suggests a way to shorten the public
key by keeping some of the public polynomials secret. This would shorten the key size
but would also increase the signing side. Furthermore, there is no comment as to how this
affects the security: It mayor may not enhance it.

2.7 Cryptographic Primitives

Many of the Cryptographic algorithms above involve basic arithmetic in finite fields or rings. In
fields (or rings) with large prime characteristic, often the most costly operation in the algorithm
is modular exponentiation. In fields of characteristic two, elements sometimes get to be very long
and difficult to deal with. We can often improve the efficiency of an algorithm by optimizing the
field operations. We describe some such optirnizations next.

2.7.1 Modular Multiple-Precision Exponentiation Algorithms

The process of computing a modular multiple-precision exponentiation (e.g., r = # modp) is
complicated and time-consuming because of the numerous multiple-precision modular
multiplications involved. Public key data authentication algorithms that rely on exponentiatio~
in particular number theoretic schemes such as DSA and other El Gamal-type signature schemes,
are burdened with a computationally complex operation. The Standard Square-and-Multiply
Algorithm [K81] for computing an exponentiation involves 3 *~1/2multiplications on average,
where ~1is the number of bits in the exponent,

Several techniques exist for enhancing the performance of a modular multiple-precision
exponentiation operation involving a fixed base and a random exponent or a random base and
fixed exponent. For a fixed-base exponentiation, the best methods involve some form of pre-
computation and storage of powers of the base. These techniques require a time (speed-up)
versus space (amount of storage memory) trade-off. Techniques for random base exponentiation
generally involve ways of representing the fixed exponent in nearly optimal ways such as in the
use of addition chains.

The best technique for a given application depends on the type of exponentiation required (i.e.,
whether fixed-base or fixed-exponent), the security required, the amount of storage available,
and the number of multiplications that performance allows. Gordon’s publication [G98] of a
survey of techniques for fast exponentiation is worth reading to determine the most suitable
approach. In addition, the most recent literature should be searched as new enhancement
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algorithms are continually proposed, such as the pre-computation technique by [BPV98], which
is not in [G98].

2.7.2 Finite Field Arithmetic and Field Towers

The finite field

GZ7(2~) = G17(2)[x]/ ~(x) = {a. + alx + ...+ a~_lx~-lmod(~(x)) Iai = GI’(2)]

where ~(x) is an irreducible binary polynomial of degree m. An element a e GF(2” ) can

therefore be represented as a nz”-tuplea = (aO,al,...,a~_l)of 0s and 1s. Addition of two elements

is a bitwise exclusive oc

a,be F a+ b=(al f3b1, a2 @bz,..., ameb~)

‘and multiplication is like a plain multiplication without any carries but with only the exclusive or
accumulation. The result of the multiplication must, however, be reduced by the field polynomial
~(x). As the degree m of the field gets large, the multiplication can become time-consuming
and the representation of the numbers can become big. For a general reference on finite field
arithmetic, see [P1363].

If m is composite, we can use field towers to speed up the computations. Suppose m = ns. Then
we can think of G17(2m)= GF(2”)S as a degree s extension of GF(2’ ). The elements are

a E GF(2~), a = (a1,ct2,...,a~), where ai c GF(2”).

For example, suppose m = 156 =12 *13. Then we can represent GF(215G)as G17(2*3)12.The

) b= (@l,...>fl12)>~i>@~~ GF(2’3)usesaddition and multiplication of two elements a = (al,..., izlz ,

the underlying GF(213) arithmetic, which is much simpler than the arithmetic in GF(215G).If m

.is highly composite, there are several possibilities for writing GF(2” ) as an extension of a

smaller field. We may even write GF(2” ) as series of field extensions. For instance,

GF(215G)= GF((23)4)13, or GF(215G)= GF’((22)G)13,etc. We can speed up the arithmetic

considerably in such fields. Thinking of GF(21SG)as a three-level tower would make the
corresponding “tithmetic about three times faster than the arithmetic in the field, using a
polynomial basis.

2.8 Comparative Summary and Conclusions

The following table provides a comparative summary of the best viable candidate Public Key
Authentication algorithms for the low-power environment, assuming parameter size
recommendations specified in the sections describing”each algorithm.
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Table 2.7 Candidate PubHc Key Authentication Mgotithms forthe Low-Power
Environment

Signature Storage
~ ~h* ~uired* ~erations VerificationOperations+ti

Optimal EIGamal 40 1097I2** O(2n2+2n) ““””+O(k)t = 0(2(t+7n-2)(2n2 +2n)))+O(lz) w =
with pre-eomputation 220 +O(h), forn= 10 404544+O(h) ,fort=80,m = 8,n= 48
Storage Balanced
EIGamalwithpre- 40 36792** O(4n2+4n) ““””+O(h) t = O(2(t+nz-2)(2n2 +2n)))+ O(Jr)‘i=

computation 440+0(~),forn= 10 404544 +O(h) ,fort= 80, m = 8, n = 48

Feige-Fiat-Shamir 116 15456
O(160n2+160n)““-”+O(lz)t = O(161n2+161n)““”*+O(lr)+=
376320 +O(h), forn = 48 378652 +O(h), for n = 48

ESIGN 96 192
O(6n2 + 6n) ““””+O(h)t= 0(6n2 + 6rr)““””+ o(h)t=
14112 +O(h) ,forn =48 14112 +O(lr) ,forn =48

Elliptic Curve El 40 120 0(4n2+4n) ““””+O(h) t = 0(4n2+4n) ““””+O(h)+=
Gamal 440 +O(fi), fern= 10 440 +O(Jr), fern= 10

Merkie Single-Elt ~logg*** 1985600**constanttime Constant time
Merkle Multiple-Bit <16(F** 36500** Constant time Constant time

“Inbytes

*“Assumingat least5 (years) x 365 (messages/year)= 1825messagesto be signed

“%cpcndent on the lengthof the message.Assumea messagelengthof 128bits

““””nis the numberof singleprecision{16-bit)vaiuesused

this tie num~of512.bit blocksin the message and assumingthe useof SHA-I. Arithmeticcomputationsgt?rlerSllyoutweighthe costof
hashingthe messageunlesstbe messageis long.

~~~g tit ~chexpmmt~ ~ qmtd ss ~{aeibi,()<ez<mandthat we areusing BGMW.Storagerequiretnentsshouldbe@Used

to includetie pre-computationtable requiredby this algorithm.

‘Worst-case analysis.

We note that overall, the elliptic curve implementation of El Gamal seems to give the best
pefiormance without limiting the number of messages we can sign. We also recommend a closer
look at Optimal El Gamal or N-time hash schemes if there is a number 2?such that, at most, 1? ~~~
messages need to be signed. Furthermore, if messages aren’t likely to be lost or skipped, we
recommend a closer look at the Guy Fawkes hash-based scheme with the suggested
modifications.

Deciding on an algorithm is only the first step in implementing a system for a low-power
environment. Specific software and hardware optimization must be carried out, and a wise
choice of processors should be made for implementation.

In Section 7.3, we give a hardware design for the Elliptic Curve El Gamal signature scheme. The
slowest part of the Signature Algorithm is computing a multiple of a point. We optimize the
algorithm by using an innovative Point Halving Algorithm (patent pending) developed by [S00],
one of the co-authors. The Point Halving, Algorithm is more than three times as fast as point
doubling in software, and we expect comparable ptiormance in optimized hardware. Even after
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the other parts of the overall point-multiplication process are accounted for, the performance gain
from using point halving is roughly 2.5. We further optimize the algorithm by using field towers
for the finite field arithmetic.

. --

3. General Purpose Commercial Computing Platforms

All of the algorithms discussed in Section 2 must run on some computing platform. The
algorithms must be implemented in hardware or in software. To fully realize any crypto~phic
fimctionality, a software implementation requires coding in some programmingg language,

“compilation into machine executable codes for a specific processor, and execution. For any given
~‘algorithm, the computing platform chosen for implementation has a significant impact. on the
‘-performance as well as the power usage. This section of the report focuses on the general
,,purpose computing platforms that lend themselves well to low-power public key cryptography
~applications. The computing platforms presented in this section are commercially available
;general-purpose processors and digital signal processors that offer a range of capabilities and are
suitable for low-power public key cryptography. Section 5 presents custom processing platforms
available either commercially or through in-house development.

-3.1 Issues of Concern

One of the most important power-related factors associated with processor hardware is the power
supply voltage necessary for operation. Traditionally, microprocessors have required 5 volts to
power the processing device. Now, however, any low-power device almost certainly runs on a
3.3-volt power supply and some run on 2.7 volts. A 3.3-volt design generaI1y costs more, but it
does reduce power consumption by 34% (46% for 2.7-volt devices) compared to a 5-volt p-
iwnnning the same current draw (normally a good assumption). Another processor feature found
in low-power designs is power management fimctionality. A good candidate for low-power
applications will have multiple user-controllable power regimes such as normal operation, idle
mode where some basic functionality is still available, and power-down mode where only
“-urn functionality is available to reawake the processor. Each of these has decreasing power
dissipation.

Beyond the electrical aspects of processors that decrease power dissipation, there are fmtures
that offer the potential for reducing the implementation complexity”of a particular algorithm.
.~ese features reduce the time necessary to complete a computation, thus reducing total power
consumption. The classic example is the use of digital signal processors for a variety of signal-
processing tasks such as digital filtering and Fourier analysis. These processors have special data
buses and memory which are separate from the program, and special instructions to enhance the
performance of commonly executed fimctions. The following attributes of DSP chips offer the
potential for fast modular multiple-precision multiplication, an important operation in most
number theoretic algorithms for public key cryptography.

1. Extended accumulator to sum nu.dtipleproducts.



2.

3.

4.

This feature is especially usefid when the accumulator is large enough to sufficiently
accommodate the overflow that occum when performing multiple-precision multiplication
using the convolution-sum method. For example, when two 128-digit numbers are multiplied
using this method, the accumulator must be able to accommodate the overflow from 128
multiply-and-accumulate cycles. At most, this operation would require 7 or lo~(128) extra
accumulator bits beyond the length of the multiplier and multiplicand.

A multiply-and-accumulate(WC) instruction.

The availability ofa MAC instruction can result in extremely tight and therefore efficient
code, especially when utilized in the multiplication of multiple-precision integers using the
convolution-sum method. Since most cryptographic applications involve unsigned or non-
negative integers, an unsigned-MAC instruction is desired. If a processor only supports a
signed-MAC instmctio~ then each digit of multiple-precision integers must be reduced by
one bit (the sign-bit).

Parallel data buses.

Parallel data buses, available on many DSP chips, allow one to access data from multiple
sources in the sanie instruction cycle. In addition, many processors allow data moves during
an arithmetic operation.

Multiple memory architectures (e.g., 1forprogram memory and 2for data memory).

The following code utilizes all four of the noted DSP attributes. The instructions are part of
the inner loop of the Montgomery modular multiplication routine using the Motorola
DSP56000.

mac X0,yil, a “x: (rO)-, Xo y; (r5)+, yO

mac xO,yo, a x: (rl)~ xO y: (r4)+, yO

This example shows multiplication between the values in registers XOandyo, accumulating
their product into an extended bit accumulator register, a. During the same instruction cycle, -
registers XOand y(l are loaded with values from memory in preparation for the next multiply
and accumulate instruction.

The efficient use of an extended accumulator with the use of a MAC instruction is not
without some risk. For example, using a MAC instruction with an extended 36-bit
accumulation register, the extra 4 bits in the accumulation register will accommodate 1616-
bit multiplies before overflowing. Therefore, some contingencies are necessary to support ..
multiplying numbers greater than 256 bits. In addition, the MAC instruction ofien only
supports signed arithmetic, making the processor less effective for cryptography.

Another feature of some processors that may offer utility to cryptographic applications is the
addition of a set of shadow registers to enable rapid context switching. In a cryptographic
application, this may be important if multiple algorithms ardor multiple key sets are utilized
in the same system.
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In summary, the electrical specifications, power management fimctionality, architecture, and
instruction set of commercially available processors is important to analyze for evaluation of
their appropriateness in low-power applications. Section 3.2 evaluates some select
microprocessors and microcontrollers, while Section 3.3 presents a survey of selected digital
signal processors. All the processors included in these sections are attractive candidates for
low-power public key cryptography for one reason or another. Section 3.4 provides a
comparative summary of all the reviewed processors. See [L97] for a comprehensive
microprocessorhnicrocontroller directory.

3.2 Microprocessors/Microcontrollers

Microprocessors are available commercially in 8-bit,.1 6-big 32-bit, and even 64-bit word sizes.
Microcontrollers consist of a microprocessor and auxiliary fimctionality such as serial/parallel

-communications, timers, and interrupt controllers, all on the same chip, and are available in
multiple word sizes as well. The smaller the word size for a given microelectronic technology,
the smalIer the device and the Iess power consumed. However, there is a trade-off in the
computing capabilities offered in the different processors. For example, some 8-bit devices do
not support a multiply or divide instruction.

Many microprocessors and microcontrollers offer some degree of power management, varying
Iiom soflware controlled and/or interrupt controlled idle modes to complete shutdowrdsleep
modes. The following subsections provide detailed information regarding specific processors
identified as realistic candidates for low-power cryptography. All of the microprocessors and
microcontrollers evaluated except the ToshibaiMotorola Echelon Neuron Chip include a multiply
instruction in their set of instructions.

3.2.1 Hitachi H8 Microcontrollers

The Hitachi H8 series includes both 8-bit and 16-bit microcontrollers. The H8S is a 16-bit
microcontroller with a 32-bit accumulator. The H8S/2655 series includes a MAC instruction.
The Hitachi H8/3 102 is a single chip microcomputer designed for use in smart card applications.
This processor contains desirable features used to implement public key cryptography.

The H8/3 102 8-bit CPU is designed with Hitachi’s H8/300 CPU core. The H8/300 contains a
speed-oriented architecture. On-chip memory includes 512 Bytes of RAM, 16 Kbytes of user
ROM, and 8 Kbytes of EEPROM. The device operates on internal tiequencies up to 5 MHz, has
a sleep mode for power saving, and implements security features in the ROM and EEPROM.
Hitachi offers the H8/3 102 as both 5-volt and 3-volt devices.

The internal processor contains an instruction set that allows for ease in implementing Public
Key algorithms. Features include arithmetic addition, subtraction, multiplication, and division.
Most operations are computed on 8-bit or 16-bit boundaries.

www.hitachi.corn
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3.2.2 NEC V850/SAl Microcontroller

The NEC V805 is a microcontroller with an integrated 16-bit RISC processing core, RAM,
ROM, and flash options. It can perform a 16x 16-bit multiply and includes multiply-accumulate
and multiply-and-subtract instructions. Power management features include a halt mode (CPU
clock stops, but peripherals continue to fimction), idle mode (CPU and intenial-system clocks
stop), and stop mode (everything stops, but register and memory contents stay intact).

I www.nec.com

I 3.2.3 Toshiba/Motorola Echelon Neuron Chip

The Echelon Neuron Chip is a network communication control device that implements an
encryption-based challenge response protocol for data authentication and is used across d wide
variety of platforms. There are two major versions of the device: the 3120 and the 3150. The
3120 contains on-board ROM while the 3150 provides a medium for accessing off-board ROM.
The 3120 and 3150 are manufactured by both Toshiba and Motorola.

The Neuron Chip contains three identical 8-bit CPUS. The fist, Media Access Control, handles
layers one and two of the 7-layer 0S1 model. The second CPU, Network Control, implements
layers three through six of the 0S1 as well as the authentication algorithm. The thir~ Application
CPU, is the user interface processor where user application code resides. The three-CPU
architecture allows multi-tasking, pipelining, and parallel processing to occur, which enhances
the performance of the device. The 3120 on-chip memory includes up to 2048 Bytes of RAM, 10
Kbytes of user ROM, and up to 2048 Bytes of EEPROM. The Neuron 3150 Chip includes 2048
bytes of RAM,512 bytes of EEPROM, aild an interface to address up to 43 Kbytes of external
memory for application program and data use. The device operates on a selectable fkquency
range of 625 kHz to 10 MHz and has a sleep mode for power saving. The device is also 1S0
compatible.

While the native instruction set of the CPUS contains only very basic arithmetic fimctions such
as ad~ increment, rotate, and shifi the Neuron C Compiler provides a library of fimctions built
into the chip system image and allows for the ease of public key algorithm implementation.
Functions include 16-bit unsigned integer multiply and divide, and 32-bit signed multiply, -
divide, addition, and subtraction.

I 3.3 Digital Signal Processors

Digital signal processing (DSP) chips are especially well suited to high performance
implementations of exponentiation-based algorithms [DK90]. Montgomery multiplication, for
example, is the basis for the Montgomery exponentiation operation. Montgomery multiplication
can be written in such away that it resembles a convolution operation, which is exactly what ‘“
DSPS tie designed to do. Due to their attractiveness in telephony and wireless applications, many
DSPS are designed with low-power environments in mind. The following DSP chips offer the
potential for fast low-power public key cryptography. ,.
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3.3.1 Analog Devices ADSP-2103

The ADSP-2 103 is a 16-bit, fixed-point processor that can achieve a speed of 10.25 MHz using a
3.3-volt power source. Three separate arithmetic execution units comprise the data path: a MAC,

-an ALU (arithmetic/logic unit), and a barrel shifter which shifts 16-bit input to a 32-bit register. .
Although only one unit can be active during a single cycle, each is capable of single-cycle
execution. The ALU provides operations such as incrementidecrement, add-with-carry, and
absolute value fimctions, as well as the standard ALU operations.

www.bdti.com/txocsum/adi2 1xx.htm

3.3.2 Hitachi SH-DSP

The Hitachi SH-DSP is a general-purpose processor that is a combination of a 16-bit DSP and a
32-bit RISC microcontroller. It processes a single stream of instructions, and the DSP unit uses
the microcontroller data path in combination with its own data path. The DSP unit contains a 16-
bit fixed-point data path, a 40-bit ALU with eight guard bits, two 40-bit accumulators, six 32-bit
operand registers, and a barrel shifter. The data path of the microcontroller uses sixteen 32-bit
registers, some of which are used as address registers by the DSP. The Hitachi SH-DSP is
compatible with Hitachi’s popular SH-1 microcontroller. When used together, the fimctions and
capabilities of the SH-DSP are similar to those of standard DPSS, and the SH-2 acquires several
DSP-oriented features.

httv://www.bdti.com/vrocsum/shdsmhtm

3.3.3 Lucent DSP1611/17

The LucentDSP1611 and DSP1617 are high-end members of the DSP16XXfiunily. Both are 16-
bit fixed-point processors with two 36-bit accumulators and four guard bits for overflow. They
use a 16-bit x 16-bit multiplier and a 32-bit ALU/shifler, both of which are capable of single-
cycle execution.

Www.bdti.comhxocsuddsnl 6xx.htm

3.3.4 Motorola DSP56L611

The Motorola DSP568XXftily of processors offers microcontroller fimctionality with DSP
instructions and architecture for parallel instruction processing. It is a 16-bit fixed-point
processor with a 36-bit accumulator, thus allowing a maximum overflow of 4 bits. The
DSP56L811 is a 2.7-volt part, and at 40 MHz draws a maximum of 20 mA.

httm//www.bdti.corn/urocsum/dsn568xx.htm
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3.3.5 NEC uPD7701x

Theprocessors in this fiunily have a 16-bit fixed-point architecture, and include both W- and
ROM-based models. The data path consists of a 40-bit MAC, a 40-bit ALU, and a 40-bit barrel
shifter, only one of which can be active at a time. Each is capable of single-cycle execution. The
uPD7701x processors utilize a modified Harvard architecture with a program memory space and
two additional data memory spaces. The .uPD7701x does not provide a timer.

www.bdti.corn/Procsum/nec770 lx.htrn

3.3.6 TI TMS320LC5X

TI TMS320LC5X is a fmily of 16-bit fixed-point processors whose low-power members can run
at a speed of 40 to 50 MIPS at 3.3 volts. The data path includes a 32-bit multiplier (capable of
single-cycle execution), a 32-bit accumulator and secondary accumulator, a 32-bit ALU, and
multiple barrel shifters. Separate from the fixed-point data path is an additioml unit called the
parallel logic unit, which allows additional operations.

www.bdti.com/txoscum/ti320c5x.htm

3.3.7 Zilog Z89462

The Zilog Z89462 runsat 20 MIPS using a 3.3-volt power supply. It is the first member of the
Z894xi family, and it is considerably more powerfid than its Zilog predecessors. The data path
includes a 16x 162 32-bit multiplier, a 32-bit ALU, and a barrel shifter. The Zilog Z89462 has
on-chip memory as well as two off-chip memory interfaces, and an indexed addressing mode.
Zilog plans to make microprocessors based on a derivative of the Z89462.

www.bdti.corn/t)rocsum/z89462.htm

3.4 Comparative Summary

The following table summarizes some salient features of the evaluated processors and provides a
means to comparatively analyze competing computing platforms. However, the relevance of this
information will quickly become obsolete due to the incredible pace at which advances in
hardware occur.

Table 3.4 Comparative Features of General Purpose Computing Platforms

Word/ Run
Acc Pwr Pwr Run Pwr Sleep Speed

Device Type size SpecialFunctions (max) (m) Pwr (typ)

HitachiH8 Cntrl 8 &16 UC
bit 5 35mW 5oopw 5

HitiCbiH8S12655 Cntrl 8 &16
bit SignedMAC 3 186mW* 75mW* 54mW* 10
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Word/ Run
Acc Pwr Pwr Run Pwr sleep Speed

Device Type size Special Functions (-w (max) (m) Pwr (typ)

NEC V850/SAl Cntrl 16bit MAc 3 - 3omw 16wW* 10
EchelonNeuron
31X0 Cntrl 38 bit Machinecodemult 5 - - 10

ADADSP-2103 DSP 16bit UnsignedMAC 3.3 46mW 28mW - 10.24

HitachiSH-DSP DSP 16140
bit DSP/Microcontroller.3.3 - 660mW - 60

Lucent DSP 16136
DSP1611/17 bit Norotate 2.7 - 86.4mW - 50

Motorola DSP 16136
DSP56L811 bit 3 90mW 60mW 6PW 40

NECuPD7701x DSP 16/40
bit MAC,notimer 3.3 132mW - 33

TITMS320LC5X DSP 16132
bit MPYU,MACD 3.3 - 86mW - 40

ZilogZ89462 DSP 16140
bit 3.3 99mW - 20

4. Memory Storage

Memory is a vital part of any hardware system. It is especially usefid for this application in both
the storage of pre-computed values and/or interacting with a processor.

This document suggests that the storage of pre-cornputed values maybe a desirable feature in
implementing public key algorithms if the power savings is sufficient to warrant external
memories. Additionally, when working with processor units, external memories are necessary for

-holding processor instructions and data for interacting with other circuits.

Small memories can be implemented directly on the custom-designed integrated circuit. It is
-usually not feasible to implement large memory arrays into a single custom device. Several
-vendors now provide low-power options for large memory arrays as shown in the following
sections. The following sections also discuss memory options for implementing memories on

-custom integrated circuits and as stand-alone devices. The intent of this section is to present
‘-memoryoptions, not to recommend a specific memory device or implementation method.
_Furthermore, memory devices continue to advance rapidly, and many of the devices specified in
the tables below could quickly become obsolete. All memories discussed in this section contain

:itiormation on active power consumption where the memories are being accessed”during a write
or read cycle. In additio% stand-by power is also reported in which the chip-select lines hold the
device in an inactive low-power state.

4.1 Memory Storage on Custom Designed Circuits

Several types of memories can be implemented on a custom integrated circuit. However, the two
basic types of memories are Random Access Memories (RAMs) and Read-Only Memories
(ROMs). The following table shows a comparative study of ROM memories on board a single
integrated circuit device. The table is provided only as an example of what is possible and what
ihe potential power consumption maybe, because custom circuit characterization is very
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dependent on its technology. If a custom circuit design is chosen, once the target technology is
selecte~ a thorough power analysis for that technology should be performed.

Table 4.1 Comparative Study of ROM Memories

Standby Dynamic Power Dynamic Power Dissipation at
Power Dissipation (mW/M.Hz) Frequency(mW)

ROM Dissipation
Foundry Size (Uw) 5.0volts 3.3volts 5.0volts 3.3volts

Sandia-MDL 2Kx8 ‘o 1.3927 0.8390 11mW@8MHz 6.7mW@8MHz
(0.6micron) 16mW@12Mhz 10mW@12MHz
San&aM3L 2Kx 16 0 2 1.21 16mW@8MHz 9.7mW@8MI-Iz
(0.6micron) 24mW@12Mhz 14mW@12Mhz
Honeywell 2Kx8 o 128mW@8MHz
(0.8micron) 192mW@12Mbz

I 4.2 Read Only Memories

Read Only Memories (ROMs) allow data to be read from the device. ROM is basically a chip
that contains information that can be “looked up” or addressed to retrieve information stored on
the device.

There are several types of read-only memories. Some have information stored on them during
manufacturing. These are referred to as mask-programmed read-only memories. Others can be
programmed or loaded with information by the user and are referred to as Programmable Read-
Only Memories (PROMS). There also are memories that can be erased by ultra-violet light and
re-written using special equipment or special programming techniques. These are referred to as
Erasable Programmable Read-only Memories (EPROMs).

This memory evaluation focuses on Erasable Programmable Read-Only Memories. The two
most common types of ERPOM are traditional EPROM and FLASH. Flash memories tend to
have a lower operating voltage and much larger capacity.

I 4.2.1 Atmel

Atmel offers a large selection of EPROMs and Flash memories with 5-volt, 3.3-volt, and 3.O-volt “
components. The EPROM minimum access times for the components range from 45ns to 150ns.
The Flash memory access times range from 120ns to 350ns. They offer several different
configurations and memory sizes.

..

www.atmel.corn

I 4.2.2 Advance Micro Devices (AMD)

AMD offers EPROMs for the 5-volt technology and Flash memories in 5-volt, 3.3-volt, and 1.8-
volt. The EPROM access times range from 45ns to 250ns. Flash access times range from 55ns to
120ns. They offer several different configurations and memory sizes.
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www.amd.com

.4.2.3 Cypress

Cypress only offers EPROMs for the 5-volt technology at this time. The minimum access times
for the components range from 25ns to 200ns. They offer several different configurations and

‘memory sizes.

www.cwress .com

4.2.4 Intel

“Inteloffers Flash memories in both the 5-volt and 3.3-volt technologies. They offer several
different configurations and memory sizes.

www.intel.corn

4.2.5 Samsung ~

Samsung offers Flash memories in both the 5-volt and 3.3-volt technologies. Flash access times
for their 4MB device is 120ns. They offer several different configurations and memory sizes.

www.sarnsun~.com

4.2.6 Micron

Micron offers Flash memories in both the 5-volt and 3.3-volt technologies. Flash access times for
their 4MB devices is range horn 60-100ns. They offer several different configurations and
memory sizes.

www.micron.com

4.2.7 EPROM Comparative Study

Below is a table representing the EPROM compiled data. All memory power consumption
calculations are based on accessing the memories at a slower rate than their true access speed.
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Vendor
Atrnel

AMD

Cypress

Table 4.2 EPROM Data Compilation

Part

I I I I Power Consumption

Nominal

SPd ~
Operating Access

Voltage
Number Org. (volts) (ns) (mW) I (mW) (Uw) (Uw)

AT27C256R 5 45-150 100’ 500
AT27~V256A 32Kx8 3.3 55-150 27] 66
AT27BV256 3.0 70-150 24’ 60
AT27COIO(L) 5 45-150 125’ 500
AT27LVOIOA 128Kx8 3.3 70-150 271 66
AT27BV01 o 3.0 90-150 241 60
AM27C256 32Kx8 5 45-250 1252 500
AM27CO1O 128Kx8 5 45-250 1502 500
CY7C271A 32Kx8 5 25-55 I 2752 75(mW)
CY7C01 o 128KX8 I 5 45-200 2501 75(mW

‘Active power bssed on 200ns cycle time
2Active power based on 100ns cycle time

4.2.8 Flash Memory Comparative Study

Below is a table representing the Flash memory compiled data. All memory power consumption
calculations are based on their slower speed version. Power consumption can be reduced by
accessing the devices at a slower rate. The devices listed in the table below are all 4MB devices.

Table 4.3 Flash Memory Data Compilation

Part
Vendor Number >.

AT29C040A

‘mel I====-i512=8
I===--i

AMD 4512”8
‘“’e’ H 512m8
Sarnsung KM29W040AT I 512KX8

Micron
m 512”8

I I PowerConsumption
I

Nominal Active Active Stand-By Stand-By
Operating Access Typ. Max. Typ. Max.
Voltage speed Power Power Power Power

(mW’) (Uw) (Uw)

5 120-200 200 500

3.3 200-250 50 132

3.0 250-350 45 120

5 55-120 100 150 2(mW) 5(mW)

3 70-200 21 36 .6 15

5 300 100

3.3 33 60 24 66

5 120 50 100 50 275

3.3 120-200 17 33 33 165

5 60-80 250 650

3.3 90-100 50 330
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4.3 Random Access Memories

Random Access Memories (RAMs) allow data to be ~tten in and read out. These memories are
widely used when interfacing with a processor or when data needs to be saved in intermediate
states. In a system, data is written to the memory and then read from memory as often as
necessary.

There are also several types of RAM; however, this report focuses on lMB low-power
asynchronous Static Random Access Memories (SRAMS). As shown below, several vendors
now offer low-power SIWMs.

4.3.1 Hitachi

Hitachi offers 5-volt, 3.3-volt, and 3.O-volt components in the low-power arena. The minimum
‘-access times for the components range from 55ns to 70ns. They are configured as 128K x 8
memories. They offer a 64K x 16-bit arrangement for lMB memories, as well as smaller and
larger memory sizes.

4.3.2 Cypress

www.hitachi.com

Cypress offers 5-volt, 3.O-volt,2.6-volt and 1.8-volt components for low-power applications.
The minimum access times for the components range from 55ns to 200ns. They are configured
as 128K x 8 memories. They offer a 64K x 16-bit arrangement for lMB memories, as well as
smaller and larger memory sizes.

www.cvmess :com

4.3.3 Samsung

Sa.msung offers 5-volt, 3.O-volt, 2.5-volt and 1.8-volt components for low-power applications.
The minimum access times for the components range born 55ns to 300ns. They are configured
as 128K x 8 memories. They offer a 64K x 16-bit arrangement for lMB memories, as well as
smaller and larger memory sizes.

www.samsumzsemi.com

4.3.4 Mitsubishi

Mitsubishi offers 5-volt and 3.3-volt components for low-power applications. They also offer 2
versions of 3.O-volt components. The minimum access times for the components range fl-om
55ns to 150ns. They are configured as 128K x 8 memories. They offer a 64K x 16-bit
arrangement for 1MB memories, as well as smaller and larger memory sizes.
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Www.mitsubishichim. com

4.3.5 Performance Semiconductor

Perfonmmce %rniconductor offers 5-volt and 3.3-volt components for high speed and low-
power applications. The minimum access times for the components range Ilom 15ns to 70ns.
They are configured as 128K x 8 memories. They offer smaller memory sizes as well, in several
configurations.

www.~erformance-serni .com

4.3.6 GSI Technology

GSI Technology offers 3.3-volt components for high speed and low-power applications. The
minimum access times for the components range flom 8ns to 15ns. They are configured as 128K
x 8-bitmemories. They offer both smaller and larger memory sizes, as well as several
configurations.

Www.mitechnologv.com

4.3.7 Comparative Study

The SRAM data is compiled in the table below. All memory power consumption calculations are
based on their slower speed version. For example, if a vendor offers both a 55ns and 7011s
version,of a component, power consumption calculations are based on the 70ns version.
Additionally, many of these parts can be accessed slower than the specified range, thus reducing
power consumption even more.

Table 4.4 SRAM Data Compilation

PowerConsumption. ..

Nominal Active Active Stand- Stand-
Operating Access TYP. M=. ByTyp. ByMax.

Part voitage Speed Power Power Power Power
Vendor Number Org. (volts) (us) (mW) (mW) (IN-V) (Ill-v)

Hitachi HM628128D 5 55-70 300 5 100
HM62W8128D 128KX8 3.3 55-70 132 3.3 66
HM62V8128D 3.0 70-85 90 2.4 60

Cypress CY62128 5 55-70 150 300 2 100

128KX8 3.0 70 60 120 1.2 45
CY62128V 2.6 100 45 60 0.9 30

1.8 200 30 45 0.9 30
SamSung KM681Oooc 5 55-70 225 300 1.5 50

KM68FV1OOO 128KX8 3.0 70-85 120 15
KM68FS1OOO 2.5 120-150 78 13
KM68FR1000 1.8 300 9

54



.-

Part
Vendor Number ~.

Mitsubishi
M5M51OO8

128KX8

M5M5V108
Performance P4C1024L
Semiconductorp3Clo24 128KX8

GSI
Technology

GS7I108 128KX8

I I Power Consumption I\
Nominal Active Active Stand- Stand-

Operating Access Typo Max. ByTyp. ByMax.
Voltage speed Power Power Power Power

5 55-1oo 175 350 100
3.3 70-100 66 115 40
3.0 120-150 45 90 33
3.0 70-100 90 14.4

5 I 55-70 [“ I 350 I I 100

3.3 I 8-15 I I 231 I 33(mW) I

5. Special Purpose Computing Platforms

Special purpose computing components specifically designed to address secure applications are
available commercially. Some of these components were designed for smart card applications
and others specifically for use in cryptography applications. This section will summarize some of
these components.

Many of the devices listed below are subject to import/export control laws. Depending on the
application, there may be some irnportlexport compliance laws that must be adhered to before
implementing the device.

5.1 SGS Thompson ST16CF54

The SGS ThompsonST16CF54 is a serial access microcontroller specially designed for smart
card applications. This processor can be used to directly implement Public Key algorithms.

_,~e ST16CF54 has an internal 8-bit modular arithmetic processor that is designed to speed up
cryptographic calculations required in public key algorithms. On-chip memory includes 512
bytes of RAM, 16K of user ROM, and 4K of EEPROM (electrically erasable PROM). The
device operates on internal frequencies of up to 5 MHz, has a sleep mode for power saving, and

-implements security features. The device is also serial access ISO compatible and contains a
number generator. SGS Thompson offers the ST16CF54 as a 5-volt device.

The modular arithmetic processor contains a library of firmware fi.mctions in its system ROM
‘that allows for the ease in implementing public key algorithms. Some of the firmware fimctions
include calculating Montgomery constants for appropriate mathematical implementation of
modular calculations, basic mathematics for modular and non-modular operations on operands
up to 1024 bits, modular exponentiation on operands up to 1024 bits, and fimctions such as RSA-
based operations, digital signatures, and hashing algorithms.

&,

55



5.2 Motorola MSC0501

The Motorola MSC0501 is a serial access microcontroller specifically designed for use in
embedded conditional access systems and other sectity conscious systems. his processor can
be used to directly implement public key algorithms.

The MSC0501 8,-bitCPU is based on the industry-standard M68HC05 with additional hardware
to make it a modular arithmetic processor. On-chip memory includes 896bytes of RAM, 20K of
user ROM, and 4K of EEPROM. The device operates on internal frequencies up to 5 MHz, has
wait and sleep modes for power saving, and implements security features. The device is also
serial access 1S0 compatible and contains a custom random number generator. Motorola offers
the MSC0501 as both a 5-volt and 3-volt device.

The modular arithmetic processor allows the MSC0501 to handle complex mathematical
calculations required in many applications using public key cryptography for authentication and
signature verification. The modular arithmetic processor is a Montgomery engine and has been
designed to perform Montgomery calculations such as Montgomery modular multiplication and
Montgomery modular squaring. The hardware allows modular arithmetic to be periiormed Ori
numbers up to 1024 bits in length.
user software.

5.3 Siemens SLE44CR80S

The modular arithmetic processor can be accessed directly by

The Siemens SLE44CR80S is a secure microcontroller specifically designed for smart card
applications. This processor can be used to directly implement public key algorithms.

The SLE44CR80S 8-bit CPU is designed to work hand-in-hand with a 540-bit arithmetic co-
processor. On-chip memory includes 606 Bytes of ~, 16K of user ROM, and 8K of
EEPROM. The device operates on internal fkquencies up to 5 MHz, has a sleep mode for power
saving, and implements security features. Siernens offers the SLE44CR80S as both a 5-volt and
3-volt device.

The arithmetic co-processor allows the SLE44CR80S to handle complex mathematical
calculations required in public key applications. The co-processor performs exponentiation ~:
modulo operations on512 bit operands.

5.4 Philips P83C858

The Philips P83C858 is a serial microcontroller specifically designed for smart card applications.
This processor can be used to directly implement public key algorithms.

The P83C858 8-bit CPU core is based on the industry standard 8051 with a Fast Accelerator for
Modular Exponentiation (FAME) co-processor for use with public key algorithms. On-chip
memory includes 640 bytes of ~, 20~ of user ROM, and 8K of EEPROM. The device
operates on frequencies up to 8 MHz and implements security features. The device is also serial
access ISO compatible. Philips offers the P83C858 as a 5-volt device.
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The FAME co-processor allows the P83C858 to handle complex mathematical calculations
required in public key applications. The co-processor pefiorms key generation up to 2048 bits
and perllorms calculations such as 1024-bit RSA signature processing.

I 5.5 Co-processor for Cryptography Applications

1’
The Co-processor for Cryptography Applications is an Application Specific Integrated Circuit
(ASIC) that has been developed at the Technical University of Madrid. The device was
specifically designed for a customer under a Non-Disclosure Agreement. The only
publication/documentation on this device is [RML97]. The device was designed specifically for
cryptography applications.

I ~~~The ASIC was designed to work as a co-processor for a generic CPU. Internal memory consists
--(f 1024 bytes of data. The co-processor’s maximum speed is 33 MHz. We have no knowledge of

sleep mode or security fmtures.

I
The co-processor supports a set of instructions that allow for the ease of public key algorithm
implementation. Desirable instructions include performing Montgomery multiplication on 762-
bit data and modular exponentiations with exponents greater than 64 bits.

I 5.6 Motorola Advanced INFOSEC Modules

I Motorola’s Advanced INFOSEC Module (AIM) is an integration of several devices used to
create a system solution for cryptography applications.

The Advanced INFOSEC Module contains an AIM VLSI chip that is the heart of the
cryptography system. It contains three RISC processor engines that can simultaneously process

“ data. The Key Management Cryptographic Engine (KMCE) is the master controller in the AIM
VLSI. It contains a ROM-based Secure Operating System running on a high ptiorrnance, 32-bit
RISC processor with a math co-processor designed for public key algorithm processing. The
I?rogrammable Cryptographic Processor (PCP) contains two high-speed engines (Programmable

, Crypto Engine, PCP and the Configurable Crypto Engine, CCE) developed to perform channel
encryption and decryption, and data processing typically used in secure communications
signaling. The Programmable Crypto Engine is optimized for processing Codebook-style
algorithms and the Configurable Crypto engine is optimized for processing Combiner-style
algorithms. The processors operate independently at 100 MHz (i.e., 4-stage pipeline). The VLSI
AIM implements a power management system and realizes very high security features. The
VLSI AIM device is a 3.3-volt device. The AIM VLSI is filly programmable.

I The AIM VLSI implements a mod-N solution extractor (NSE) which is a special purpose co-
processor for the acceleration of public key arithmetic.

I
The Advanced INFOSEC Module can be purchased as a fhll system with user interface, as a

. module to embed into a custom system, or as a chip to embed onto a custom design module.

I “
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6. Custom Design Computing Platform

A custom design platform offers the most flexibility in giving the customer exactly what is
needed. Custom designs can address issues such as speed, power, security, and fimctionality. The
entire computing pla~form can exist on a sirigle Application Specific Inte-~ted Circuit (ASIC) or
can be integrated with commercially available components to produce the desired computing
platform. Reconfigurable logic (Field Programmable Gate Arrays [FPGAs] and Programmable
Logic krays [PLAs]) can be just as easily targeted as ASICS, depending on the needs of the
design.

This section will discuss low-power design techniques for a custom-computing platform. In the
next section, we will see actual implementation of algorithms that can be targeted to a custom-
integrated circuit (ASIC, FPGA, PLA) for use in low-power public key cryptography
applications.

6.1 General Design Techniques for Low-Power Applications

Designing Integrated Circuits (ICs) for a low-power environment is dependent upon three
factors: Frequency, Voltage, and Capacitance (Power = P V2*C).The characteristics of these
elements and how they affect the power dissipation of a CMOS (Complementary Metal Oxide
Semiconductor) Integrated Circuit will be discussed in this section. A detailed report for
designing low-power devices can be found in [CB95].

6.1.1 Frequency

Frequency is one element that impacts the power consumption of a CMOS Integrated Circuit. An
IC can be designed in such a way to minimize the effect of the frequency and control the power
dissipation.

One commonly used design technique often referred to as sleep mode is to turn the device’s
frequency (clock) off when not in use. Sleep mode dramatically reduces the power consumption
since transistors throughout the device are no longer charging and discharging gate input ~-
capacitance. Likewise, this technique can be implemented on blocks of logic to reduce the power
consumption during operations (partial sleep mode). For example, if operations in a device are
sequential or periodic, the clock can be disabled for those operations when they are not in use,
thus reducing the overall power consumption. A gated clock or input sensing circuitry are
commonly used design techniques to implement sleep modes.

Similarly, the data bus structure can be designed to reduce the power consumption. Data buses
typically route to several locations throughout a design, and charge and discharge several gate
input capacitances. Thus, all receiving locations of the address bus may consume unnecessary
power if it is not processing the data. For example, memory devices (ROM and RAM) typically
share a common data bus. Most designs do not need to communicate with the devices
concurrently, so power consumption maybe reduced by addressing only the necessary target
device while disabling the other data bus receivers.
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Finally, the operating frequency of the device has a direct impact on the power consumption. Do
not operate the device at a higher frequency than is necessary.

‘6.1.2 Voltage

The operating voltage is another factor contributing to power consumption. Basically, the lower
the voltage, the lower the power consumption. If feasible, select a device that can operate at a
low voltage.

~Advanced design techniques adjust the logic swing of internal devices to be lower than the
operating voltage, which reduces power demands.

6.1.3 Capacitance

As discussed in the frequency section, internal gate capacitance of the integrated circuits also
:affects the power consumption, however, gate capacitance is difficult to control since it is
:typically based on the design technology, which in most cases the designer has no direct control
over. The technology refers to the feature size, such as 1 micron, 0.5 micron, etc., for a design
process. The smaller~e size of the technology feature, the less the capacitance and the less
power consumed.

6.2 Design Techniques for Random Number Generation

A desirable feature for public key cryptography applications is the ability to generate keys.
Depending on the needs, both pseudo random numbers and true random numbers can be
generated on an Application Specific Integrated Circuit. The techniques discussed in this section
can be modified to address the specific needs of the device.

6.2.1 Pseudo Random Number Generation
.

A linear feedback shift register (LFSR) is a pseudo random number generator that is easy to
implement using digital logic. It provides bit sequences that can be generated over a long period
of time. In theory, an n-bit LFSR can generate 2’ – 1 bit-long pseudo random sequences before
repeating.

A variation of the LFSR is the self-shrinking generator [MS94]. This implementation uses pairs
of outputs Ilom an LFSR to generate the output bits. This destroys most of the algebraic structure
of the LFSR sequence, making it more difficult to analyze the sequence.

One-way fimctions such as DES or SHA can be used to generate pseudo random bit sequences
by applying the function to a pseudo-random seed, and then applying the Iimction to the
sequence of values [MvV97, pp. 173-175].

59



6.2.2 True Random Number Generation

For ASIC devices, one of the best ways to generate true random numbers is to use random noise
generated by the properties of the device. G.B Agnew [A88] proposed using metal insulator
semiconductor capacitors. If two such capacitors are placed in close proximity, the random bit is
a fbnction of the difference in charge between the two. A similar method of producing random
numbers is to sample the bits generated by the thermal noise of a resistor [T99]. Another random
number generator generates a random bitstream based on the frequency instability in a free
running oscillator [FMC84].

7. A Custom Design of Candidate Low-Power Algorithms

Taking into consideration low-power design techniques, VHDL ~SIC Elardware Description
Language) was used to capture the fimctionality of the public key cryptography operations and
algorithms. Some of the best candidate algorithms, including Optimal El Gamal and El Gamal
for elliptic curves, were also synthesized to hardware gates, and power analysis was performed.
Gur strategy was to implement a library of mathematical operations and then use them to build
the algorithms. The key sizes used were 160 for Optimal El Gamal, and Elliptic Curve El Gamal
was implemented for both 89- and 178-bit key sizes.

7.1 Design of Generic Mathematical Operations

We designed a generic set of mathematical operations for operand sizes of 160 bits that could be
easily adapted to algorithms. We began with basic hardware designs such as a ripple adder. We
also implemented versions of ad~ subtract, multiply and divide from the Handbook oJApplied
Crypto~aphy [MvV97]. The following table summarizes the operations that were implemented
and their respective gate count and speed for 160-bit operands.

Table 7.1 Size and Speed Comparisons of Implementations of Mathematical Operations

Mathematical Synthesized Period (ns) Number of
O eration~ O erand Size Gate Coun$ (Clock speed) clocks

Ripple Adderl 160 2361 75 1
HAC2 Add –8 160 5216 20 40

HAC2 Add –32 160 4912 25 10
Ride Subtracter~ 160 2442 80 1

I HAC2 Sub -8 I 160 I 5226 I 20 I 40 I

HAC2 Sub –32 160 4940 25 10
Array Multiply 160 X 160 -179,000 -179,000 1
ShifVAdd Multiply 160x 160 6110 85 640
HAC2 Mult –8 160x 160 11041 25 40

HAC2 Mult –32 160x 160 19284 60 10

HAC2 Mult –8 160 X 160 2300 30 40
w/128 x8 RAM 0.6x0.5 mm
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Mathematical Synthesized Period (ns) Number of
Operation Operand Size Gate Coupp (Clock speed) clocks

Array Divide 320/160 -179,000 -179,000 1
Sbiil/Subtract
Divide

320/160 7942 85 640

HAC2 Div –8 320/160

HAC2 Div –32 320/160
Software (803 1, -12K
2Kx8RAM, Generic 1.8x l.6mm -80

Thousands

4K X 8 ROM) 1.lxo.911mn
of Clocks

NOTES:

1)

---
2)

3)

Ripple Adder and Subtracter is a ripple carry implementation.

Handbook of Applied Cryptography (HAC) implementations with an operand width of X bits. HAC operations were
implemented with registers, not memories. Memory implementation would result in smaller (net) values.

Gate counts obtained from synthesizing VHDL with Synopsys Design_compiler tool (effort of medium) and targeting a 0.6-
micron Iibray.

7.2 Design of Optimal El Gamal Signature Algorithm with Pre-Computation

As described in Section 2.1.3, the Optimal El Gamal Signature Algorithm pefiorms the following
general computations per message:

r = (g k modp)mod g

s = (nc~(rn) – k) mod

Assuming pre-computation of r, k, and m with a = m, the computation becomes

s =(ti(m)-k)modq

where H(m) is the 160-bit hash of the message. a, k, and q are also 160 bits.
e

A Read Only Memory (ROM) is needed to store three (r, k, and rx) pre-computed 160-bit values
per computation. The major operations for the above computation are

1.

2.

3.

Hash of the message (implemented using SHA-1 Algorithm)

One Montgomery Multiply on two 160-bit values

A modular subtraction using two 160-bit values

The signature is composed of two 160-bit values (r and s), where r is read from memory ands is
computed as described above.
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7.2.1 Optimal El Gamal Hardware Implementation

The hardware implementation of Optimal El Gamal Algorithm was implemented using VHDL
(see Figure 7.1). It assumes that r, k, and rx are pre-computed. The ROM interface that controls
the reading of these pre-computed values was not modeled at this time. However, it can be easily
added once a ROM is selected, with minimal impact to the overall size of the design.

The VHDL was synthesized to create the following block diagram showing the fictional
implementation. The target synthesis ASIC library was the CMOS6 library, which is 0.5um, 5-
voh process (CMOS6R is a radiation-hardened version of CMOS6). Essentially, there are four
major blocks: opt_cntrl, shal, mont_mult, and mod_sub. The implementation is data-path
oriented, which means that data flows from “tie input to output with very little looping.

For hardware irnplementation~ the total number of compute cycles from start to finish is
approximately 488 clocks. The slowest static timing analysis data path is 88ns. With these two
numbers in mind, the algorithm as presently designed can be run at 10Mhz(100ns cycles) and
compute a 512-bit message signature resultin(100ns x 488 clocks), approximately 49
microseconds (ys)

● Number of Clock Cyclesfor Completion: 488

g CMOS6Approximate Gate Equivalents: 32,577

. CMOS6Slowest TimingPath: 87.76 @-em Montgome~ Multiplication)

● CMOS6R Approximate Gate Equivalents: 32,067

● CMOS6R Slowest TimingPath: 108.78 (j?om A40ntgomequMultiplication)

The estimated power (as estimated by Synopsys Power Compiler tool) for a 0.5um, 5-volt
technology is as follows:

g CMOS6R Power Estimation @5~ 100ns: 44.042mW

. CMOS6R Power Estimation @5K 200ns: 22.239 mW
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7.2.1.1 Optimal El Gamal Controller
Opt_cntrl is the control state machine that controls all the operations for the Optimal El Garnal
Algorithm. It controls and determines when each block in the data path flow is to begin and end
data manipulation. The controller is fast and is a very small portion of the overall design. It is
implemented using state machine methodology. Statistics for our implementation are as follows:

● CMOS6Approximate Gate Equivalents: 78

● CMOS6 Slowest Data TimingPath: 2.14 ns (re~”ster to regi”ster)

. CMOS6R Approximate Gate Equivalents: 74

● CMOS6R Slowest Data TimingPath: 2.01 ns (register to register)
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7.2.1.2 Secure Hash Algorithm-1
WA-l, theSecureHash Algorithm, is the first data block in the design that peflorms the 1s set
of data manipulation operations. SHA-1 was implemented per FIPS Standard (FIPS 180-1). SHA-
1 computes L/i(m), the hash of the incoming message, and outputs a 160-bit message digest. SHA
is the largest hardware block in the Optimal El Gamal Signature Algorithm. Statistics for
implementation are as follows:

● Number of Clock Cyclesfor Completion: 162

. C’A40S6Approximate Gate Equivalents: 19,744

● CMOS6 Slowest TimingPath: 35.82 ns (reg”ster to register)

● CMOS6R Approximate Gate Equivalents: 19,715

● CMOS6R Slowest TimingPath: 42.66 ns (register to register)

7.2.1.3 Montgomery Multiplication
TheMontgomery Muh.iplication block, Mont_mult, performs the Montgomery multiply between
the 160-bit message digest, H(m), and the 160-bit pre-computed rx stored in memory. This
algorithm assumes that rx is in reduced Montgomery form. The output of this block is a 160-bit
number. The implementation of the Montgomery Multiplication Algorithm is relatively small;
however, the static timing analysis indicates this block contains the longest delay path.

. Number of Clock Cyclesfor Completion: 324

. CMOS6 Approximate Gate Equivalents: 7,900

● CMOS6 Slowest Timing Path: 87.76 (register to register)

● CMOS6R Approximate Gate Equivalents: 7,592

. CMOS6R Slowest TimingPath: 108.78 (register to re~”stm)

7.2.1.4 Modular Subtraction
The final step in the Optimal El Gamal Algorithm is a modular subtraction. The mod_sub block
computes the modular subtraction of the 160-bit value k from the 160-bit value output by the
Montgomery Multiplication Algorithm. The size is relatively small; however, the delay path is
relatively long due to the size of the operands. If the design allows, this function maybe
eliminated by initializing the Montgomery multiplier with q - k instead of zero, since k is
subtracted from the output of the multiplication, thus eliminating the final modular subtraction. ,

. Number of Clock Cycles for Completion: 4

. CMOS6 Approximate Gate Equivalents: 4,670
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. CMOS6 Slowest TimingPath: 79.45 (input to register)

● CMOS6Approximate Gate Equivalents: 4,686

. CMOS6 Slowest TimingPath: 101.72 (inputto regz”ster)

.7.2.2Optimal El Gamal Hardware Verification

me algorithm was fictionally verified at both the language and synthesized level. The
following diagrams (Figure 7.2) represent the operation of the algorithm as modeled in the
application. Both waveform figures represent the inputs and outputs in hexadecimal format. The
second waveform presents the computed resulting output of the algorithm.
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7.3 Design of Elliptic Curve Operations and Algorithms

We implemented elliptic curve operations for use with digital signature algorithms. Additionally,
we implemented a preliminary version on M Elliptic Curve Optimal El Gamal Digital Signature
Algorithm as described below. Refer to Section 2.1.4 for more details.

To generate a signature on a message AA

1. Generate a key pair (u, Y = uG), where u is a random integer mod r. Let V = (xr,yv)
(V # O because Vis a public key)

2. Convert xv into an integer i

3.Compute an integer c = imodr. Ifc = O,thengoto Step 1

4. Set~= Hash (M). Compute an integer d = (cfs + u) mod r. If d= O,then go to Step 1

Output the pair (c, d) as the signature

The approach for designing the elliptic curve algorithm is similar to the Optimal El Gamal
approach. We developed a set of basic mathematical fimctions, and then used the fimctions to
build the algorithms.

7.3.1 Hardware Implementation of Basic Mathematical Elliptic Curve Functions

We developed a set of basic mathematical fictions in VHDL, which was used to build the
elliptic curve algorithms. The operations were developed for both 89-bit and 178-bit numbers
for elliptic curves ddined over G17(289)and GF(2178),“respectively. First, the basic functions
were implemented over the underlying finite field. The elliptic curve operations were then
defined in terms of these finite field operations. Finally, the signature algorithm was developed.

7.3.1.1 Addition/Subtraction over GF(2m)
Addition and subtraction on GF (2”) are the same operation, a bitwise XOR of the 2“ bit vectors.
That is, a + b or a – b is equivalent to the bitwise logical function a XOR b. The operation is
defied as follows:

a,bc F a+ b=(al@bl, azQb2,..., a~@b~)

7.3.1.2 Multiplication over G~2m)
Multiplication in GF (2”) is essentially the same Shill and Add Algorithm used for binary
numbers, followed by a mod (P) operation, where P is the irreducible degree m polynomial
defining the field. Essentially, it is like multiplication without any carries, where the
accwimlation is performed as described above (i.e., XOR ilbnction).
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7.3.1.3 Division over G~2m)
Division over GF (2m)is performed by an inversion followed by a multiply. The algorithm we
impkmented for this fimction is the Almost Inverse Algorithm developed by co-author Rich
Schroppel. A summary of the algorithm follows:

A is the input value to be inverted.

P i.s the irreducible polynomial for the Galois Field.

INT K=O;

GF B=l, C=O, F=A, G=P;

.~ag:

while (even (F) {

F =F /u; // shift right

c= C*U; // Left shift

K++ ;

if (F=l)

GOTO Done;

if (Degree (F) <Degree (G) ) {

tmp = F; // Swap F & G

F = G;

G= tmp;

tmp = B; // Swap B & C

B=C;

c = tmp;

}

F= F+G;

B= B+C;

GOTO Tag;

69



Done:

for(i=O; i<K; i++) {

//divide B by UAK

B = B + B(0)*P; // this clears out the LSB

// by adding it modulo P

B= E?I/u; // right shift

1

Return B;

7.3.1.4 Squaring over GF(2m)
Thesquaring operation over GF(2”) is performed by treating the field as a bit vector and
inserting a zero in every other place making it twice as big. The new value is then reduced
“modulothe field polynomial P. For example, the square of the field 1011 is 1000101, which is
then reduced modulo the field polynomial P to get the final value.

7.3.1.5Square Root over G~2m)
The square root fiction is somewhat more complex. The even bits of the field are split off to
form anew vector, as are the odd bits. The odd bits are then multiplied by a correction factor and
added to the vector formed from the even bits. The correction factor is dependent on ~.

7.3.1.6 Quadratic Solution (QSolve) over GF(2m)

Thefimction Qsolve finds a solution, z, to the following equatiorx Z2+ z = a.

The QSolve fimction is linear:

QS (A+B) = QS (A) + QS @)

Given that Qsolve is linear, we can derive the QS(2m)for each bit in the field, and then add them
together as appropriate.

7.3.1.7 Arithmetic over GF(289)and GF(21m)
First, the basic arithmetic operations described above were iniplemented and tested over the field

G~(2W). From there, it was easy to adapt the algorithms to G17(217*).Since 178= 89*2, we

used field towers (see Section 2.7.2) to think of G17(2178)= G17(289)2as a degree two field

extension over G17(289).An element a ~ G17(2’78)can be represented as a pair of elemerits in
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GF(289):a = (c@): a,b = GF(289).The mathematical operations on GF(2178)can thus be

defined in terms of the G27(289)routines.

7.3.1.8 Multiplication over Gfi2178) = GF@g)2)
TheMultiplication Algorithm is defined in terms of the base operations over the GF’(2*9).For
example, in the equation below, a + b is over GF (289).The GF (2178)Multiplication Algorithm
was implemented as follows:

Input: 2 elements O,c e GF(2178) of the form o = (a, b); c = (c, d)

where

a,b, c, d = GF(289).

Outputi 0“0 =p =(e, j);e,~c GF(289)

1. e=(a+b)(c+d)-bd

2. f=ac+bd

3. Output p = (e, f )

7.3.1.9 Inversion in GF(21m)= GF((28g)2)
Similarly, the Inversion Algorithm implemented in VHDL is as follows. Again, base operations
are over GF(289).

Input: 1 element to = GF(2’78) of the form o = (a,b) where a,b = GF(2W)

output #-* = (C,d);c,d c GF(28’)

1. c=
(a +b~’ +ab

2. d=
a+b

(a+ b)’ +ab

3. output @-’ = (C,d)

7.3.1.10 Squaring in GF(2178)= GF((2*~2)
TheSquaring Algorithm for GF (2178)was implemented in VHDL as follows. The squaring of
c=a2 below is simply an implementation of the squaring for GF(289).
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Input o = (a,b) c GF(2’78);a,b ~ GF(28’)

output co’ = (C,d)

1. c=a2

2. d=a’ +b’

3.Output co’= (c,d)

7.3.1.11 Square Root in G~2178) = GF((289)2)
The Square Root Algorithm for GF’(2178)was implemented in VHDL as follows. As in the
squaring, the square root of a is the exact implementation in GF’(289).

Input: o = (a,b) = GF(2178);a,bs GF(289)

Output: A= (c, d)

1. c=&

2. d=&&

7.3.1.12 Quadratic Solve (Qsolve) in GF(2178)= GF((2W)2)
The Square Root Algorithm for GI’(2178) was implemented in VHDL as follows:

Input: o = (a, b) = GF(217S); a, b c GF(289)

Outputi QSolve(~) = a = (c, d) (Here a2 + a = o )

1. c = QSolve(a)

2. d = QSolve(a +-b+ c)

3. Set z = a+b+c =2.21 ...28s

4. If 20 @Z~l=lthenc=c+l

5. output (c, d)

72



7.3.2 Elliptic Curve Operations

,

With the base finite field operations in place, we are ready to implement the elliptic curve
operations.

7.3.3 Elliptic Curve Scalar Multiplication Algorithm

The elIiptic curve scalar multiplication algorithm consists of two basic operations: point addition
and point halving, as shown in the following block diagram (Figure 7.3). The Point Addition and
Point Halving algorithms use all of the basic finite field mathematical operations just described.

The Elliptic Curve Scalar Multiplication Algorithm used for our VFIDL implementation is as
follows:

Input: P=(x,y), an elliptic curve point on E, and n = k178...kO.the binary representation of a

random number with S 178-bits

Outputi np, the scalarmultiplication

V=o

For]= Oto 178

do{

If k, = 1 then

V=V+P —Point Addition Algorithm

V=%v

) —Point Halving Algorithm

end 100p;

Note that the above algorithm really produces nPL2178.The exact factor is recoverable later, if
needed.

The block diagram (Figure 7.3) is as follows:

73



b[177; ElD.

nl177:El~

I

Fk tr l-in-u

~vx[177:El

pvy[i77:El

U don.

star t—& 1

KJ“-ui

t

-1
Ill~ 1Pxl

Pyl

-II 1’ kr-
1 h- - -

1- -
I-#

*.m
E“ I

design~ k-npJn_uidth178 d!islgner I Russ or Riia data, 9/14/261J9
1

tmchnmlagy: company: %ndla National L. borato $kbnE{: lrJfl
I

Figure 7.3 Elliptic Curve Scalar Multiplication

,.



1. IfPO = O, (i.e. XO= OandyO = O) then output P2 -P1 and stop

2. If PI = O, then output 1’2+ P. and stop

3. If X(I* xl then

Set A + @o+yJ / (XJ+ xl)

Setxz+-a +A2+l+xO+xl

Go to step 7

4. If y. # yl then output P2 + O and stop

5. If xl = Othen output P2 + O and stop

6. Set

xl+yl /xl

,x2+a+A2+A

7. y2+(xl+x2)A+x2+y1

Essentially, this algorithm required 2 elliptic curve multiplications, .a squaring, and an inversion.
The algorithm was verified via VHDL testbenches.

7.3.3.3 Point Halving over GF(2m)
ThePoint Halving Algorithm (patent pending) developed by Rich Schroeppel [S00], is, in
software, three times as fast as point doubling. It therefore provides a dramatic increase in
periiormance when used in computing a multiple of a point.

We implemented the following algorithm for point halving:

1.

2.

3.

4.

Convert point from (Px,~) to (Px,Pr)

Ptmp = InvertPx

Pr=Ptmp+Py

Mli = QSolve(Px + A), where A is a curve parameter

T= Px*(Pr + Mh)

Ifparity(Tand trn)=Othen iktii=Mh + 1; T= T+P~ endi~
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tm is a mask that is dependent upon the modulus polynomial.

Inourcase, itisuA51 + 1.

5. Pxh = square_root(7)

6.Prh=M7z+Pxh+l

7. Convert point from (Px,Pr) to (Px,Py)

8. Pyh = Prh ~Pxh

This algorithm can be optimized in its present state. In the NP Algorithm, one does a point
addition only for each set bit in the integer multiple, but does a point halve for each bit.
Therefore, if (Px,Pr) is carried and converted in point add to (Px,Py), one gets a net savings.

7.3.3.4 Scalar Multiplication Verification
The Scalar Multiplication Algorithm for both GF’(289)and GF(2i78)were fictionally verified at
the VHDL language level. The following diagram (Figure 7.4) represents the operation of the
GF’(2178)Algorithm as modeled in the application. The input and output signals are represented
in hexadecimal format.
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7.4 Obtaining the VHDL Code for Implemented Functions

One advantage of modeling and capturing the design in VHDL is that it is easy to target or re-
target any ASIC, FPGA, or PLA library with very little effort. Thus, all of the VHDL code
described in the previous sections is available from

7.5 Comments and Further Optimization

the authors of this document.

In the current hardware implementation of the Halving Algorithm (Section 7.3.3.3), the ratio R is
computed for each point halving, and then the resulting Rhalf is converted back to Yhalf. This is
reasonable for proof of concept, but it takes a reciprocal and a multiply to compute R,and a
multiply to compute Y.If these are removed, the halving steps should be four times as fast.
Furthermore, in the transition from a halving step to a point addition, the Y coordinate is
computed for the addition. This is unavoidable. But the output of the point addition can be in
(xR) form, which saves some,work in preparing for the next halving step; or, the point halving
can start from XY format, and output in JR.

The Point Halving Algorithm is more than three times as f~t as point doubling in software, and
we expect comparable performance in optimized hardware. Even after the other parts of the
overall point-multiplication process are accounted for, the periiormance gain from using point
halving is roughly 2.5. In an optimized implementatio~ a table of small odd multiples of the
generator is computed at the start. This reduces the number of point additions considerably, so
that five doubling (or halving) steps are done for every addition. This allows the fill benefit of
the halving improvement to be realized.

A point addition requires three expensive operations in the underlying field two multiplications
and a reciprocal. The reciprocal is typically three times as expensive as the multiplication, so a
simple cost estimate for point addition is five times the cost of a field multiplication. Point
doubling is similar. Point halving requires only a single mukiplicatio~ plus some auxiliary
operatio~ square root and solving a quadratic equation. The auxiliary operations are
relatively cheap in GF(2) fields, so the overall cost of point halving is about 1.5 multiplications.

An additional benefit of using fewer reciprocal operations is that multiplication is easier to
improve: the Karatsuba method can be used to speed up multiplication. Nothing as effective is
known for reciprocals.

We anticipate iirther improvements in the circuits for square root and for solving the quadratic
equation.

We should also mention the benefit of our field-tower implementation. The multiplication using
field towers is nearly 4/3 as fast as a straightforward multiplication in a double-length field. In
effect, we get the benefit of one level of Karatsuba optimization. The reciprocal operation is
considerable faster than a straightforward double-length reciprocal, since only half as many
clock steps are used, with only single-length operands.
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9. Appendix A-Additional Algorithms

9.1 Storage/Work Balanced El Gamal Scheme

This scheme is a modification of the Optimal El Gamal scheme. It requires less storage arid only
two more modular multiplications to sign. It introduces a secret parameter d thatallows values of

~ito be recovered simply. Each ki = dki.lmodq is computed as needed in the generation of Si.

All values of q =(g~’ mod p) mod q are pre-computed and stored. Therefore, at any given time, the

values that are stored include d, q,p,g,ki.l, and all values of r. The values of r need not be kept

secret. The signature for message i is ~i,s i as computed in the Optimal E1Garnal scheme. When

the values of r are exhausted, new values must be computed, requiring that a modular
exponentiation or another authentication mechanism be used.

This implementation of the El Garnal signature scheme would have to store only one 20-byte
pre-computed value for each message it is to sign, and when this value has been used, the
application could no longer be able to sign messages. It would then have to use some other
“mechanismto sign messages.

Example: (20bytes) *(1 messagekiay) * (365days/year)* (5 years) = 36,500 bytes of pre-
computed data

9.1.1 Evaluation of Storage/Work El Gamal Scheme

Table 9.1 Parameter Sizes for Storage/Work El Gamal Scheme

Parameter I Description Size (in bits)
P Prime modulus >768

Q I Prime divisor ofp 2160

G Any value such that order of g is q >768

x 1 Secret kev 160
IY ~ gxmodp “1 >768 I

H(m) Hash digest of the message 160
D Additional secret 160

J

kl
I

Random per message secret, 160
ki = dki-lmod~

[ ST ~ (@i?(m)-ki)modq I 160 I

Signature operations required: Hash of message, two 160-bit modular
multiplications and subtraction

Verification operations Hash of message, 160-bit modularmukiplicatio~

81



required: two modularexponentiations in the size ofp

Storage required to sign (in 768 <p, g, 160 bits each for q, d, ki.land x, and 160
bits): bits for each message to be signed

Amount of data transmitted: 40 bytes

9.2 Schnorr Scheme

TheSchnorrscheme [S89] is a DSA variant that takes advantage of a pre-processing mechanism.
However, the pre-processing mechanism presented by Schnorr has been successfidly attacked
[dR93]. The algorithm is described below.

To generate a key paic

1. Assume system parameters identical to those defined for the Digital Signature Algorithm

2. Choose a random numberx modq where x is the private key, and compute the public key

y=g-srnodp

To generate a signature:

1. Using the pre-processing procedure described below, pick a random number k ={1,...,q] ,

and compute r’= gkrnodp

2. Compute r= l%d(r’,~)

3. Compute (s= k + xr)modq, and output the signature (r,.s)

To verifi a signature:

Compute 7= g’ y’ , and veri@ that r = MZSA(F,m)

Pre-processing procedure:

1.

2.

3.

4.

Generate independent random pairs (ki,q’),i = 1,.. .j~q’ =gk modp

For every signature use a random combination (k, r’) of these pairs

Rejuvenate the collection of these pairs by combining randomly selected pairs

The algorithm to chose random combinations must remain secret

As stated above, this pre-processing algorithm as specifically described by Schnorr has been
proved to be insecure. However, the proof does not show that the idea of pre-processing in and
of itself is insecure, only that the method described by Schnorr is insecure. Unfortunately, the
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requirement that the pre-processing algorithm remain secret maybe an undue restriction for
certain applications.

9.3 Chor-Rivest Knapsack Signature Scheme

The following description of the Chor-Rivest public key encryption scheme is from [MvV97].

Chor-Rivest Key Generation:

1.

2.

3.

4.

5.

6.

7.

8.

Select a finite field F~ of characteristic, where q = PA, p a h, and for which the

discrete logarithm problem is feasible

Select a random monic irreducible polynomial j(x) of degree h over Z/ pZ. The

elements of F~ are represented as polynomials in Z / pZ [x] of degree less than h, with -

multiplication performed moduloflx)

Select a random primitive element g(x) of the field F~

For each ground field element i= Z /pZ, find the discrete logarithm ai = loggtx)(x+ i) of

the field element (x+i) to the base g(x)

Select a random permutation m on the set of integers {0,1,2,...,1]1]

Select a random integer d,O <d<ph -2

Compute ci = (az(i)+d)rnod(ph-l), O<i<P-l

The public key is ((co,q,..., CP-1JP3fil and fie private key is (.fl~)> g(~)t ~>d)

To encrypt a message:

()1. Represent message m as a binary string of length [lg~)] where ~ is a binomial

coefficient

2. Transform m into a binary vector AZ=(M0,A41,...,AL?P.l)of Iengthp having exactly h ones

as follows:

set l.+h

for i from 1 top
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()if m ~ Pji
()thenset M~-1+1,~+~– ‘: ,1+-1-1

else ~~-.l + O

()
3.Compute c = ~~’Mjci mod ph -1

To decrypt a message:

1.

2.

3.

4.

5.

6.

()Compute r =(c- hd)mod ph -1

Compute u(x)=g(x)”modf(x)

Compute s(x)= u(x)+f(x), a monic polynomial of degree h over Z / pZ

Factor S(X)into linear factors over Z-PS(X)= ~~=,(x+tj), where tj e Z/pZ

Components of the vector M that are one have indices Z-l(tj),ls js ~. All other

components are zero

The message m is recovered by

set m+ O,l+h

for i from 1 top

()if ~i_l=l then set nzem+ ~’ and lel-1

This description of the Chor-Rivest scheme definesp as prime. However, Z/ pZ can be replaced
by a field of prime power order. In additio~ in order to feasibly compute discrete logarithms, the

~ 1 has only small factors. The recommendedparameters p and h must be chosen so that ~= p -
size of the parameters are p =zoo and h =25. Unfortunately, this causes the public key to be
roughly 40,000 bits in length, making this algorithm not feasible for the low-power environment:

9.4 McEliece Scheme

The McEliece Public Key Encryption Algorithm [MvV97] is based on the difficulty of decoding ~
an arbitrary linear code which is known to be NP-hard. It has received little practical attention
due to the size requirements of public keys. The following text describes the encryption
algorithm, not the authentication algorithm.

To generate a key paic
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1.

.-

: 2.

.

3.

4.

5.

: 6.

Choose system parameters k, n, and t (reco~ended values n = 1024,t=38,andk2644
when Goppa codes are used as the error correcting code for which efficient decoding
algorithms are known)

Choose a k x n generator matrix G for a binary (n, k) linear code which can correct t
errors and for which an efficient decoding algorithm is lmown

Select a random k x k binary non-singular matrix S

Select a random n x n permutation matrix P

Compute the k x n matrix ~ = SGP

An entity’s public key is (~,t). The corresponding private key is (S, G, P)

To encrypt a message:

‘ 1. Represent the message as a binary string m of length k

2. Choose a random binary error vector z of length n having at most t ones

3. Compute ciphertext, the binary vector c = m(? + z

To decrypt a message:

1. Compute E = CP-l

2. Use the decoding algorithm for the code generated by G to decode ? to h

3. Compute m = fiS-’

The size of the public key for n =
private key is 264 kilobytes.

024 and k 2644 would be 82 kilobytes. The size of the
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10. Appendix B

The purpose of this appendix is to present some ideas for converting the Permuted Kernel and
the Syndrome Decoding identification schemes to signature schemes suitable to the low-powered
environment. The ideas are incomplete and are presented solely for informational purposes. Our
hope is that the ideas maybe usefid to the reader in understanding the problems that he may
improve upon our solutions.

10.1 Permuted Kernel Problem Scheme

This public key identification scheme is defined in the abstract [S89a] with fiuther analysis done
in [BCCG92] and [PC93]. This scheme is based on an NP-complete algebraic problem known at
the permuted kernel problem, The problem is defined as [MvV97]:

Given: an mx n matrix A over Z/pZ ,p prime and relatively small (e.g., 251)

an n-vector V

Find: a permut@ion z on {l, .... n) such that VZ~~er(~)

Where: ~er(~) is defined as the kernel of A consisting of all n-vectors Wsuch that AW = [0 ... 0]
modp

To generate a key pair:

● all users agree on a matrixA and a prime p

c each user chooses a random permutation ~i as his private key and a random vector
Y ~ Yx,~ ~er(~) which serves as his public key

Permuted Kernel Problem Progress Towards Possible Solution

Givem a prime numberp

annzxnmatrix~=(aY) cZP,i=l...m, j=~... ~

an n-vector V=@j)=ZP, j=l...n

Find: apermutationz(l...~) suchthat Axv7=0,v= =(vz(j)),j=l..-n
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Key Generation:

● users of the system agree to a system primep and a matrix AI=(~V)SZP,i=l...~,j=~...~

● each user then chooses a permutation z (1...~) as his private key and a random n-vector

V=(vj)ezp,j “=1...~as his public keysuch that ~xVz=O,VZ=(~=fjJ),j=l...n, i.e. Yxis in the

kernel of A

Use in a Three-Pass Zero Knowledge Identification Scheme (Shamir):

1. The prover (A) chooses a random n-vector R and a random permutation o, and sends the
- cryptographically hashed values of the pairs (o,m) and (ZC,R6) to the verifier(B).

2. B chooses a random value OSC<p and asks that A send W=RO +C(VZ)&.

3. Afterreceiving W,B asks A to reveal either o or mc. In the first case, B checks that
(a,AaW) hashes to the first given value and in the second case, B checks that (ma,W-c(vz)c)

hashes to the second given value.

Note:

-46W=z4c(R. +c(Vfl).)=A(R +cVz)=AR

JV-C(VZ)O =Ra

The probability that a cheater can evade detection is Z so the protocol is repeated k times to

reduce the probability of successful cheating to some ~ceptable lirni~ i.e., 1/2~.

Use in a Signature Scheme:

The following is an attempt to modi~ the identification scheme to a signature scheme suitable
for a low-powered environment.

Additional Given:

1.

2.

3.

An algorithm, ~l(message, private key), that will produce k random vectors Ri, i=l ,2,....k,
each of size n where the elements of Rt are in ZP.This algorithm is public, but the key is
private to A (necessary for non-repudiation).

An algorithq~z(message), that will produce k random values ci, i=l ,2, . . .. k, where
O<Ci<p. This algorithmis public.

An algorithm, ~3(message), that will produce k random permutation vectors, ri, i=l ,2, . . .. k.

Each vector is a permutation of the integers fkom 1 ton. This algorithm is public.
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4. An algorithm, jj(rnessage), that will produce k random bits, bi, i=l ,2, . . .. k. This algorithm is
public.

To sim a messape:

1. The prover (A) computes wxor ad hxor zwfollows: Given (Ri ,ci, ~i ,bi ) Vi

Initialize wxor and hxor

For i=l :k

Casel: bi =0

‘i = ‘i

/l=17(Ci, ARi)

Case 2: bi = 1

Compute ~i = gi(ri) 3 (~)~~ = ~i KEY (uses knowledge Of x to get

at)

h = ~(ri ,(Ri )Oi )

wxor = wxor @ ((Ri)ai + ci(Yz)ai ~

kxor = hxor 9 h

end;

2.The prover (A) sends (message, hxor[commitment], wxor[signature]).

To ven”fi a messa~e:

1. The verifier (B)

) V,computes (ci, ~i, bi “

initialize hxorv
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For i=l :k

Casel: bi =0

a

mote in thiS case T’i= Gi w.r.t prover]

h = H(~i, Ari wxor)

Case2: bi =1

h = H(ri, wxor – cil?ri )

hXOIV= hXOiV@ h

end;

2. Veri*hxorv=hxor

Comment We note that this idea does not work since the wxor will never check properly. We
suggest the following modifications.

MODIFICATION 1

Case 1: bi =0

Compare:

●

ffi knOWII by verifier

‘i= &i ‘i

FOR LHS, we send selected bits of z ARi mod(p), where the selected bits are
i

determined by the message.

FOR RHS, observe that ~i~ = ~i [(Ri)oi + q(vz)Ci],or

~iw ‘&i(Ri)oi +~ici(v~)ai , or ~iw =ARi +AciVm = ARi.

Seems like Wi would be an important key (maybe send message dependant

bits of W) ---still BIG PROBLEM
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Case 2: ~ = 1

Compare:

●

●

A compositeof Wi isnotsufficient because ofinteraction between W~and

Ai

Zci known byvenfier

(%)“ Oi
= Fi - Ci(l+)ai

FOR LHS, we send selected bits of ~(Ri)Oi mod(p)
i

FOR RHS, wesendselectedbits of~~mod(p) ,notethatci(VZ)ai canbe
i

computed by the verifier

MODIFICATION 2

The problem with the above scheme is that in the verification procedure, B must use as input to
H a quantity related to the Wi= ((Ri).,+Ci(Vz).,)which cannot be recovered from the wxor.

Instead of the wxor we suggest in the signing procedure to construct a composite sum,

W = ~diwi, where the di’s are constructed as follows. Let pl, pz, ....p~be k distinct primes

where’ pi > p for all i. These primes can be public, say the next k primes after p. Define

ni =~pi , and let di =ni(nJ1 modpi).
j*i

.

di - Omodp~ (for all j # i ), and

Note that

di =lmodpi,

Wmodpi = ~diwi mod pi
i

and since pi > p we recover the original Wi. Now

= Wimod pi

in the verification procedure B uses

( Wmodp,) instead of wxor in the ith loop and the algorithm will then give the desired result.

This solution works, however, ~ is still too large for the low-powered environment. An idea to
improve this is given next.
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.

A Partial Solution to the PKP Signature Problem

1. A computes~ill commitments: k
(1) (1) (2) (2)

}
~(k) D(k) , where1 >D2 ,Dl ,D2 ,..., 1 , 2

Df) = ~(~i = ~i, ~i ); ~i = ~li (message), Ri = ~zi (nzessage)[private]

D;) = H(zai =
) . -~ (message), Ri = ~zi(nze.wage),‘i>(Ri )~i ; ‘1 – lZ

~i = gi.(~i ) 3 (~)ci = ti (uses lmowledge of ~ to get ~ ) (At this point, A h~ committed to

the Ri’s)

2.

3.

4.

5.

6.

7.

8.

9.

{
A keeps only the first q bits of each D~~)(e.g.,d~) = D\~),D$~,. ..ll~~ ])as the e~ective

commitments. This impacts the security of the system. The probability of successful

nlk
counterfeiting in the absence of information about z increases fi-om ~ to

k

[()]

_+ 1 ‘+11

2 7“

(1) (1) (2) (2)A computes: G = hash(dl ,d2 ,dl ,d2 ,..., d~k),d$k); message)

A obtiins ci~d bi (i =1,2, . . .. k) from G mote: A has no control over ci and bi]

A computes Wi(i =1,2, . . .. k) and composes W(a compression of Wi’s)as above.

(0 (U (2) d(2)A communicates (dl ,d2 ,dl , z ,..., d~), d.$k);W; nzessage) to B

B obtiins ~ ~d bi (i =1,2, . . .. k)

from G = hash(df), dy), d~),d~),. ..,d~k), d~); message)

B decomposes Wto obtain Wi’s

B computes:

bi = O:JZ!) = fi(~i = ~i, Ari ~) ; ~i = ~li (message) (or)

( i *i ); ‘i =Ai(message)bi=l:E$) =lJri, W”-c V1
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10. B retains only the first q bits of each E~) (e.g., e!)= @\~),E\~,. ..E~~ }) to check versus

the respective eflective commitments from A.

Comment: In this implementation finding a compressiorddecompression of W(steps 5 and 8) is
clearly the problem. The signature size currently dominated by W.The security of such an
approach is unknown.

10.2 Syndrome Decoding Based Identification Scheme (Stern)

This public key identification scheme is defined in [S93]. This scheme is based on the syndrome
decoding problem for en-or-correcting codes. The security of this scheme is based on the
hardness of decoding a word of given syndrome with respect to some binary linear error-
correcting code.

To generate a key paic

. all users agree on an kx n matrix II over F2 (this matrix can be considered a parity check
matrix)

● all users agree on a value p < n

● each user picks an n-bit values which is comprise of p ones

. all users agree on a cryptographic hash fbnction

. each user computes his public key i = H(s)

Given: parameters n and k such that ~=2~,fi=256,512

H,a random* (n-k) x ~ binary matrix (system parameter)

p= 0.1 In, a weight parameter (system parameter)

s, a binary vector of length n containing exactlyp ones (private key)

i =HS, an (n – k) binary vector (corresponding public key)

*Stern defines Hto be a random binary matrix and also indicates that it is a linear error correcting
code.
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Questions: Can H’be truly random or are there restrictions on the formation of Hsuch as Hmust
contain columns which are non-zero and distinct? If there are restrictions on the generation of H,
is the security of the scheme affected?..

Identification Procedure:

1.

2.

3.

‘.

A picks an-bit vector y and a permutation o ={1,2,...,~] and sends B

cl =-F(c,H(y))

C2=~(Yc)
C3=~((Y~~)c )

B sends a challenge b = O, 1, or 2

Case b = O A reveals y and a

B verifies c1 and c2

Case b=l: A reveals y@sand u

B verifies commitments Cland c~

note: n(y) =(H(y @s))ei

Case b =2: A reveals y. and SC

B verifies commitments C2 and c~ and verifies W(sc) .P

Comment:

The probability that a cheater can evade detection is 2/3 so the protocol is repeated k times to
reduce the probability of successfid cheating to some acceptable limi~ i.e., 2/qk.

Use in a Signature Scheme

Method 1 – [S93]

1. A prepares k sets of commitments: Cj = {c{,c~,c~],j = 1,2,..., k

2. A hashes commitments with message: G = hash(c~, c!, c~,..., C:, c; ,c$’;message)

3. A uses the successive digits of G (converted to a base 3 representation) as the sequence of k
challenges (b’s).
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4. A responds to challenges and issues transcript of commitments and responses (signature)
along with message to B

5. B computes G, reconstitutes series of challenges, and verifies responses.

Comment:

● Method 1 is likely to result in very long signature.

Method 2 – Incomplete (Attemptto minimize signaturesize by having B pre-compute some bit-
Strings)

1. A and B generate m n-dimensional random bit-strings ( Vj , j =1,2,..., m ) usingfimessage),

where~is a public hash fimction. In a sense, these bit-strings are the commitments.

2. Let Vj ‘b’,@s )0 for j =1, 2,..., m. A computes yj

3. A computes the signature: yxor = yl 63y2 @... @ym

4. A sends yxor and o to B.

5. B inverts Vj to obtain yj @s, for j = 1,2,..., m

()= ‘j ~-1 @.$ for dl~.

6. B computes ~yj = ~(yj)=(~(yj @ s))@~

7. B verifies that H(yxor)=(EIyl (mod2)) 0(kIy2 (mod2)) @... @(Hym(mod2))

Comments:

. This scheme takes advantage of the distributive property of H@xorj.

H(yley2e... eym)=Hyl eHy2@Hym@Hym

. The commitments are message dependent.

Security of the Signature Scheme:

● The security of the signature scheme is due to the difficulty in finding:

yxor 3 H(yror) = z, where H and z are known.
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● NOT SECURE yXOr=y~@~~@... @yin= (y~@S)@(y~@S)@...@(ym@~)@S

S can be deduced from yxor and the other information

Comments:

● B demonstrates a knowledge of yxor and hences.

. Still has not addressed the need to demonstrate that wt(s)=p.

. Question: How big does m have to be to guarantee security (clearly rn>l)?

Maybe nz= 2 is good enough.

Computational Requirements:

1.

2.

3.

4.

5.

Computation of the Vj (both A and B).

Inversion of v~ (A).

Computation of yxor (A).

Computation of H(yj)=(H(y @s) ~)@i (B).

Verification by B.

Communication Requirements:

In addition to the message itself

. n bits are transmitted for yxor and

● u bits (say about 120) are transmitted representing the seed of the generator that produces G.
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