Evolution of Stress in ScD{sub 2}/Cr Thin Films Fabricated by Evaporation and High Temperature Reaction

PDF Version Also Available for Download.

Description

The stress of scandium dideuteride, ScD{sub 2}, thin films is investigated during each stage of vacuum processing including metal deposition via evaporation, reaction and cooldown. ScD{sub 2} films with thin Cr underlayers are fabricated on three different substrate materials: molybdenum-alumina cermet, single crystal sapphire and quartz. In all experiments, the evaporated Cr and Sc metal is relatively stress-free. However, reaction of scandium metal with deuterium at elevated temperature to form a stoichiometric dideuteride phase leads to a large compressive in-plane film stress. Compression during hydriding results from an increased atomic density compared with the as-deposited metal film. After reaction with ... continued below

Physical Description

42 pages

Creation Information

ADAMS,DAVID P.; BROWN,LAURENCE E.; GOEKE,RONALD S.; ROMERO,JUAN A. & SILVA,ANDREW D. June 1, 2001.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 17 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The stress of scandium dideuteride, ScD{sub 2}, thin films is investigated during each stage of vacuum processing including metal deposition via evaporation, reaction and cooldown. ScD{sub 2} films with thin Cr underlayers are fabricated on three different substrate materials: molybdenum-alumina cermet, single crystal sapphire and quartz. In all experiments, the evaporated Cr and Sc metal is relatively stress-free. However, reaction of scandium metal with deuterium at elevated temperature to form a stoichiometric dideuteride phase leads to a large compressive in-plane film stress. Compression during hydriding results from an increased atomic density compared with the as-deposited metal film. After reaction with deuterium, samples are cooled to ambient temperature, and a tensile stress develops due to mismatched coefficients of thermal expansion (CTE) of the substrate-film couple. The residual film stress and the propensity for films to crack during cooldown depends principally on the substrate material when using identical process parameters. Films deposited onto quartz substrates show evidence of stress relief during cooldown due to a large CTE misfit; this is correlated with crack nucleation and propagation within films. All ScD{sub 2} layers remain in a state of tension when cooled to 30 C. An in-situ, laser-based, wafer curvature sensor is designed and implemented for studies of ScD{sub 2} film stress during processing. This instrument uses a two-dimensional array of laser beams to noninvasively monitor stress during sample rotation and with samples stationary. Film stress is monitored by scattering light off the backside of substrates, i.e., side opposite of the deposition flux.

Physical Description

42 pages

Source

  • Other Information: PBD: 1 Jun 2001

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2001-1629
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/783088 | External Link
  • Office of Scientific & Technical Information Report Number: 783088
  • Archival Resource Key: ark:/67531/metadc716585

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 2001

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • April 11, 2016, 4:30 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 17

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

ADAMS,DAVID P.; BROWN,LAURENCE E.; GOEKE,RONALD S.; ROMERO,JUAN A. & SILVA,ANDREW D. Evolution of Stress in ScD{sub 2}/Cr Thin Films Fabricated by Evaporation and High Temperature Reaction, report, June 1, 2001; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc716585/: accessed April 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.